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Abstract: The growing intensity and frequency of matches in professional football leagues are related
to the increasing physical player load. An incorrect training model results in over- or undertraining,
which is related to a raised probability of an injury. This research focuses on predicting non-contact
lower body injuries coming from over- or undertraining. The purpose of this analysis was to create
decision-making models based on data collected during both training and match, which will enable
the preparation of a tool to model the load and report the increased risk of injury for a given player
in the upcoming microcycle. For this purpose, three decision-making methods were implemented.
Rule-based and fuzzy rule-based methods were prepared based on expert understanding. As a
machine learning baseline XGBoost algorithm was considered. Taking into account the dataset used
containing parameters related to the external load of the player, it is possible to predict the risk of
injury with a certain precision, depending on the method used. The most promising results were
achieved by the machine learning method XGBoost algorithm (Precision 92.4%, Recall 96.5%, and
F1-score 94.4%).

Keywords: injury prediction; sport data analysis; rule-based system; expert system; fuzzy rule-based
method; external training load

1. Introduction

Every year expectations of the performance of professional football players are grow-
ing. Increasing the number of high-intensity runs, accelerations, and decelerations and as
the result growing overall player load, leads to a higher risk of occurrence of an injury [1].
Each exclusion of a player due to an injury may affect not only his individual physical
condition and health but also the performance of the entire team [2]. In professional foot-
ball, each won or lost match may decide whether a team moves to the next phase of the
tournament or relegation from the league [3]. Injuries can have a significant impact on
every level of a football club, hence minimizing the risk of their occurrence has become
one of the most important tasks of their research departments. This research focuses on
predicting non-contact lower body injuries resulting from overtraining or undertraining,
as they can be predicted using decision-making models based on data including external
training load, internal load, wellness data, etc. [4,5].

Prediction of injuries remains a difficult problem due to the individual biological
differences of the body, different physical predispositions, or psychophysical condition of
each player. Generalizations made by decision-making models can eliminate important
factors influencing the actual condition of a given player’s health and in consequence the
risk of injury. The aim of the project described in this paper is to use decision-making
models to indicate the level of risk of injury with the highest possible accuracy. The research
conducted, together with the individual motor profile of the football player created and
updated, is used to determine his physical capabilities of the training load calculated at
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his individual level, which is used by physical preparation coaches. The model created, in
view of the range of data, is general, it would be worthwhile in further research to expand
it taking into account the individual predispositions of football players. The research being
conducted is in response to a real problem occurring in football clubs. The club KKS Lech
Poznań in the autumn round of the 2020/2021 season combined competition in both the
domestic league (PKO BP Ekstraklasa), the European UEFA Cup competition, and the
Polish Cup. In addition, some of the players were called up for the national teams of their
countries held before the resumption of the games as well as during the autumn round. The
intensity of the games has forced matches to be played both on weekends and in the middle
of the week. As a result of such a busy calendar, limited recovery time between games,
very short breaks between seasons, and rounds of individual games significantly increase
the importance of training load management. External factors, such as long trips to other
countries, often with a different time zone, and the participation in the training of those
who play in the basic 11 or are substitutes, add to the burden. Those who have played fewer
games or minutes in matches need a different training load to maintain proper form [6].
In the fall round preceding the testing period, the team suffered more than 30 different
injuries over a five-month period, where the accumulation occurred in early autumn after
the team played with a frequency of playing three games in two weeks.

This research aims to create a decision-making model to predict the probability of a
non-contact injury coming from over or under-training among professional male football
players. The preparation of such a model will enable a creation of a training load monitoring
tool. Received reports from the tool can help the motor preparation team to adjust training
loads given to an individual player to minimize the risk of occurrence of an injury in the
next microcycle.

For this purpose, three decision-making models were created and compared. In
the first phase, in cooperation with the motor preparation team, a rule-based method
was prepared. Later on, a fuzzy rule-based system was prepared on the basis of expert
knowledge-based rules. As a baseline for the machine learning method XGBoost algorithm
was taken.

