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Abstract: In recent years, cybersecurity has been strengthened through the adoption of processes,
mechanisms and rapid sources of indicators of compromise in critical areas. Among the most latent
challenges are the detection, classification and eradication of malware and Denial of Service Cyber-
Attacks (DoS). The literature has presented different ways to obtain and evaluate malware- and
DoS-cyber-attack-related instances, either from a technical point of view or by offering ready-to-use
datasets. However, acquiring fresh, up-to-date samples requires an arduous process of exploration,
sandbox configuration and mass storage, which may ultimately result in an unbalanced or under-
represented set. Synthetic sample generation has shown that the cost associated with setting up
controlled environments and time spent on sample evaluation can be reduced. Nevertheless, the
process is performed when the observations already belong to a characterized set, totally detached
from a real environment. In order to solve the aforementioned, this work proposes a methodology for
the generation of synthetic samples of malicious Portable Executable binaries and DoS cyber-attacks.
The task is performed via a Reinforcement Learning engine, which learns from a baseline of different
malware families and DoS cyber-attack network properties, resulting in new, mutated and highly
functional samples. Experimental results demonstrate the high adaptability of the outputs as new
input datasets for different Machine Learning algorithms.

Keywords: malware; denial-of-service; reinforcement learning; synthetic sampling, cybersecurity;
machine learning; cybersecurity datasets; artificial intelligence; q-learning

1. Introduction

Cybersecurity is a specialized area of IT that aims to preserve information assets in
terms of integrity, confidentiality and availability. This is a key point in the technological
course of human beings and tends to grow with new mechanisms, policies and procedures
that provide increasingly secure ecosystems. For this reason, cybersecurity has permeated
different fields of emerging technologies in society, such as health services, government,
applied science, education, national security and commerce, among others. The shared
objective is fundamental: the protection of information.

According to the 2021 threat report [1] presented by The European Union Agency
for Cybersecurity (ENISA), there are two highly prevalent vehicles that constantly impact
critical infrastructures: malware strains and Denial of Service (DoS) cyber-attacks. The first
aims to compromise an information system, breaking in without authorization and achiev-
ing some benefit for the malicious actor. The second is aimed to degrade the availability of
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services, generally by means of a communications network. Both pose a great challenge,
since, as mentioned in [2], actions and remediation must be developed more quickly and
effectively in the face of more robust, intelligent and volumetric attacks.

For its part, this long race to advance defensive security has also led malicious actors
to learn and refine their techniques, tactics and procedures, by building novel attack
vectors [3]. Thus, there is an emerging need for asset-based analysis from an adversarial
point of view, in order to propose multi-layered and holistic solutions.

However, it is difficult to categorize every latest threat and take particular solutions
for granted, due to the broad landscape of cybersecurity, but, as stated in [4], there are
five approaches that can be used as a basis, infrastructure security, network security,
information security, cloud security and organizational security. All of them aim to serve
as defensive and reactive elements in communications networks, applications, storage and
in the enforcement of policies and controls, in order to establish a more effective degree of
certainty in the information center, whether on-site or in the cloud.

With the above mentioned information, assessment methods can be broken down, in-
volving firstly risk management and then cyber security assessment. Formally, the latter is a
procedure that carries a technical-evaluative chain, comprising methods of penetration testing,
simulation, reverse engineering, vulnerability analysis, model testing, auditing and configu-
ration review. Thence, vulnerability identification and management has been a hot topic that
has contributed to many practical state-of-the-art applications, in the areas of binary analysis,
malicious activity exploration and enhancement of intrusion/prevention systems [5].

In the foreground, the focus on malware identification, remediation and mitigation
has been constantly evolving, as although many solutions exist, it remains one of the most
effective and progressive security threats, representing a substantial profit for malicious
developers. To a large extent, it can be said that the efficiency and prevalence of malware is
related to the methods for its eradication, representing a race between malicious actors and
solution vendors [6]. According to a vulnerability report by McAffe [7], malware strains
tend to occur in an unbalanced, but constant, manner. For example, the target sectors
have been changing, as well as the attack vectors developed specific to each one. Thus,
it can be mentioned that technology, education, finance, sales and government remain
important categories.

Traditionally, the detection and generation of anti-malware mechanisms is a process
that will involve Static Analysis (SA) or forensic post-mortem procedures, which are aimed
to examine pieces of decompiled code from a binary, or in its case, a forensic analysis of
network traces [8]. In addition, Dynamic Analysis (DA) is used to detail the behavior of
the executable, mostly by historical activity from installation to execution and persistence,
on the infected host. Both represent an initial exploratory threat unit, which essentially
serves as a starting point for the creation of malware datasets, but not as unique detection
mechanisms, as their limited automation and assimilation of new samples has proven to
have a high impact on the generation of False Positives (FP).

On the other, DoS cyber-attacks are closely related to malware, which serve as an
attack vector since some of them have the ability to control the compromised systems, such
as the well-known tactics employed by worms, trojan horses or remote access programs
that take control of the infected host and eventually appended it as a zombie node, to
orchestrate volumetric attacks [9]. As with malware, there are purely DA solutions that
correspond to defense strategies supported primarily on perimeter security devices such
as firewalls or rule-based barriers activated by thresholds or load balancing rates, but,
depending on the network layer, volume or type of payload, the mechanisms may not
be entirely convenient, as extensive configurations are needed for rapid containment in
conjunction with updated signatures for prompt detection [10].

It is well known, then, that classic solutions are feasible when the threats are already
known, which include antivirus, intrusion detection & prevention systems, anomaly-based
solutions and layered monitoring devices. However, for the assimilation of new patterns,
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the capabilities have not been sufficient and therefore, in recent years, a wide range of works
have been adopted that employ, at their core, Machine Learning (ML) techniques [11].

The literature, referred to as the state-of-the-art of ML, related to malware analysis and
DoS cyber-attacks encompasses different approaches from two main aspects: 1. Automate
and improve the discovery and detection of new threat patterns; 2. Generate intelligent
mechanisms for timely evaluation [12].

There is a vast literature of ML techniques to address the detection, classification and
clustering of malware-related samples and DoS cyber-attacks, which according to the CSET
(Center for Security and Emerging Technology) and the National Institute of Standards and
Technology, (NIST) can be categorized depending on the scope of their function within a
cybersecurity model.

Roughly speaking, the solutions proposed in the state-of-the-art mostly employ tra-
ditional Supervised Learning (SL), suggested for detection and classification of benign or
malicious instances using shallow algorithms; followed by Deep Learning (DL), which
is able to extend the capabilities of SL by potentially emulating the human brain and
improving the desired performance; and to a lesser extent, Unsupervised Learning (UL) is
used to discover new malicious patterns and cluster underlying structures; where lately,
Reinforcement Learning (RL) is engaged to automate preventive mechanisms, incident
response duties and active defense tasks by means of agents that learn from experience in
controlled environments [13].

Figure 1 describes the functions of a security model using ML, the associated tasks
and the algorithms commonly applied for them.

Figure 1. Taking into account the elements of the NIST layered security, CSET provides a model
where different algorithms are applied and adapted to ML tasks, generating new opportunities for
improvement in terms of prevention, detection, response & recovery and active defense. From where,
GAN stands for Generative Adversarial Network - and NLP stands for Natural Language Processing.

From Figure 1 it can be summarized that the improvements that ML has offered in
different branches of cybersecurity, remain in constant adaptation and evolution. However,
one of the main challenges that persist in the ML landscape is the acquisition of sufficient
data that can represent the desired context to be evaluated.

As discussed in [14], ML-based solutions face a major challenge in acquiring, construct-
ing and presenting a sufficiently appropriate dataset, so that the selected algorithm can
generalize the samples as well as possible. There is a debate as to whether the data should
be used directly from the source from which it was obtained or whether the information
should be already shaped in a tabular or a non-relational fashion. What is certain is that it
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is necessary to gather samples and features with the necessary dimensions, which will lead
to the construction of quality data [15].

The rest of the manuscript is organized as follows: Section 2 explains the motivations
behind the study of synthetic sample generation for malware and DoS cyber-attacks;
Section 3 discusses the different scenarios that lead to the generation of synthetic datasets
in cyber security tasks and related work; Section 4 describes the steps involved in the
development of the methodology using RL; Section 5 presents and discusses the results,
presenting their contribution in comparison with the state-of-the-art algorithms; finally,
Section 6 provides the conclusions.