2. Related Work

Current studies in the publications deliver an insufficient understanding of what
mostly affects injury risk, while an evaluation of the potential of statistical models in fore-
casting injuries is still missing. Based on research conducted so far, too high and too low
training load leads to a higher risk of an injury occurrence [7]. An additional risk factor is
changes in training load volume in microcycle’s series [4]. Both internal and external load
parameters are correlated with the risk of an injury occurrence, however, some of them are
more impactful, thus feature selection is one of the most important steps in this kind of
experiment. In [8] authors presented a systematic review of methodology in practical injury
prevention based on Acute: Chronic Workload Ratio. It compares different approaches to
calculating the ACWR, e.g., using a rolling average, coupling methods, or EWMA (Expo-
nentially Weighted Moving Average), which sets an increased weighting to the more recent
workload values. Some of the compared studies show a relationship between increased
ACWR and the risk of injury. However, the finally adopted methodology depends on the
specificity of the research and its limitations. On the other hand, [9] presents a comparison
of studies on injury risk assessment using elements of machine learning. This research
concerns football players from different leagues, and seasons and uses a different set of pa-
rameters, e.g., external and internal load parameters. According to this research, machine
learning does not seem to have high predictive power in every setting, nevertheless, it
can support the identification of early symptoms of raised risk for an injury. Both reviews
show different approaches to the issue of injury prediction and make it possible to refer
to our approach, which is distinguished by the use of both machine learning methods,
fuzzy systems, and a decision-making model based on expert knowledge. Our study is
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also characterized by limitations related to the dataset, therefore it uses only parameters
related to external loading.

2.1. Acute: Chronic Workload Ratio

Acute: Chronic Workload Ratio is a parameter often used in modeling training load.
In theory, there is a range of ACWR in which the risk of injury is increased, while research
shows that it should not be used in isolation to analyze the causality between load and injury.
In [10] authors investigate whether acute workload and chronic workload predict injury
in professional rugby league players. Data were gathered from 53 rugby players during
two league seasons. The acute workload is understood as a 1-week total distance and the
chronic workload is a 4-week average acute workload. The acute: chronic workload ratio
was computed by dividing acute workload by chronic workload. Considering acute and
chronic workloads in isolation did not always predict injury possibility. Higher workloads
can positively or negatively affect injury possibilities in rugby league players. Unlike
players with a low chronic workload, players with a high chronic workload are more
vulnerable to injury with moderate-low through moderate-high acute: chronic workload
ratios. However, they are less vulnerable to injury in case of spikes in acute workload, so
when the acute chronic workload is very high.

2.2. Building Multi-Dimensional Injury Forecaster

In the [5] a more complex and effective approach to injury prediction was presented. In
this research, they present a multi-dimensional model for injury prediction in professional
soccer using machine learning methods. Data were collected using GPS devices among
players in a professional soccer organization during a season. The dataset consists of
information about the 12 workload attributes extracted from the GPS data and the 6 personal
attributes, 12 attributes computed as the Exponential Weighted Moving Average of the
12 workload features, 12 features consisting of the ACWR of the 12 workload attributes,
12 attributes consisting of the monotony of the 12 workload attributes and previous injury
feature. They implemented the decision tree classifier and compared its results with the
random forest classifier, the logit classifier, the four baselines, and the ACWR- and MSWR-
based forecasters. The best results gave a decision tree classifier with recall 0.80 ± 0.07 and
precision 0.50 ± 0.11 on the injury group, indicating that the decision tree classifier can
forecast almost all the injuries and that it correctly labels a workout session as an injury in
50% of the cases.

3. Materials and Methods
3.1. Data Collection and Feature Selection

Data used in this research was collected during two rounds (spring round of season
2020/2021 and fall round of season 2021/2022) in the domestic football league (PKO PB
Ekstraklasa), among 36 players with an average age of 24 (±5.26 SD). Measurements are
made of players of all positions, excluding goalkeepers. The data were gathered using
Catapult wearable global positioning trackers [11], both during exercise and game activities.

The data were collected using Catapult GPS technology sampling at 10 Hz (Vector
S7 4 GHz, Catapult Innovations, Melbourne, Australia), which provided information on
the players’ movement activities during a training session or match encounter. The GPS
device, such as those placed in Figure 1, also included a tri-axial accelerometer, gyroscope,
and magnetometer sampling at 100 Hz. According to the manufacturer’s assurances and
certification, the device provides reliable and credible measurements during both open-air
training sessions and matches in the stadium [11].