2. Aim and Motivation—The Problem with Cyber Threat Datasets

Problems in improper data acquisition can result in missing values, unbalanced, in-
complete, high dimensionality, correlation of variables and skewed data that will obviously
degrade the performance of the algorithm. This is a crucial problem in cybersecurity as
poor prediction resulting from a poorly tuned algorithm can cause risky havoc around
threat misidentification. Thus then, in [16], this idea can be taken up again, concluding that
cybersecurity should be data- oriented with models reflecting ideal scenarios, that build
intelligent models on different defensive and preventive flanks.

Cybersecurity is data, ranging from network logs to SA and DA results. This relation-
ship between collected data, Artificial Intelligence (AI) and ML technologies results in an
important instrument called the dataset, which brings together the collection of evidence
needed to represent the background to be studied [17].

There are currently many ways to obtain a cybersecurity-related dataset. Specifically
for malware and DoS cyber-attacks there are those already published and custom ones.

Datasets that are already publicly available come in the form of tabular information,
relational and non-relational databases, operating system logs, API call sequences, raw
network traffic captures, to name a few. In contrast, the customized ones focus more on
obtaining information through controlled environments such as sandboxes or honeypots.

In any case, the datasets used in the state-of-the-art literature are appropriate for
improving the wide range of algorithms arising from new research, but will not be able
to generate new and tailored samples for explorations where more specific information is
needed [18].

Although one of the ways to customize the datasets is through the synthetic generation
of samples, the process is performed once the samples have already been transformed to
values, this being not a true synthetic sample, but a purely statistical sampling.

This project develops a methodology called Reinforsec, which aims to synthetically
generate malware and DoS cyber-attack samples, directly from an environment that most
closely resembles a real attack. This, focuses on overcoming the barrier the barrier of
sample acquisition, submission and evaluation, which can be quickly constructed thanks to
the power of RL. The proposed agent has the ability to learn from malware PE (Portable
Executable) file architecture and create from scratch a new custom dataset. Likewise, it
understands DoS cyber-attack patterns at the network and application layers, simulating
various types of orchestration.

The contribution of this work lies in two main branches: first, within the cyber-
threat scheme, it is one of the first works focused on reducing the cost of assembling both
functional raw samples and characterized sets; second, it provides a scenario in which
samples can be tested with realistic sensors and observe in practical terms the outcome of
synthetic mutations.

The proposal is compared with various state-of-the-art synthetic balancing and gener-
ation techniques, finally demonstrating that RL has a convenient way to create samples
without expensive acquisition processes.
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3. The Importance of Data in Cybersecurity Tasks

Currently, cybersecurity has been growing by leaps and bounds, the need for data-
driven, automated and easy to interpret models has led to data science inherently con-
verging in the development of new solutions.The scenarios have also been changing and
consequently the operations of malicious actors have also been refined in order to steal
their evasion capabilities. This points to the need for more efficient defense strategies that
scrutinize in detail any malicious patterns that attempt to compromise an information
system [19].

According to [14] the ML landscape will become more tailored to specific needs, but
the critical bottleneck remains in data collection, including the appropriate identification
of sample acquisition sources, data cleaning, content analysis, visualization and feature
engineering. Thus, the cybersecurity area faces the same problem, but with the difference
that observations are becoming increasingly difficult to detect, due to the very nature of the
threat’s persistence.

Data collection is therefore not a trivial task and the availability of cybersecurity data
faces a number of challenges. Some of these include the following list [20,21].

• Domain problem: obtaining samples with new behaviors is a race between early de-
tection and the radius of impact of an unattended incident, such as zero-day incidents.
While not all samples in the cybersecurity domain can be aggregated, patterns can be
generated based on general behavioral policies.

• Inconsistency problems: associated with the domain problem. In an attack or compro-
mise scenario, a data source may have many or few samples related to the incident,
which may lead to some inherent problems in the data acquisition process, such as
noise, incomplete, insignificant, high-dimensional and unbalanced information.

• Availability: often, due to privacy concerns, datasets will not be available for replica-
tion or testing; they may also be costly or may not contain the samples for a desired
context. An important point to mention is that public disclosure of detection strategies
could also be a double-edged sword, since on the one hand it refines defensive pro-
posals, but on the other hand it gives information to the malicious actor to improve
his evasion techniques.

It is difficult to address the problem of mastering and aggregating all types of datasets
appropriate to each branch of cybersecurity. In [21], four categories related to such sets are
maintained, around similar characteristics: attack-related; defensive artifacts; management
and organizational cybersecurity datasets; and finally network and Internet macro-level
datasets. The following list briefly describes the major categories of cybersecurity datasets.

• Attack-related

– Refers to samples related to malicious intrusions such as scam, malware and
web-based attacks

• Defender artifacts

– These are samples that arise from defense system logs such as alerts, anomalous
patterns and configurations.

• Management and organizational

– It is related to behavioral data around security policies involving users, malicious
actors and threats that impact the organization.

• Network and Internet macro-level data

– Contains malicious trace samples over Local Area Network (LAN), Wireless Area
Network (WLAN) and Internet networks. It is presented as information about
network traffic at different layers of the Open Systems Interconnection (OSI) model.

Although the problems that give rise to inconsistent cybersecurity-oriented datasets
have already been identified. There are other challenges to be addressed, which are
defined below.
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• Attack-related: data collection, particularly for malware analysis purposes, has become
a strenuous process. In [22], it is concluded that the escalation of malicious incursions
goes hand in hand with the increase of resources to build controlled analysis of
malicious samples. On the one hand, SA-oriented procedures are limited in generating
single-use hashes, without considering the dynamics of behavioral change. On the
other hand, DA-oriented techniques only work in phases where the binary is being
executed and monitored, but do not provide incremental results. Consequently, those
based on heuristics are complex to set up when the threat is difficult to detect and,
therefore, more in-depth generation is required. Ultimately, tasks based on anomaly
detection procedures can be easily fooled when new obfuscation and cryptographic
schemes are adopted in the fabrication of the malicious binary.

• Network and Internet macro-level data: there is concern about the latent increase in
DoS cyber-attacks, which have eventually become a weapon for hire or sale, available
to any user. With this, the variety, intensity and volume of traffic generated during
an attack on the network or Internet has considerably changed the landscape of
sample acquisition. This is a major challenge when replicating an attack in controlled
environments, specifically for an ideal scenario of reflected DoS cyber-attacks [23].

The factors mentioned above are not the only factors that affect the generation of
new samples, but also the conditions under which they were acquired, which may contain
time-related failures and the complexity of their own construction process. On that premise,
the generation of samples in machine emulators are good options to control the states of the
system to be evaluated, but they lack of primordial semantics from the architecture of the
operating system itself. Then again, first and second type hypervisors are better options as
they allow isolation from the client operating system and hardware, but have difficulties in
para-virtualization artifacts. Lastly, in bare-metal environments, the sample is explored in
a fully realistic architecture, but it cannot be scalable in terms of resources, and, moreover,
the appropriate circumstances do not exist for it to be restarted to previous states, thus
losing an analysis already started [24].

One of the alternatives, given the complexity of generating sufficient data, are synthetic
samples, which aim to replicate distributions of an original set, sticking as closely as possible
to the domain of the set [25]. Among the techniques for generating synthetic samples are
those described in Table 1.

In contrast to what is shown in Table 1, the application of RL techniques has demon-
strated a less complex way of generating synthetic samples, with the main objective of
bringing them as close as possible to those acquired from the source, with an ideal balance
of the characteristics of the samples [26]. One of the most compelling examples in the use
of synthetic samples, which sufficiently resemble a real ecosystem, is Health-Gym [27],
a tool for producing synthetic data, related to medical records. By testing correlations
with real data and a RL agent, the results demonstrated that synthetic samples can be
effectively used to follow up diseases such as Human Immunodeficiency Virus (HIV),
Acute Hypotension and Sepsis. The authors demonstrated that by means of statistical
tests, mainly the Kolmogorov–Smirnov (KS) test, it is possible to measure the variation and
similarity of synthetic towards real data, from which the RL outperformed those derived
from GANs as a function of static correlation. Motivated by these broad scopes, this project
will address the principles of RL, focusing on complex samples to be generated in controlled
environments, such as those that provide network and client-side sandboxes for malware
and DoS cyber-attacks.
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Table 1. Techniques and algorithms commonly used for the generation of synthetic data.

Algorithm Advantages Disadvantages

Oversampling No loss of dataset integrity.

Exact replicates of the samples
with minority class are
created, or, those with greater
distribution are reduced. This
is a generalization risk in ML
algorithms, as they can lose
the sense of generalization,
leading to under- or
over-fitting events.

Categorical latent Gaussian
process

Gaussian processes are
flexible, adaptive and easy to
manipulate for the generation
of new samples.

Phenomena of low or no
dispersion can be observed, as
they use all samples and
features to predict new
synthetic samples. In addition,
this method may present
defective samples when the
set has a high dimension.

Multiple embedding

High-dimensional samples are
projected onto
lower-dimensional samples,
producing a new replication
with compositionally rich
synthetic content.

Samples from different
contexts can be represented as
one, removing particular and
heterogeneous properties,
leading to poor generalization.

Generative Adversarial
Networks (GAN)

Its major advantage is that a
GAN can obtain a latent
representation of the original
samples and build a new,
augmented and modified
version according to its
distribution.

A large number of continuous
samples are needed to
generate synthetic outputs,
which increases the
complexity of the model.

Data augmentation

It generates new points
artificially in the existing data,
increasing the amount of
information in the sample, its
main advantage is that it
reduces data collection and
labeling

It is difficult to provide the
necessary augmentation, in
fact if the dataset is biased, the
augmented data will be biased
as well.

4. Proposed Methodology

To carry out the generation of synthetic samples from a real source, two environments
controlled by RL were prepared: the first one for malware samples, further described in
Section 4.1 and the second one for DoS cyber-attack samples, as detailed in Section 4.3. This
section describes the main concepts that give life to the proposed ecosystem [28].

4.1. Reinforcement Learning for Creating Synthetic Sample Gyms

Reinforcement Learning is a branch of responsive Artificial Intelligence, based on
interaction-oriented generalization, in which an agent achieves learning through interaction
with a particular and controlled environment. In this type of training, the agent is not
taught what actions to take, but rather the agent learns as a consequence of the behavior it
takes, since each interaction will be tailored by a given penalty or reward.

This project applies the OpenAI Gym [29] library of the Python programming lan-
guage, which employs an agent manipulated by a Partially Observable Markov Decision
Process (POMDP) [30]. The agent is placed in a gym, which is defined as an environment
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where the learning context is abstracted and where the agent can observe the ecosystem,
receive rewards and complete its goal.

In its most basic form, the main OpenAI-RL component consists of an agent a, which
is controlled by an algorithm designed to learn from states st within an ecosystem or
environment, given a time function t.

In order to generalize the observation of the environment, a Markov algorithm induces
the agent a, to interact with the environment on a discrete time scale t, from which the
following elements {S, A, T, R, Φ} are derived; where S is the state space, A is the set of
actions in a given discrete space, P(st+1, st, At) = p(stt + 1, st, At) is the transition function
that measures the probability of obtaining the next state st+1, from an initial state, where at
each step an immediate reward R(st, At)→ R is given; and consequently, Φ ∈ [0, 1) is the
penalty factor, in case such action is not fulfilled.

RL also takes a crucial step, called state policies γ, which maximizes the probability
that an action At ,in a state st, can be considered as the most appropriate. Like classical
algorithms, such a function presents an optimal degree of transition, where the reward is
expected (E) to be maximized and the penalty minimized, as shown in Equation (1).

J(γ) = E
[

∞

∑
t=0

ΦtR(st, At)

]
(1)

However, in a real RL environment, agent a may degrade its learning potential and not
fully observe the whole panorama, so POMDP, adds an element of belief that allows it to still
partially observe the system and learn with the necessary actions in each state. Therefore,
POMDP is defined as a tuple {S, A, P, R, O, Z, Φ} , where S,A,P and R are the already
defined transition state elements; O is the observation space; Z is a set of observation
probabilities and Φ is the penalty value.

The main advantage is that a partial observation gives a preliminary overview of the
environment. Thus, in each period t the agent chooses an action At that causes a transition
to a state st+1 with probability P(st+1|st, At), which receives an observation O that depends
on the new state of the environment with probability Z(O|st, At). In this way, the agent
will be able to transit while understanding the change of the environment, and induced to
obtain the reward Rt. The process is iterative, so that the agent a will have to select which
policies γ maximize the rewards at each time t. Equation (1), can be reformulated as a
maximal expectation, as shown in Equation (2).

J(γ) = maxE
[

∞

∑
t=0

ΦtR(st, At)

]
(2)

Despite the enhancement achieved by the POMDP algorithm, the scope of a policy
could increase the complexity of the partial observation procedure, degrading the search for
the most optimal one. To follow up on this, Q-Learning (Quality Learning) approach adds a
low-cost procedure to the search for adequately improved policies, also called out-of-policy
control progression [31]. The transition state of Q-learning is defined in Equation (3).

Q(st, At)← Q(st, At) + α

[
R(st+1, At+1) + ΦmaxQ(st+1 + At+1)−Q(st, At)

]
, (3)

where Q is the transition estimation function to a state q∗(s, A) and α is the parameter to
converge the cumulative learning radius in the algorithm.

4.2. Creation of Synthetic Malware Samples in PE Formats by RL

There are numerous ways to analyze a malicious object, mainly those based on ob-
jectives, such as detection, similarity analysis and generation of new taxonomies, which
involve a more targeted scope in crafting new variants, families, likeness and differences
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in synthetic samples [6]. In extension to this, more particular ways can be reproduced,
focusing on feature extraction, involving the already known SA, DA and Hybrid Analysis;
where byte sequence calls, system calls, opcodes, network activity, file system changes,
CPU registers and PE analysis are synthesized [32].

Nevertheless, the method based on PEs is one of the most widely used for the subse-
quent triaging of malicious objects, generally within the Windows operating system. This
file format is currently supported by the Intel instruction set, Advanced Micro Devices
(AMD) and some Advanced RISC Machines (AMR) variants. The great advantage of
adopting this analysis mechanism is that a PE can provide sufficient information about the
objective of the binary and the activity performed within the operating system during its
execution [33].

In addition, these properties are coupled with the flexible structure of the PE, which
allows preserving a common format in different versions of the operating system, increasing
the ability to obtain information related to its mutations or polymorphism. [34].

According to [35], the intrinsic value of the PE file lies in part with the metadata
that converge in the structure of the binary. With this, values related to code architecture,
timestamps, memory regions and other flags can be explored. Among the most common
examinations are those centralized on the file header, detailing the file signature and
components that lead to execution, and those that deal with the optional header, describing
specific operating system fields, data directories and binary-specific domains.

The PE file is basically made up of two sections, the headers and the body. These two
are further subdivided into more sub-sections-conforming structured headers, aimed to
link the necessary information for the operating system loader to execute a file.

In order to perform the sample mutation process using RL, the base agent developed
in [36] was taken into account. The manipulation of the file is set up in a black box
environment with a supervised policy (Λ), which will set the criteria for the mutation to be
sufficiently generalizable, so that the binary can be classified as malicious. Figure 2 shows
the framework for generating synthetic samples from mutated PE format files using RL.

Figure 2. Proposed framework for the generation of synthetic binary samples in PE format using RL.

First, the samples are obtained from different online malware repositories; then each
one is submitted as an individual environment, where the agent a, will learn from a series
of actions At+n ∈ A; ∀n ∈ Z+ in a series of steps, in transition states st+n ∈ S; ∀n ∈ Z+,
with a Λ policy established to evaluate if the sample is successfully mutated, where the
series of rewards R(st, At), . . . , R(st+n, At+n) will be proportional to the search of successful
actions by a function Q; once the mutation is fulfilled, the sample is then grammatically
instrumented using a PE header extractor called Library to Instrument Executable Formats
(LIEF), in order to analyze whether the synthetic sample is functional, so that it is finally
added to the final set. As a concluding step, the samples are trained and subjected to
classification criteria by different algorithms to demonstrate the performance of the samples.
In Sections 4.2.1–4.2.3 the above-mentioned procedure is detailed in depth.
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4.2.1. Data Collection

It is complex to establish a criterion indicating which categories or families of malware
are suitable for obtaining raw binary samples. In fact [37], it is concluded that leading
managers such as VirusTotal [38] or VirusShare have a high incidence of sample mislabeling
once sensors have detected an object as malicious.

Sample duplication is also a negative effect at the time of selection of malware base
samples, thus the bias directly impacts the generalization of a classification problem by
increasing the redundancy factor, which is a ratio that measures the number of samples
similar enough to be considered the same [39].