During all training sessions included in the study, each athlete used exactly the same
data collection device. The devices were placed in dedicated vests sized to fit the athlete so
as not to affect the exercises performed during training. The player, wearing such a vest
during training, is shown in Figure 2.
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Figure 1. Catapult wearable device for data collection used at the club.

Figure 2. A player wearing a receiver vest during training, photo by Marcin Rajczak, KKS Lech Poznań.

The Catapult system allows the analysis of the players’ performance in individual
parameters in real-time, using a data receiver, or after a training session, the data are
ripped using the dedicated Catapult OpenField Console software. At this stage, coaches
mark individual training sessions and clean the data to training time ranges. Once this is
done, the data are sent to a central application maintained in the cloud and additionally
to a dedicated database. This database also stores information from medical reports. The
process is shown in Figure 3.
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Figure 3. The process of collecting and processing training activity data from Catapult GPS wear-
able retrievers.

All injuries are reported by players to the medical team and then documented in
a medical report. This document contains detailed information about each injury, e.g.,
damaged tissue, injury date, injury mechanism, etc. After selecting the injuries considered
in this project, that is, non-contact lower body injuries, each event from the main dataset
has been labeled (1—if the player got injured, 0—if the player did not get injured) using
information from the medical report.

The dataset contains information about 1064 events. From all the parameters provided
by the Catapult system, only 7 have been selected. Each event was described by param-
eters listed in Table 1. The choice of attributes resulted from the experience of physical
preparation coaches in analyzing the relationship between the external training load of
athletes and its impact on the occurrence of non-contact muscle injuries. Attributes were
included here, the analysis of which makes it possible to determine the intensity of training,
looking also at parameters that generate a high metabolic load—running at speeds above
19.8 km/h, acceleration, and deceleration above 2–3 m/s. Research on similar datasets, also
augmented with external data, was conducted by [12]. The data for each microcycle were
split into two subsets. The first aggregates activities from the entire workout week to game
day, while the second aggregates match day results. The dataset was divided into train and
test, containing 693/36 and 371/31 events/injuries respectively.

Table 1. Basic parameters used in the dataset.

Parameter Description

PlayerId Player Id
PlayerPosition Position of the player
mc_Microcycle Number of microcycle in season
Injury 1—Yes, 0—No, if the injury occurred in a microcycle

TotalTrainingTime Sum of minutes of training which the player has participated in since the beginning of the
round (preseason included)

TotalGameTime Minutes of play in previous games in season
Games Number of games played before each workout session
PlayInMatch 1—Yes, 0—No, if the player plays in a match during the analyzed microcycle



Sensors 2023, 23, 1227 6 of 15

Table 1. Cont.

Parameter Description

Sum of activity in training microcycle, excluding match day

mc_TotalDistance Total distance covered in training
mc_HSR Distance in meters covered in HSR (19.8–25.2 km/h)
mc_Sprint Distance in meters covered in Sprint (>25.2 km/h)
mc_TotalPlayerLoad Player load
mc_FieldTime Training time in microcycle
mc_Acceleration Accelerations above 2–3 m/s2

mc_Deceleration Decelerations above 2–3 m/s2

Activity in match day

md_TotalDistance Total distance
md_HSR Distance covered in HSR (19.8–25.2 km/h)
md_Sprint Distance covered in Sprint (>25.2 km/h)
md_TotalPlayerLoad Player Load
md_FieldTime Player game time
md_Acceleration Accelerations above 2–3 m/s2

md_Deceleration Decelerations above 2–3 m/s2

The dataset also contains similarly aggregated data as in the case of parameters related
to microcycles, e.g., mc_TotalPlayerLoad, mc_FieldTime, etc, but for 1, 2, and 3 microcycles
back. This provides insight into the training loads incurred in previous cycles that may impact
the risk of injury. For each microcycle-related parameter, it is then e.g., mc_TotalPlayerLoad,
mc_TotalPlayerLoad_-1, mc_TotalPlayerLoad_-2, mc_TotalPlayerLoad_-3, etc.