One of the basic reference points for gathering observations of malicious objects is the
Malware Reference Dataset with Ground Truth Family Labels (MOTIF) [40], a file-oriented
database in PE format, where 454 different families distributed over 3905 samples are
presented. With that, the unique hashes identifying each one can be taken and the binaries
downloaded in a controlled environment.

In addition, a well-known sample downloading framework called Endgame Malware
Benchmark for Research (EMBER) [41], which groups malicious and benign PE files, was
studied. This allows us to obtain a dataset free of legal or security implications. In this
dataset, each sample is published along with its unique hash, and a label revealing whether
the file is considered malicious or benign.

4.2.2. Learning Space: Actions and States

To initiate the RL environment, it is necessary to establish the conditions of the reward
function in each state R(st, At), R(st+1, At+1), . . . , R(st+n, At+n). OpenAI Gym provides
the option of integrating a supervised learning algorithm C that works as a control state and
evaluates the certainty of compliance with policy f : Q→ Λ. This will determine whether
the modified sample is detected as malicious, otherwise, the agent a will be penalized by
the discount function Φ.

The action space A ∪ S is defined as the set of actions A, which are combined with the
state space S and will represent an available mutation, to create a new synthetic sample,
without changing the functioning of the same. For this, the authors in [42] define a series
of categories that can be taken into account for binary evasion techniques and that can
be considered for the generation of mutated samples: the metadata of the PE header,
the metadata corresponding to the sections that structure the PE (section name, size and
characteristics), the metadata of the import/export table, the count of readable strings and
the byte histogram.

According to [43], modifications to a PE file are directly associated with evasion
techniques, tactics and procedures, which allow to strengthen persistence within a host.
The elements considered to establish the Λ policy for mutations are listed below.

• Adding an obfuscated function to the import table
• Manipulate the common name of the sections in each offset
• Build and increase the spacing of the format sections
• Add bytes to the remaining free space at the end of the sections
• Create a new entry point that immediately goes to the original entry point of each offset
• Remove information about compilation and debugging signatures
• Package the binary and add bytes at the end of the last section of the PE file

To illustrate the process of learning and generating new modified synthetic samples,
Algorithm 1 describes the steps of this concept, where Λ is the policy that establishes the
set of possible mutations.

As mentioned before, the policy Λ is composed of two main elements: first the
mutation elements {λ1, . . . , λk} ∈ Λ, comprising the possible interventions on the file, and
second, the supervised algorithm C, which will serve as a control state. Therefore, the
policy will obtain in a time t a reward R if the mutated file is sufficiently generalizable as
malware Q → R(st+1, At+1) ↔ C = 1, given a successful search for actions A in the Q
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function, or, will be classified as non-malware, where the discount factor will be applied
Q→ Φ↔ C = 0, ∀Φ ∈ R.

Algorithm 1 Learning process, out-of-policy

Require: Q(st, At), ∀st ∈ S, ∀At ∈ A arbitrarilty, and Q(terminalstate, ·) = 0
for each st do
Initialize agent a with sates s at time t + 1

for each st+1 do
Choose A from S using Λ derived from Q
Take action At, observe R, st+1

Q(st, At)← Q(st, At) + α

[
R(st+1, At+1) + ΦmaxQ(st+1 + At+1)−Q(st, At)

]
st ← st+1

end for
until st is terminal, hence the PE is fully mutated
end for

Likewise, the arbitrary state allows to start with a random set of manipulations
encompassed in Λ for each transition step st+1, . . . , st+n, achieving a successful search for
at least one mutation, by means of the Q function. Likewise, if the agent does not find
an action A in a time t, the environment is discarded and continues iterating with the
next sample, reaching a terminal state, when there are no more rules in the policy and
environments to pursue.

4.2.3. Synthetic Header Checking and LIEF Feature Extraction

Synthetic samples must ensure stability and an optimal action search, so the mutation
must be subjected to a grammatical analysis process, to test that it is sufficient to be able to
run as a binary in the operating system.

To examine the quality of the mutated synthetic sample, LIEF [44], a library for
instrumenting files in PE format, was disposed to grammatically parse the binary and test
whether modifications of each section are functionally adequate during execution.

Figure 3 outlines the process of functional analysis of a mutated synthetic sample
using LIEF instrumentation.

Figure 3. Instrumentation components of the synthetic sample in functional form.

The process consists of submitting the sample to a parser and a low-level packer, better
known as a builder. The former decomposes each of the modified sections that make up
the abstract binary in terms of content and size; the builder then functionally analyzes the
execution of the file to check that it is valid and free of environment or execution errors.
Lastly, the builder produces a synthetic sample in the form of a raw binary, after deciding
whether it passes or not the functionality tests.

Indeed, fresh synthetic samples eventually go through a feature extraction and trans-
formation technique, so that it can be used by SL algorithms. Hereby, with EMBER all data
were standardized in order to achieve a proper feature representation, and, thus achieve a
sufficiently homogenized format [45].
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The EMBER structure is sketched by a collection of documents in JSON format, from which
eight different groups of parsed and formatted features are distributed, as stated in Table 2.

Table 2. Dataset features, under the EMBER structure.

Group Feature Description Type

1 General information

Encompasses the file characteristics,
such as file size, number of imported
and exported functions, debugging
section, resources, relocations,
signatures and number of symbols.

Object

2 PE Header information

Includes the timestamp, target
machine and a series of text strings
representing the list of read-only data
sections. From the optional header, the
target subsystem, DLL library imports,
the magic number of the file in text
format, the major and minor image
version, linker versions, system and
subsystem versions, code size and
headers are depicted.

Object

3 Imported functions

The address import table is translated
in a grammatical way and the list of
imported functions for each library is
reported. In order to create a useful
feature for SL models, the set of 256
unique libraries is used, as with the
1024 unique functions, both as an
import sequence.

String

4 Exported functions
The features include a list of exported
functions which are represented
within the object by a 128-binary hash.

String

5 Section information

This group reports the properties of
each section of the PE file, including
the name, size, entropy, virtual size
and a list of text strings that represent
the characteristics of the section.

Object

6 Byte histogram
This group covers 256 integer values,
which represent the count of each byte
contained in the file.

Integer

7 Histogram of entropy bytes

To represent the entropy of the file, the
histogram represents the
approximation of the probability
distribution p(H, b) of the entropy H
and series of bytes b.

Float

8 String information Statistical information over printable
text strings. Float

From Table 2, it can be observed that there is a wide variety of data types, shapes and
dimensions, in terms of features. Classical transformations, e.g., from unstructured data to
vectors by imputation, or from text strings to weight vectors, usually increase the size of
the feature set, causing under- or over-fitting effects [46].

One of the most effective approaches to unstructured feature representation is hash
mapping, which reduces dimensions and transforms the features into an index vector that
links the original feature value with its associated hash [47].

The main idea is to transform the values of Table 2, into f finite elements for each
feature F. Then, each set F must be coupled to a fixed size vector, constructing a hashing
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function φ : F → Rn, and a sign function ζ : F → {−1,+1}. In this way, it can define the
tuple of feature hashing, as described in Equation (4).

φ( f ) = ζ( f )vh( f ), (4)

where v is the unit vector, of which each value f is mapped and h( f ) is the computation of
the bijection of each index and the linked feature f , i.e., h : F → {1, . . . , n}.

In total, 11,000 synthetic samples were built, of which 8000 were labeled as malware
(class 1) and the remaining 3000 as benignware (class 0). Each, was stored in the EMBER
format with an integrity hash, representing the sample identifier.

4.3. Synthetic Sample Generation of DoS Cyber-Attacks Using RL

In terms of DoS cyber-attack analysis, the main task is to determine what type of
category is critical to simulate, and with this, to consider what will be the most appropriate
features within the network, transport and application layers.

Traditionally, a DoS cyber-attack is explored according to the vulnerability to be ex-
ploited: flooding attacks, application attacks, protocol exploitation and malformed packet
attacks [48]. The first sends large volumes of traffic to the target system to congest band-
width, saturating the response on the victim’s side; the second exploits the IP protocol
addressing function in network devices to amplify and reflect a payload and send mes-
sages to all stored addresses, considerably reducing bandwidth; the third is based on the
exploitation of specific features within a protocol to consume excessive amounts in its mes-
saging process, exhausting its resources; and the last one reconstructs random high-length
messages in the IP protocol, specifically in the address and packet headers, to collapse the
target’s information reading process, degrading its resources [49].

In general, the traceability of a DoS cyber-attack is summarized in applications that
can provide a log based on the responses of signatures or alerts caused by an anomalous
event. In [50], it is concluded that most of the evidences that can be useful to examine such
attack are those based on anomalies, since they allow observing those patterns that deviate
from a base profile.

Having described the above, gathering DoS cyber-attack samples has become an
arduous and difficult task, as it requires a network node where the variety and occurrence
of the attack has a high chance of being observed, as well as a sensor capable of capturing a
high volume of traffic.

In [51], it has been proposed that to overcome the limitations of capturing high volume
traffic resulting from DoS cyber-attacks, simulated senors can be adopted in controlled
conditions. However, in the end, whether in real or virtual environments, the meeting
point will always be a network interface in listening mode that adequately supports a large
number of frames and thus a tool that can sense and store them.

Among the most widely used network traffic capture and storage tools, wireshark and
tshark can be mentioned. These have the ability to segment the frames and packets, so that
they can be presented in numerical or categorical terms, which will lead to the creation and
characterization of a set of data [52].

Once the network capture file is built, you can begin to identify candidate features,
especially those that are composed of real values, such as: the packet length within the
bandwidth, the average length of a sending and replying packet, the number of packets,
average time intervals and numerical representation of protocols used. On the other hand,
categorical characteristics are mostly based on the application layer, where the payload is
suitable as a textual corpus, message sequences or graphs [53].

Considering the complexity and limitations of other techniques for the capture and genera-
tion of DoS cyber-attack samples, this project takes into account a set of input data of network
flows, previously captured and packaged in Packet Capture (PCAP) format, which will serve
as a baseline to train an RL algorithm and produce new synthetic samples. Figure 4 depicts
the workflow for the generation of synthetic samples for the construction of a set of DoS
cyber-attacks. In Sections 4.3.1 and 4.3.2, the proposed model is discussed in more detail.
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Figure 4. Proposed framework for the generation of synthetic samples of DoS cyber-attacks employing RL.

First, the network flow replays a previously captured dataset with frames containing
different DoS cyber-attacks samples embedded mainly in TCP (Transmission Control
Protocol) protocol; then, the samples are subjected to a RL environment where the agent a is
aimed to learn from the properties of each frame based on network characteristics, namely,
the mutation actions At+n ∈ A; ∀n ∈ Z+, subjected to a series of transition steps st+n and
parameterized to a Lambda policy of a Q quality function, which is finally evaluated, based
on a series of R(st, At), . . . , R(st+n, At+n) rewards.

4.3.1. Data Collection

Within the DoS cyber-attack literature, different datasets have been exposed, which
are mostly the result of capturing network sensors in PCAP format. Even so, in this project
it was necessary to reconcile a significant proportion of samples that reflect, variety and
size. The state-of-the-art [48,54–57] has provided an important selection of them, which
were examined in terms of their content.

The aforementioned study showed that although many datasets provide relevant
information to initiate a baseline sample selection, there are problems of incomplete capture,
missing data or lack of diversity and heterogeneity. With this, two data sets were selected
that broadly summarize the variety of DoS cyber-attacks, in conjunction with regular
network traffic:

• CICDDoS2019 [58]: contains benign network traffic and distributed DoS cyber-attacks
via SNMP Simple Network Management Protocol (SNMP) reflected attacks, NetBIOS
reflected and timestamp attacks, Lightweight Directory Access Protocol (LDAP) am-
plification attacks, Trivial File Transfer Protocol (TFTP) amplification attacks, Network
Time Protocol (NTP) amplification attacks, Synchronize (SYN) flooding attacks, Web-
DDoS Hypertext Transfer Protocol (HTTP) specific-protocol attack, Microsoft SQL
Server (MSSQL) specific-protocol attacks, User Datagram Protocol (UDP) lag flooding
attacks, Domain Name System (DNS) flooding attacks, and Simple Service Discovery
Protocol (SSDP) reflection attacks.

• Customized set: for application layer DoS cyber-attacks, hulk and slowlowris protocol-
specific flooding tools [59] were deployed. To build the scenario, 12 virtual machines
were configured with Windows operating system versions 7 and 10 (half of each pool
of virtual machines), mounted on 4 PCs with 16GB of RAM, Intel core i7 processor
and Ubuntu 18.0.42 operating system. The series of attacks were orchestrated towards
a gateway with permissive rules (any-any) and also a spare port was configured in
the generic switch to capture traffic on a third computer with Ubuntu 18.02 operating
system and tcmpdump as a logging tool.

In total, with the CICDDDoS2019 data and the custom set, 58,641 samples were
congregated of which the following percentages are presented based on the type of DoS
attack: specific protocol attacks at the application layer (WebDDoS, hulk, slowlorwris),
specifically HTTP 35% and MSSQL 5%, flooding (SYN, DNS, UDP) 25%, amplification
(LDAP, TFTP, NTP) 15% and reflection (SNMP, NetBios, SSDP) 20%.
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4.3.2. Learning Space: Actions and States

According to [60], the generation of synthetic samples of network traffic is a process that
addresses two types of levels: functional, which depend on frame and packet level injection to
make reproduction as realistic as possible; and non-functional, which depend on the scalability
and quality of the synthetic sample. To address the DoS cyber-attack network traffic mutations,
a series of properties are considered as a baseline to construct new features that will be used
during the RL training. The aforementioned is described in Table 3.

Table 3. Properties considered to generate a set of appropriate network characteristics.

Properties Description Type

Network ports

It is important to mention that in DoS and
Distributed-DoS cyber-attacks there is a certain
degree of randomness in the target ports used by
the attacker, mainly in the TCP protocol and
some others specific to the application layer. A
valid variety of ports allows the realism of a
synthetic flow to be checked.

Integer

Variety of IP addresses
In a DoS cyber-attack, especially a distributed
one, there must be a variety of connections from
different source IP addresses.

String

Time to live (TTL)
The lifetime of a network packet varies,
depending on the metrics of the different
network devices, where the attack fluctuates.

Float

Maximum Segment Size
(MSS)

It is the distribution of the segments in the
capture file and is related to the structure and
sequence of the attack.

Float

Window Size
It allows measuring the behavior of packets in
relation to the amount of information that a
device can receive in a time series.

Integer

Payloads

In attacks targeting the application layer,
volumes of payloads can be observed as high
length requests directed to specific ports. These,
can be schematized as sequences that can be
transformed according to their content and
volume.

String

As stated in [61], the properties derived from Table 3 can be decomposed into spe-
cific values that encompass the network, transport and application layers. Table 4 then,
describes those that can be used for mutations and future generation of DoS cyber-attacks
synthetic samples.

Once the mutable features have been identified, it is necessary to submit agent a to
the training process, where the environment will be each frame to be assessed, within the
replay of the PCAP files. For this, an Open-AI Gym model called Gym-DoS was configured,
which allows linking each network traffic flow to the set of actions within a space A ∪ S,
that will modify each feature/property in a series of {st, st+1, . . . , st+n transitions, under the
constraint of the mutation elements {λk, . . . , λk} of the Λ policy derived from the quality
function Q.
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Table 4. Properties considered to generate a set of appropriate network characteristics.

Feature Property Type

Source Address Variety of IP addresses String

Origin Protocol Origin protocol number String

Destination Protocol Destination protocol number String

Destination Address Variety of IP addresses String

Packet ID TTL String

Source Node Variety of IP addresses String

Destination Node Variety of IP addresses String

Packet Size MSS String

Squencial Number Window Size String

Number of Packets Window Size String

Number of bytes Window Size String

Packet in TTL String

Packet out TTL String

Packet Transmition TTL String

Packet delay note TTL String

Packet Rate Window Size String

Byte rate Window Size String

Pkt Avg Size Window Size String

Utilization Payloads String

Packet Delay MSS String

Packet send time MSS String

Packet reserved time MSS String

The first packet Sent TTL String

Last packet reserved TTL String

The learning algorithm is associated with the one presented in Section 4.2.2, but, unlike
malware mutations, in a network flow the mutations must be executed within the start
of each conversation. This is because within PCAP captures, each frame arrives at the
network interface indiscriminately, regardless of the protocol used. In order to modify
the entire conversation, the following must first be identified for each protocol: in TCP-IP
protocols the three-way handshake, in UDP protocol the streaming of the first datagram
flow and for the application layer, the specific protocol as well as the start and end buffers
for sending the payload. Algorithm 2 shows the learning process for a DoS cyber-attack
sample mutation.
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Algorithm 2 Learning process, out-of-policy for mutating DoS cyber-attacks frames

Require: Q(st, At), ∀st ∈ S, ∀At ∈ A arbitrarilty, and Q(terminalstate, ·) = 0
for each network frame do
Sort the start of the protocol conversation
Build an action space S for each frame

for each st do
Initialize agent a with sates s at time t + 1

for each st+1 do
Choose A from S using Λ derived from Q
Take action At, observe R, st+1

Q(st, At)← Q(st, At) + α

[
R(st+1, At+1) + ΦmaxQ(st+1 + At+1)−Q(st, At)

]
st ← st+1

end for
until st is terminal, hence the DoS cyber-attack frame is fully mutated.

end for
end for

With the new mutated synthetic samples, the same evaluation procedure of
Section 4.2.2 is reproduced; where a supervised algorithm C controls the veracity of the
sample, as a state control, estimating that it is a malicious DoS cyber-attack sample, so
the reward R(st+1, At+1) ↔ C = 1 is granted; otherwise, if C = 0, the discount factor
Q→ Φ↔ C = 0, ∀Φ ∈ R is applied.