Together with the physical preparation coaching staff, the motor profile of the players
was developed. An analysis was made of the players’ loads in terms of distance covered
during the match, Sprint Distance, High Sprint Running (HSR), braking, and acceleration.
Activities from matches in which a given player played for at least 75 min were used
to determine reference values in the profile. For players who played fewer minutes in
matches, the profile is the median of the results achieved by other players playing the same
position. Based on the principles of creating a physical profile of football players, a set of
additional variables was prepared, which in further processing was the basis for building a
based-rule system.

Each of the variables defined is an expression derived from data collected from GPS
receivers. For example, the variable REG_HSR_R1_A can be expressed as:

IF [mc_HSR_-1] <> 0:
THEN REG_HSR_R1_A = ([mc_HSR]+ md_HSR]) / ([mc_HSR_-1] + [dc_HSR_-1])
ELSE REG_HSR_R1_A = 1.1

3.2. Expert Knowledge-Based Rules

In addition to the features listed in Table 2 and the features related to microcycles
for previous microcycles, the dataset also contains rule values established on the basis of
expert knowledge in cooperation with physical preparation coaches.

Any rule consists of two sections: the IF section named the antecedent (premise or
condition) and the THEN section named the consequent (conclusion or action).

The fundamental syntax of a rule is:

IF <antecedent>
THEN <consequent>

In general, a rule can have numerous antecedents joined by the keywords AND
(conjunction), OR (disjunction) or a mix of both [13].
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Table 2. Additional variables prepared for the system to determine the relationship between data
from different macrocycles.

Rule Description

HSR variables, for each ratio

REG_HSR_R1_A The sum of HSR values achieved in the current microcycle, to the values achieved in the microcycle
preceding the microcycle under analysis.

REG_HSR_R1_C The sum of the HSR values achieved in the microcycle three weeks before the current one, to the
values achieved in the microcycle preceding the microcycle under analysis.

REG_HSR_R2 The HSR values achieved in a match, to the sum of the values achieved in a microcycle, without a
match, in the microcycle analyzed.

Sprint variables, for each ratio

REG_Sprint_R1_A The sum of Sprint values achieved in the current microcycle, to the values achieved in the microcycle
preceding the microcycle under analysis.

REG_Sprint_R1_C The sum of the Sprint values achieved in the microcycle three weeks before the current one, to the
values achieved in the microcycle preceding the microcycle under analysis.

REG_Sprint_R2 The Sprint values achieved in a match, to the sum of the values achieved in a microcycle, without a
match, in the microcycle analyzed.

Acceleration and deceleration variables

REG_ACC_DEC The ratio of the sum of acceleration and deceleration achieved in a match, to the sum of values
achieved in a microcycle, without a match, in the analyzed microcycle.

Acute: Chronic Workload Ratio variables

REG_ACWR_AC The sum of the PlayerLoad parameter values from the entire microcycle (match and training).

REG_ACWR_HR The average value of the PlayerLoad parameter obtained in the current microcycle and the three
preceding it from the entire microcycle (match and training).

REG_ACWR Ratio of values of parameters REG_ACWR_AC and REG_ACWR_HR.

In our model, six expert rules were prepared based on the expertise of the coaching
staff and a review of the literature where they considered what the training load should be
in the microcycle relative to match performance [4,14]. An example rule returning a value
for ACWR is displayed below:

## Calculation of returned values by ACWR rule
IF (REG_ACWR >= 0.80) AND (REG_ACWR <= 1.30)
THEN RULE_ACWR = 0

IF ((REG_ACWR >= 0.70) AND (REG_ACWR < 0.80))
OR ((REG_ACWR > 1.30) AND (REG_ACWR <= 1.40))

THEN RULE_ACWR = 3

IF ((REG_ACWR >= 0.50) AND (REG_ACWR < 0.70))
OR ((REG_ACWR > 1.40) AND (REG_ACWR <= 1.60))

THEN RULE_ACWR = 7

IF (REG_ACWR > 1.60) OR (REG_ACWR < 0.50)
THEN RULE_ACWR = 10

In the rule-based approach, after each rule calculates a value, a final decision is made.
It is assumed that all rules are equivalent, and the result is formed in the results aggregation
of their values. Various approaches were tested, and it was decided to use average functions
as aggregation. From the values returned by the rules, the average is calculated, and then
two answers are generated: 0 - if the average was less than 6.5, 1 for a value at least equal to
6.5. In conducting the experiments, several approaches were tested to determine the final
value before the rule system, including the maximum, the most frequent value returned
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by individual rules. The experiments conducted gave the best results for the described
approach. A diagram of the data processing process is shown in Figure 4.