In due course, each synthetic DoS cyber-attack sample was transformed to real values
using the FlowMeter technique [62], which transforms the network flow data, from PCAP
format to statistical information, allowing the extraction of 79 features.

The above process is detailed in [63], where it is summarized that statistical values
of network traffic are a great option to represent anomaly flows, especially in scenarios
where it is desired to apply SL to classify malicious and benign traffic. However, when
performing the first data presentation, the features that depend on MSS and Windows size,
presented a high variance, which, evidently could bias its application with ML algorithms.

To resolve the effects of variance, a process for feature selection and extraction was executed,
using the Principal Component Analysis (PCA) algorithm [64]. Table 5 depicts the features that
have been shown to have the best variability of the DoS cyber-attack dataset.

Table 5. Features selected & extracted using the PCA algorithm.

Feature Description Type

Forward packet length mean Mean size of packet in forward
direction Float

Inter-Arrival total bandwidth Total time between two packets sent in
the backward direction Float

Bandwidth Inter-Arrival time standard
deviation

Standard deviation time between two
packets sent in the backward direction Float

Forward push flags
Number of times the push flag was set
in packets travelling in the forward
direction

Float

Minimum forward segment size Minimum segment size observed in the
forward direction Float

Forward packet length standard
deviation

Standard deviation size of packet in
forward direction Float
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In total, 50,000 samples were obtained from DoS cyber-attacks and another 50,000
from benign traffic, mainly from TCP protocol, regular DNS requests, browsing to web
sites and APIs, telnet connections, FTP data upload and Secure shell (SSH) data transfer.

5. Results and Discussions

This section considers two scopes to present the results obtained for the generation of
synthetic malware samples in PE format and DoS cyber-attacks samples.

• First scope: the samples are subjected to traditional detection tools before being
transformed: for synthetic malware samples, VirusTotal [65] is used as a sensor for
different antivirus programs; for DoS cyber-attacks samples, the generic detection
CloudShark [66] firewall based on behavioral signatures is used.

• Second scope: the already characterized samples are compared with different synthetic
generation and balancing techniques and finally evaluated in terms of performance
metrics by different state-of-the-art SL algorithms.

Table 6 shows the detection radius with synthetic samples before characterization.

Table 6. Radius of detection of synthetic samples before characterization.

Synthetic Sample Detection Radius

Malware 7801 out of 8000 (97.41%) samples detected by
VirusTotal sensor.

DDoS 32,120 out of 50,000 (64.24%) samples detected
by CloudShark rules

The following can be deduced from Table 6:

• VirusTotal: the sensor works by assembling different antivirus machines, which
together determine the evaluation criteria of the submitted sample. The accuracy
value is taken into account as follows: 40 to 60 independent machines are used to
perform a diagnosis of the object by means of a simple triaging, if 60% exceeds the
malicious assignment, the object is considered as such, otherwise it is considered clean.
Although it is one of the main early malware evaluation mechanisms, it is difficult
to summarize the specific category of the synthetic samples. Even so, it could be
observed that in the labels of each machine, 40% presented a signature denominated
as Generic, 31% as Malicious, 13% as Trojan, 8% as Riskware, 3% as Adware, and, the
rest in different taxonomies.

• CloudShark: the tool allows loading PCAP files and analyzing the degree of threat
contained in the sample. It is worth mentioning that each of them can be composed
of different frames, called streams, i.e., the sample contains the entire conversation.
To determine whether the conversation presents any anomalous pattern, CloudShark
compares the IDS Snort signature and returns a categorical value of the threat as low,
medium or high.

From the above, it was observed that the most common rule is Malware Other with
63% prevalence, Potentially Bad Traffic with 26%, Potential Corporate Privacy Violation 4%
and Unknown traffic, the rest.

On the other hand, in order to present comparative results from the point of view of
algorithms and synthetic sample generation techniques, Table 7 presents the related works,
as well as the most outstanding algorithms for the evaluation of malware samples and DoS
cyber-attacks.
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Table 7. Related work on synthetic generation of malware and DoS cyber-attacks samples.

Scope Algorithm Description Type of Mutation

Malware GAN [67]

A GAN with a black box detector is proposed; the
samples are modified by changes in the probabilistic
distribution of API32 calls, so that, the SL algorithm can
misclassify the sample and bypass the detector, thus
demonstrating that there are synthetic results with a high
degree of obfuscation.

Modification to
Windows API32

Malware DCGAN [68]

Samples of various malware families are converted into
32x32-dimensional gray-scale images. The
Deep-Convolutional-GAN network (DCGAN) uses a
generator that modifies the original image, adding noise
elements in the distribution and using a discriminator to
determine whether the modified image is malware or not.
It is shown that several malware synthetic samples can
be generated by bypassing the discriminator.

Transformation of
samples to images
and modification of
pixel distribution.

Malware Fuzzy-SMOTE ? [69]

Different samples are analyzed, mainly from the Android
operating system, representing vecotrized values of SA,
DA and risk lists. Synthetic samples are generated by
supersampling minority classes in a fuzzy region, to
maximize the degree of belonging to the class in
question.

Oversampling from
minority to majority
class.

Malware MDGAN [70]

A Multifaceted-Deep-GAN (MDGAN) is used to
generate a Gussian random distribution to samples
containing values from the header of a malware binary in
PE format, further, concatenated with sequences from the
operating system APIs. The results demonstrate that it is
possible to generate features that the discriminator will
evaluate as effective malware.

The distribution of
the result of merging
characteristics is
modified.

Malware
Markov Decision Model (MDM) +
Attention Aware Graph Neural Network
(AWGCN) [71]

The sequences of API calls are modified using Markov
chains and then randomly distributed without
replacement. It is shown that it is possible to intervene in
sequence calling and generate new samples with
sequential distributions similar to those of an original
malware binary.

The order of the
malware binary API
sequences in the
operating system.

DoS
cyber-attacks Statistical Learning [60]

Descriptive statistical data are obtained as a function of
host, protocol, conversation and specific fields of the
network flow. PCAP file information is mutated and
copied, inferring which values will be closest to a real
sample in relation to previously calculated values and
maintaining a certain degree of entropy.

The network flow file
in PCAP format is
modified.

DoS
cyber-attacks Statistical learning and simulation [72]

A simulated environment is generated using specific
Internet if Things (IoT) software and statistical data are
calculated in the time windows of the attack rerun: the
start time and the duration of the attack, and the
percentage of the nodes that go under stress. The values
are incorporated into a tabular set that is validated by a
Neural Network.

Statistical values of a
set already
constructed.

DoS
cyber-attacks GP-WGANs [73]

The random uniform distribution of different sets in
PCAP format is measured using a Gradient Penalty
Wasserstein GAN network (GP-WGAN), so that the
synthetic samples resemble the real ones. The generator
is in charge of executing the probabilistic changes and a
discriminator evaluates the quality of the new synthetic
sample. This project mainly focuses on application layer
attacks.

Data distribution in
PCAP files.

DoS
cyber-attacks

MDM + Probabilistic Symbolic Symbolic
Model Checker (PRISM) [74]

It focuses on simulating the steps to synthetically
reproduce a DDoS attack on an IoT sensor network,
thanks to the transactional abstractions of the MDM.
PRISM allows to calculate the probability of sensor
battery drain, specifically in application layer attacks,
allowing to generate data that evaluate the intensity of a
volumetric attack.

Attack sequences and
probability of battery
drainage.

? SMOTE stands for Synthetic Minority Oversampling Technique.
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Of the techniques presented in Table 7, [60,67–70,72,74] perform mutations outside the
ecosystem, when the samples have already been processed, extracted or transformed to
some data representation, whether from malware or DoS cyber-attacks. In [73], the authors
present a more realistic approach, as the focus is on mutations of statistical values that
resemble those of a network attack such as DoS. Nevertheless, the mutations occur only
in DoS cyber-attacks on the application layer and the evaluation metrics are based mainly
on the times of attack duration and maintenance of entropy percentages, leaving aside
other important values such as payload, the variety of IP addresses, ports and volume of
conversations.

Regarding the evaluation of synthetic sample generation processes used for malware
and DoS cyber-attacks, the state-of-the-art works [60,67–74] employed different SL and DL
algorithms, as shown below:

• Shallow algorithms: are those that the literature refers to as classical, where learning
takes place by means of predefined features and labels, in a continuous forward model.
The following algorithms derived from Table 7 were reported: Multi-Layer Perception
(MLP) [67,74], Decision Trees (DT) [67,74], Logistic Regression (LR) [67,71], Support
Vector Machines (SVM) [67,69,71], Random Forest (RF) [67,71], and Gradient Boosting
(GB) [73].

• Deep learning algorithms: those based on neural networks, which perform opera-
tions on different layers that represent a simplified form of information to each of
them. They are known to work with different information input and output struc-
tures. In this sense, the following algorithms were reported: Deep Residual Network
(CNN+DRN) also known as ResNet-18, [68], MDGAN (the discriminator itself worked
as a classifier) [70] and Feed Forward Neural Network (FFNN) [72].

It is worth mentioning that not all of the related works presented performance metrics
that could be taken into account to compare this project. For this reason, only the Precision
was taken as the only preponderant measure, which is expressed in Equation (5).

Precision =
TP

TP + FP
(5)

It is important to note that the target class 1 represents malware or a DoS cyber-
attack observation, therefore TP represents the True Positives and FP the False Positives.
Analogously, the non-target class 0 represents the benignware or clean traffic, of which TN
is identified as the True Negatives and FN as the False Negatives, respectively.

In addition, there is not enough information to determine most of the hyper-parameters
used in the algorithms of the aforementioned works. Taking this into account, it was
decided to train the samples generated with RL with the proposals of the state-of-the-art,
using default parameters [75], as shown in Table 8. In the same way, it was decided to
split, both, for malware samples and DoS cyber-attacks, a training set XT with 80% of the
samples, a validation set XV ∈ XT with 10 folds for k-fold-cross-validation and a testing
XP set of 20% of the remaining samples. For XT and XP, the selection of observations is
random and without replacement.
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Table 8. State-of-the-art reported SL and DL algorithm configurations for comparison with this work (RL).

Algorithm Configuration

Hidden layer sizes: H1, H2 ∈ R32

RL + MLP Activation function: sigmoid
Weight optimization solver: Stochastic Gradient Descent

Attribute selection method: GINI §

RL + RF Number of features to consider for best split: 2
Minimum number of samples required to be at leaf node: 1
Minimum number of samples required to split internal nodes: 1
Maximum depth of the tree: 3
Minimum number of trees in forest: 3

Number of estimators (trees): 100
RL + DT Maximum number of features in each estimator: 3

Maximum depth of the tree: 3

Inverse of regularization strength of term: 1.0
RL + LR Norm selected to regularize the cost function: `2

Optimization algorithm: LBFGS‡

Penalty parameter C of error term: 10
RL + SVM Type of division: One-vs-one

Kernel type: linear

Loss function to be optimized: log-loss
RL + GB Number of estimators: 100

Criterion to measure the quality of a split: Friedman
Minimum-Square-Error
Minimum number of samples required to split internal nodes: 2
Minimum number of samples required to be at leaf node: 1

1D convolution layer L with 64 filters, a kernel size with 3 units and as an
activation function ReLU
1× [7× 7] convolution layer
4× [3× 3 ∈ R64 convolution layer]

RL + ResNET-18 4× [3× 3 ∈ R128 convolution layer]
4× [3× 3 ∈ R256 convolution layer]
4× [3× 3 ∈ R512 convolution layer]
The output layer O ∈ R with a Sigmoid activation function

1D Dense input layer L with 9 units and as an activation function ReLU
RL + FFNN 1 Hidden layer H1 ∈ R256

1 Hidden layer H2 ∈ R128

The output layer O ∈ R with a Sigmoid activation function
§ stands for Entropy and Information Gain and ‡ for Limited-memory Broyden–Fletcher–Goldfarb–Shannon
algorithm.

From the scopes presented in [60,70], it was not possible to obtain enough information
on how to reproduce the steps of the algorithm. In [70], it is shown that the GAN discrimi-
nator behaves as a classifier, but no further details are given on how to implement it. On
the other hand, in [60], only statistical details of the modification of the network flows are
shown, presented by the average number of packets, time windows and accumulation of
data and entropy of the source-destination addresses and the TTL; lastly, such work does
not include values of predictions over SL algorithms.

To present the progress of this work (RL) for the generation of synthetic samples,
Table 9 addresses the results in terms of the Precision metric, with what has been obtained
with related work.
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Table 9. State-of-the-art reported SL and DL algorithm results for comparison with this work (RL).

Scope Algorithm Precision

GAN + MLP [67] 99.46 %
GAN + DT [67] 90.43%

Malware GAN + LR [67] 96.71%
GAN + SVM [67] 97.12%
GAN + RF [67] 98.87%

Malware DCGAN + ResNet-18 [68] 90.00%

Malware Fuzzy-SMOTE + SVM [69] 99.02%

Malware MDGAN [70] 95.90%

MDM + One-Hot-Encoding + SVM [71] 97.30%
MDM + One-Hot-Encoding + LR [71] 98.10%

Malware MDM + One-Hot-Encoding + RF [71] 98.20%
MDM + AWGCN + SVM [71] 99.20%
MDM + AWGCN + LR [71] 99.30%
MDM + AWGCN + RF [71] 98.70%

RL + MLP (this work) 99.12%
RL + DT (this work) 99.71%
RL + LR (this work) 99.45%

Malware RL + SVM (this work) 98.70%
RL + RF (this work) 99.81%
RL + ResNet-18 (this work) 92.54%

DoS cyber-attacks Statistical learning + FFNN [72] 88.00%

DoS cyber-attacks GP-WGANs + GB [73] AUC = 0.75

DoS cyber-attacks Statistical Learning [60] -

MDM + PRISM + MLP [74] 79.70%
DoS cyber-attacks MDM + PRISM + DT [74] 98.80%

RL + MLP (this work) 99.81%
DoS cyber-attacks RL + DT (this work) 99.94%

RL + GB (this work) AUC = 0.87
RL + FFNN (this work) 96.41%

From the results displayed in Table 9 the following can be observed:

• For the synthetic malware generation scope

– GAN-MLP [67] exceeded the precision record with 99.46% towards the counter-
part of this project (MLP-RL) with 99.12%. The variation is not high, however,
GAN-MLP can result an unsatisfactory procedure if the number of malware
samples increase, this has already been reported in [76] where the complexity is
proportional to the number of inputs, making the latter unstable and slow, which
could produce samples with low quality. Moreover, if the network produced by
the GAN is linked as input to a MLP the number of parameters to be estimated
can be exponential, generating a redundant model or with low efficiency.

– In the matter of Fuzzy-SMOTE+ SVM [69], the precision value of 99.02% exceeded
this work, compared with RL + SVM, which only achieved a percentage of 99.81%.
It is worth mentioning that the Fuzzy-SMOTE computation could work as long as
it is desired to report a preliminary range in the sample balancing. Even so, such
algorithm only creates replicates with little mutation, that could, in the worst
case, generate an overfitting phenomenon.

– On the other hand, the shallow algorithms, trained with this scope, namely, RL
+ DT, RL + RF and RL + LR, obtained better results in terms of precision, with
99.71%, 99.81% and 99.45%, respectively, compared to their GAN-oriented [67]
counterparts, which obtained a precision score as follows: GAN + DT with 90.43%,
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GAN + RF with 98.87% and GAN + LR with 96.71%.
It is known that pure or ensemble DT algorithms are ideal for their ability to
understand and interpret problems in a timely manner with little data prepara-
tion. This can be enhanced if random splitting methods such as RF are applied.
However, the risk of combining trees and GANs is the instability of the model
when the number of samples increases considerably, which, unlike RL the process
concentrates within the malware sample mutation on the agent’s policies and not
on the competition between generators and discriminators.