Figure 4. Processing in a rule-based system.

However, further work in the project showed that it was necessary to consider modi-
fying some of the rules or giving up some of the additionally developed variables.

3.3. Fuzzy Rule-Based Model

The use of fuzzy set theory [15,16] and the fuzzy rule-based model [17,18] allows
a more flexible interpretation of the input data. In this model, linguistic variables are
defined that allow the imprecision of the input data to be taken into account and the
sharp boundaries of the decision intervals from the classical expert rule-based decision
model to be blurred. Such models are widely used when the input data may be subject to
measurement error or the boundaries of the decision intervals cannot be strictly defined.
Moreover, this approach allows the definition of the membership of given attributes to
multiple classes at once with different degrees. The principles and examples of the fuzzy
rule-based controller (decision system) can be found in [18–20].

The fuzzy rule-based model was implemented using the Simful Python library for
fuzzy logic [21]. Two approaches have been used to build the decision system. In the first
one, the rules formulated by specialists were used (the model presented in the previous
section was used), in the second the variables and rules were inducted on the basis of
available data using data analysis and clustering methods (the Pyfume package [22] was
used for this purpose). Finally, the combination of the two approaches resulted in the
decision model presented next.

For each attribute of input and output data, a linguistic variable with terms in the
form of fuzzy sets is constructed. Each variable has its own range and a corresponding
list of terms (fuzzy sets), which are then used in decision rules. Figure 5 shows a selection
of input variables and an output variable. All definitions of the input linguistic variables
prepared in the model can be found in the supplied code.
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Figure 5. Selected linguistics variables in fuzzy rule-based model.

The model is based on 34 rules. Example rules are presented below. The full set of
rules is provided in the supplied code.

IF (HSR_R1_A IS small) AND (HSR_R1_B IS small) AND (HSR_R1_C IS small)
THEN (load IS very_small)

IF (REG_ACWR IS small) OR (REG_ACWR IS big) THEN (load IS small)
IF (HSR_R2 IS big) THEN (load IS big)
IF (SPRINT_R1_A IS small) AND (SPRINT_R1_B IS small) AND

(SPRINT_R1_C IS small) THEN (load IS very_small)
IF (REG_ACC IS small) THEN (load IS small)

The system returns the training load decision as a real number in the range [0, 10],
which is interpreted as the chance of an injury occurring. A level of 0.6 was used as a cut-off
point, above which the system interprets the value as an injury occurs.

3.4. Machine Learning Model

As a machine learning model, the gradient boosting method (XGBoost) was used [23].
It is a machine learning method, which delivers a model in the form of an ensemble of weak
models, commonly decision trees. It creates the model like other boosting methods, but
generalizes them, allowing the optimization of an arbitrarily differentiable loss function.

The XGBoost algorithm was implemented using the R language. The caret package [24]
was used to perform cross-validation and hyperparameter tuning using the grid search
technique. To inspect the quality of the XGBoost model 5 × 10 cross-validation method
was applied. The selected model consists of 500 trees. The exact values of all tuned
hyperparameters can be found in Table 3.
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Table 3. Final hyperparameters of XGBoost.

Hyperparameter Value

nrounds 500
max_depth 7
eta 0.05
gamma 0.01
colsample_bytree 0.75
min_child_weight 0.00
subsample 0.50

Since the training dataset contains 657 non-injury observations and just 36 injury
observations, class distribution is highly unbalanced. To adjust this imbalance the minority
group in the training dataset was oversampled by using Synthetic Minority Oversampling
Technique (SMOTE) [25].

As the design of the microcycle data means that there were gaps in the data, these
were filled by simple imputation using the median. We also tested a much more sophisti-
cated Multivariate Imputation by Chained Equations (MICE) [26] algorithm, but with no
improvement in quality.