– Moreover, as for shallow algorithms employing MDM [71] and One-hot-encoding,
lower values were obtained as a function of the aforementioned precision, these
include MDM + One-Hot-Encoding + SVM with 97.30%, MDM + One-Hot-
Encoding + LR with 98.10% and MDM + One-Hot-Encoding + RF with 98.20%,
which, compared to this project, the following values were obtained: RL + SVM
98.70%, RL + LR 99.45% and RL + RF 99.81%.
This has an important reason and lies in the fact that MDM is the theoretical
basis of RL, but oriented to infer the total probability between states, without
considering the instability risks of adding partial observations and out-of-policy
state controls, which, the present work applied with Q-learning. In addition,
MDM has been shown to have problems in the optimal search for policies in
transition states, when the number of samples increases and that coupled with
One-hot-encoding-type characterizations, would result in identical synthetic mal-
ware samples, with little context and poor semantics.
When MDM is added to an AWGCN [71] it is possible to obtain a scope that other
neural networks cannot reach, especially when it is desirable to work with s non-
structured data, particularly because of the attention layer provided. However,
with large-scale data there is the possibility of suffering from noise, scalability
disturbances and adverse discrepancy between the rules of the AWGCN trees,
which would require sufficient mini-batch tasks to approach a high-volume en-
vironment. The results demonstrated in terms of precision showed that MDM +
AWGCN + SVM with 99.20%, MDM + AWGCN + LR with 99.30% and MDM +
AWGCN + RF 98.70% in percentage, obtained lower values than this project with
RL + SVM 98.70%, RL + LR 99.45% and RL + RF 99.81% values.

– By comparing hybrid GAN algorithms such as DCGAN + ResNet-18 [68] and
MDGAN [70] , it can be observed that different types of malware features such as
pixel representation and sequences of APIs can be combined and then the result-
ing matrix can be sampled at low cost, reducing the training time and synthetic
production. However, in addition to the already-mentioned disadvantages of
GAN, a high volume of inputs can affect the calculation of probabilistic distribu-
tion when combining two or more DL mechanisms. In summary, both DCGAN +
ResNet-18 and MDGAN obtained lower precision values than proposed in this
project with RL, with 90.00% and 95.90%, respectively.

• For the scope of DoS cyber-attacks

– The scope presented in [72], Statistical learning + FFNN, has an interesting poten-
tial since mutations are fully adequate to descriptive statistics of different samples.
However, there are not enough indicators of sample quality, volume and function-
ality. Moreover, a FFNN is known to present many parameter fitting problems,
especially since its optimization function is based on gradient optimization. Even
so, when testing this RL + FFNN project, better results were obtained, in terms of
performance with 96.41% compared to its counterpart with a value of 88.00%.

– Although in [73] the GAN is stabilized with the GP penalty algorithm, to minimize
boosting and gradient vanishing effects, the WGAN is not immune to high
volume impact during training phases, in fact, the penalty avoids the cost of
hyper-parameter computation. Indeed WGAN, presents oscillation and learning
convergence problems for new samples, especially those of large content such
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as DoS cyber-attacks. The SL part of this scope employed the GB algorithm,
despite that, no relevant data were available to compare the precision metric of
the algorithm. However, it was possible to calculate the Area Under the Receiver
Operating Characteristic (ROC) Curve (AUC), which measures the performance
of the model at different thresholds. The AUC is then said to be measured in
an interval of (0, 1), where 1 is a perfect model. This indicates that the RL + GB
model of this project also obtained a better result than GP-WGANs + GB, with an
AUC of 0.87.

– The main limitations of MDM have already been mentioned. In [74], it was
explored to use it with PRISM, in order to stabilize states that could result in
unpredictable behavior. A problem that could occur in this case is that, being a
simulation algorithm, the costs generated per se would be exhaustive and it could
not be guaranteed that the samples would result in sufficient quality. In fact, RL,
avoids this scenario by reducing the unfavorable states, so that the agent learns
what is necessary and reduces the search for optimization criteria to increase.
Consequently, both MDM + PRISM + MLP and MDM + PRISM + DT obtained
lower precision records with 79.70% and 98.80% respectively compared to RL +
MLP with a score of 99.81% RL + DT with 99.94%.

– Finally, in [60], although the sample development is more technically oriented,
there are no data to compare with ML algorithms to evaluate the quality and
shape of the synthetic samples.

It is of utmost importance to mention that the synthetic samples of RL for malware
and DoS cyber-attacks were generated from a realistic environment and that, unlike the
works presented in the state-of-the-art [67–74] they were not created when the dataset was
already characterized or transformed in a tabular, matrix or unstructured way, detaching
the observations from the source.

6. Conclusions

The area of cybersecurity is dynamic and changing, therefore, malware strains and
types of DoS cyber-attacks remain two important points of research, as new, sophisticated
and efficient forms of threat grow with greater risk of affectation. The primary objective
is to analyze the behavior, origin and causes and thus build sufficiently timely mitigation
and remediation mechanisms. Although traditional scopes offer a solution based on SA &
DA, the congregation of novel samples have surpassed match & flag mechanisms. At the
same time, anomaly-based detection offers a more holistic view that focuses on behavioral
analysis, mainly applying ML algorithms, yet obtaining samples can be an arduous and
costly process. To overcome this, the generation of synthetic samples using sampling,
oversampling, multiple embedding, GANs and data augmentation methods has been
proposed. The disadvantage is that such algorithms have presented high computational
cost, instability or simply generate identical copies of the original data; in addition, most of
the methods are mostly applied when the dataset is already characterized or transformed,
detaching from a real and synthetic mutation. This paper presented an RL technique,
namely, Reinforsec, that modifies the properties of malware binaries in PE format and
DoS cyber-attack data to generate highly functional synthetic samples and thus propose a
new and more realistic way to construct datasets for ML purposes. It was demonstrated
that the Reinforsec methodology is capable of surpassing the precision levels of many
state-of-the-art works.

On the one hand, for the malware scope the RL+DT algorithm outperformed with
99.81% of score others as GAN oriented as GAN + MLP (99.46%), GAN + DT (90.43%),
GAN + LR (96.71%) , GAN + SVM (97.12%) and GAN + RF (98.87%), DCGAN + ResNet-
18 (90.00%) and MDGAN (95.90%). In comparison with MDM-based algorithms, it also
obtained better scores in relation: + One-Hot-Encoding + SVM (97.30%), MDM + One-
Hot-Encoding + LR (98.10%), Malware MDM + One-Hot-Encoding + RF (98.20%), MDM +
AWGCN + SVM (99.20%), MDM + AWGCN + LR (99.30%), and MDM + AWGCN + LR



Sensors 2023, 23, 1231 25 of 28

(99.30%) and MDM + AWGCN + RF (98.70%). In this same scope of synthetic malware
generation the proposed RL +DT also obtained a better result than its counterpart Fuzzy-
SMOTE + SVM (99.02%).

On the side of generating synthetic samples of DoS cyber-attacks, Reinforsec demon-
strated with RL + DT that with a precision of 99.94% exceeded Statistical learning + FFNN
(88.0), MDM + PRISM + MLP (79.70%) and MDM + PRISM + DT (98.80%) scopes. For the
other scopes, we did not obtain enough information and conditions to be able to compare
them successfully.

It is worth mentioning that an important contribution of this work is that the samples
generated in crude by Reinforsec were subjected to machines such as VirusTotal and
CloudShark, which allowed to demonstrate the validity of the samples, giving a broader
picture of their functionality.

The future research lines to be addressed are the following: to investigate the behav-
ior of different malware families, in the taxonomic field to learn possible mutations in
cryptographic and obfuscation techniques; to propose Reinforsec in the predictive field
of malware construction, to understand the logistics of source code and present advances
where it is determined how far a malicious software could infect, and, from the technical
point of view to observe how to build a simulated attack surface with low computational
cost. On the DoS cyber-attack side, we intend to continue working with new types of
attacks, low-cost simulations and mutations that are more oriented to the reach of any user
who wishes to test raw samples without the need to acquire high-cost stress platforms.
An important line of research is volumetric and Distributed Denial of Service (DDoS)
attacks, where Reinforsec could get closer to generating realistic changes with different
characteristics that resemble those occurring in real time.

Furthermore, as future work, it is being proposed to address synthetic generation
focused on the classification of network threats targeting cloud and IoT devices. More areas
of opportunity are expected to be covered towards the analysis of emerging technologies
such as Software as a Service (SaaS) and Platform as a Service (PaaS).
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