4. Results

To compare models we used popular methods of evaluating classification tasks:

• Accuracy: Percentage of correctly classified cases.
• Precision: Ratio of correctly classified items in the ”injury” class to all that the classifier

has marked as “injury”.
• Recall: The ratio of correctly recognized elements from the ”injury” class to all the

elements it should recognize, i.e., the entire “injury” class.
• F1: Harmonic average of precision and recall.

The results for each of the models are different (for all models we had the same test
dataset). There is still room for improvement in the rule-based and fuzzy rule-based models.
The best results achieved on the test set by each model were shown in Table 4.

Table 4. The best classification results on test set for each model.

Model Type Accuracy Precision Recall F1

Fuzzy rule-based 83.6% 15.9% 22.6% 18.7%
Rule-based 76.0% 53.0% 58.0% 53.0%

Machine learning 90.0% 92.0% 97.6% 94.7%

The fuzzy model showed the highest number of false positive results, so 65 non-injury
events were classified as injuries. False positive results are particularly undesirable in this
study because they can lead to unreasonable prevention of the player from participating in
the match or training session and should be minimized in further work. The fuzzy rule-based
method achieved Accuracy = 0.84, Precision = 0.16, Recall = 0.23 and F1-Score = 0.19.

The rules created for the decision model based on expert knowledge allowed us to ob-
tain satisfactory prediction results, achieving Accuracy = 0.76, Precision = 0.53, Recall = 0.58,
and F1-Score = 0.53. The rule-based model classified 21 injuries correctly, however, 1 injury
event was undetected. The model predicted 36 events as false positive results.

The model using machine learning methods gave the best results for injury prediction.
We prepared three models which differ train dataset used to construct:

1. All features and additional rules as features.
2. All features without our rules as features.
3. Only our rules as features.
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As presented in Table 5, the best XGBoost algorithm achieved Accuracy = 90.0,
Precision = 92.0, Recall 97.6 and F1-Score = 94.7.

Table 5. Machine learning method (XGBoost) classification results on the test set.

Approach Accuracy Precision Recall F1

(1) 90.0% 92.0% 97.6% 94.7%
(2) 86.8% 92.2% 93.5% 92.8%
(3) 78.7% 92.2% 83.8% 87.8%

For further analysis, a feature importance plot (importances are scaled to have a
maximum value of 100%) for the best XGBoost model presented in Figure 6 was generated.
Feature importance is measured as the gain contribution of each feature to the model. A
higher percentage means a more important predictive feature.
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Figure 6. Feature importance (20 most important features) generated from machine learning model
(XGBoost (1)).

Analyzing the relevance of individual attributes, it should be noted that the model
indicated a high significance of four attributes: the amount of time the athlete spent
training, the two weeks prior to the microcycle analyzed, the number of decelerations and
accelerations, and the number of meters run at a speed of 19.8–25.2 km/h (HSR) during the
current training microcycle. These features were confirmed by physical training coaches.
Particular attention was paid to the importance of the number of accelerations and braking.
In multiplayer games with such a high number of contacts between players, and with
frequently changing dynamics and directions of movements, it is these two parameters
that should be monitored. This has been implemented in training monitoring, what will be
described in the last section of the article. The greatest relevance returned by the model
relates to the player’s total training time, but in a microcycle that took place two microcycle
units before the training microcycle under analysis. This is consistent with the ACWR
approach. When analyzing the training load, it is important to consider not only the current
and previous microcycle, but also to reach back to the athlete’s previous activities. This is
in line with the principles of developing the team’s training, where training is supposed to
have an effect not only in the short term but also in terms of the next few weeks. It is worth
noting that the model indicated in the features a high validity of the activities obtained two



Sensors 2023, 23, 1227 12 of 15

microcycles before the current microcycle. The elements indicated in the relevance of the
features largely coincide with the analyses conducted on player injuries and training load in
the microcycles preceding the onset of injury. However, in the case of a different approach
to the aggregation of microcycle data, or the occurrence of interspersed microcycles of
different long (6–7 days) and short (2–3 days) lengths during the season, other attributes
may be proposed for consideration. The inhibition parameter was most often a missing
training element in players who did not play at least 45 min in a match and difficult to
implement in compensatory training, where one tries to achieve load values in individual
attributes close to the results of a player’s match profile. Therefore, measures have been
taken to stimulate muscles through eccentric training from benchmark braking moments
on external strength equipment. This will be used to evaluate the model in further research.

In addition, Figure 7 was presented to check the quality of our rules.
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REG_ACWR_HR
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Figure 7. Feature importance generated from machine learning model (XGBoost (2)).

5. Discussion

All the developed models provide a certain perspective on the risk of injury and
can be used to provide early alarms about incorrectly selected training loads. During the
analysis of the results obtained, in particular, in the case of the rule-based decision model,
a tendency was noticed to detect an injury in the microcycle preceding the actual injury.
Therefore, the development of a fuzzy measure of the quality of the model remains to be
considered, which will allow not so much to indicate a specific microcycle, but a selected
wider area at risk of injury.

What is worth pointing out, the model using machine learning methods achieved very
good effectiveness in injury detection. This approach may therefore be considered appro-
priate in the case of such a complex and multidimensional problem as injury prediction.
The XGBoost algorithm’s false positive rate is small, indicating that it reduces the “false
alarms”. In professional football, false positives are highly undesirable as an unreasonable
absence of players can negatively affect a team’s performance. The machine learning model
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also generates a moderate false-negative rate, which means that it is rare for an injured
player to be classified as out of the injury-risk situation.

Future Research Directions

Despite the satisfactory results obtained in this study, there are still many directions for
future development. First of all, the dataset could be enriched with factors related to internal
loads, such as heart rate during activity, Rate of Perceived Exertion [27] etc. A wider range
of data on the fitness and quality of training of a given athlete may improve the quality of
inference without interfering with the construction of the model. However, to collect more
data, additional arrangements should be made with the club as this may be related to the
need to provide additional measuring equipment. Moreover, the introduction of data on
previous injuries to the training set may have a significant impact on the results obtained.

Another proposed approach to improving the quality of injury prediction is to aggre-
gate the results of all three developed models and to generalize the final prediction score.
The combination of systems based on expert knowledge and using elements of machine
learning may improve the results of prediction.

The final task will be to prepare a tool to assess the planned training load in the next
microcycle and its impact on the risk of injury. It will be a significant improvement from
the club’s point of view, which will allow for a better adjustment of the training model, and
thus improve sports results and reduce the number of injured players over the course of
the season. As injuries have a high economic cost for the club, due to the costly process
of convalescence and rehabilitation of players, preventing injuries can reduce these costs,
which means enhancing the team’s performance and mental state of the players, as well as
reducing seasonal medical expenses [28].

The problem of injury prediction is extremely important in the context of appropriate
training intensities and volumes, as well as the preparation of football players to perform
in matches. Studies have shown that it is necessary to specifically control the appropriate
level for each player of training the number of meters run at appropriate speeds, as well as
acceleration and deceleration. This issue is particularly important when a team participates
in several different games during the season. Then matches are held both on weekends
and during the week and the sheer amount of time spent preparing for the next match
is reduced. It is then important to train gear in terms of HSR, braking, and acceleration
three days before the next match meeting. Load control already takes place during matches,
players who do not play in the basic lineup in a match should have compensatory training
to equalize their loads and ensure readiness for the rest of the matches. Using straight-line
running in compensation training, we are able to approach the match profile in the speeds
generated by the players, while the most difficult element in training is the braking element.
It is recommended as a complement to compensatory training, an eccentric force training
session using machines that provide concentric, eccentric, and isometric resistance resulting
in explosive maximal force development and delayed eccentric loading. This approach
was used at the club, which will be taken into account in future iterations of the work on
the injury prediction issue. The research is based on real data, by which it is impossible to
fully simulate it in order to confirm the validity or negation of the experiments conducted.
The verification criterion adopted in the conducted study, in cooperation with the club, is
the analysis of training loads taking into account the individual capabilities of the players
and the proposed models of analysis in subsequent seasons, along with the analysis of the
number and type of non-contact muscle injuries occurring in the players.
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