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Abstract: Given the increased interest in utilizing artificial intelligence as an assistive tool in the
medical sector, colorectal polyp detection and classification using deep learning techniques has been
an active area of research in recent years. The motivation for researching this topic is that physicians
miss polyps from time to time due to fatigue and lack of experience carrying out the procedure.
Unidentified polyps can cause further complications and ultimately lead to colorectal cancer (CRC),
one of the leading causes of cancer mortality. Although various techniques have been presented
recently, several key issues, such as the lack of enough training data, white light reflection, and blur
affect the performance of such methods. This paper presents a survey on recently proposed methods
for detecting polyps from colonoscopy. The survey covers benchmark dataset analysis, evaluation
metrics, common challenges, standard methods of building polyp detectors and a review of the latest
work in the literature. We conclude this paper by providing a precise analysis of the gaps and trends
discovered in the reviewed literature for future work.

Keywords: automatic polyp detection; colorectal cancer; colorectal polyps; deep learning;
computer vision

1. Introduction

Colorectal polyps are protrusions or bumps that develop in the colon as the body
produces an excessive number of unwanted cells in the lining of the bowel. Although
colorectal polyps are usually harmless at the initial stages, if left undetected and untreated
over a long period, they could lead to colorectal cancer (CRC), one of the leading causes of
cancer mortality [1–3]. According to the world health organization’s International Agency
for Research on Cancer (IARC) [4], an estimated 2 million individuals were diagnosed with
colorectal cancer in 2020 alone, with almost 1 million reported deaths due to the disease.
The findings in [5,6] show that several common factors such as age, obesity, family history,
excessive smoking and alcohol consumption and intestinal conditions like Crohn’s disease
contribute to the development of colorectal polyps.

Colorectal polyps can form anywhere in the large intestine or rectum. However, most
polyps are reported to form in the left part of the colon, known as the distal colon [5]. Some
polyps form on the right side of the colon, known as the proximal colon, and are usually
more challenging for colonoscopists to detect due to the shape of the colon [4,5].

Colorectal polyps come in various shapes and sizes; some are dangerous, while others
are harmless bumps. Colorectal polyps are generally classified into several types, which
can be either benign or malignant [1–4]. In Table 1, we present the various types of polyps.
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Table 1. The various classes of colorectal polyps.

Types Average Size Cancerous Frequency in Patients

Tubular adenomas 1 to 12 mm Non-cancerous 50%
Villous adenomas ≥20 mm Cancerous >5%

Tubulovillous adenomas ≤1 cm Cancerous 8–16%
Serrated adenomas ≤10 mm Non-cancerous 15–20%

Hyperplastic ≤5 mm Non-cancerous 20–40%
Inflammatory ≤2 cm Non-cancerous 10–20%

Even though hyperplastic and tubular adenomas, which are benign, are the most
common polyps found in patients, if they remain undetected and untreated over a long
period, they can turn malignant [2,3].

To date, the standard method for detecting and diagnosing colorectal polyps has
been through colonoscopy. Colonoscopy is a multistep process in which patients are first
provided with a specific solution to consume as part of the bowel preparation phase. The
bowel is prepared and cleaned to ensure that there are no obstructions, such as feces or
other objects, that may affect the colonoscopy procedure. Next, the examination phase
takes place, in which a colonoscopy that is equipped with light and a camera is inserted
into the patient’s rectum [7].

From a machine learning perspective, colorectal polyp detection can be defined as the
process of training a machine learning model to learn a set of features representing a polyp
from a given image or live video stream. In some cases, those models are further fine-tuned,
and a classification component is added to distinguish different classes of polyps.

Although there are multiple ways to build a colorectal polyp detection model, common
preliminaries are usually followed to complete an end-to-end detection system. At first, a
dataset consisting of either static photos or video frames is required to train the model. A
typical dataset would be a combination of polyp images and either segmentation masks,
bounding boxes coordinates, or both. Next, the samples are pre-processed and augmented
using various techniques such as flips, random crops, and rotations. Augmentation is often
needed because the current public datasets are small, and the samples do not cover all the
possible scenarios, like variation in illuminations, the visual field and polyp sizes.

Colorectal polyp detection models are built with one of three objectives: (1) polyp
segmentation, (2) polyp detection, and (3) polyp classification. Some models are trained to
carry out multiple objectives simultaneously, such as detection or segmentation, followed
by classification. When a model is trained to detect polyps, training images with their
corresponding labels are fed to a network which learns how to localize a polyp in a given
image. The label format used for detection is usually a combination of four coordinates
representing the bounding box, a variable representing whether a polyp is present, and
sometimes, the class of the polyp is added, provided that such information exists in the
dataset. In contrast, segmentation models are trained to draw an image segmentation mask
around a detected polyp. Segmentation models are trained on the colonoscopy images, and
the corresponding image masks are used as the input labels. Finally, classification models
are trained to classify polyps based on the group a polyp belongs to without identifying
the location. In Figure 1, we illustrate the three different approaches.

Regardless of the desired approach, the pipeline of building an automated polyp
detection system using machine learning is always identical, with the steps sample normal-
ization, augmentation, model fine-tuning, and evaluation being the standard first steps.
This process is summarized in Figure 2.
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Figure 2. The standard steps required to build automatic polyp detection models. Samples in this
illustration are taken from Kvasir-SEG.

This article surveys the most recent trends and techniques for building automatic
polyp detection models. The article covers various aspects, such as the existing public
datasets available for training and testing, commonly reported challenges in the literature
and the preferred deep learning architectures to build polyp detection models. Furthermore,
we discuss and analyze the findings of the surveyed literature, and based on the analysis,
we provide recommendations for future research.
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The remainder of this paper is structured as follows: Section 2 presents our survey
strategy and the criteria that make an article suitable for inclusion in our survey, Section 3
summarizes our contribution, Section 4 presents the challenges, Section 5 presents the
datasets, Section 6 describes the standard architectures, Section 7 presents the performance
metrics, Section 8 is a review of recently proposed work, Section 9 presents the discussion
and analysis, and finally Section 10 concludes the paper.

2. Survey Strategy

This survey focuses on the most recent methods and trends for detecting polyps using
machine learning techniques. A total of 20 recently published articles were reviewed in
this paper, and they were selected based on several conditions. First, we ensure that the
reviewed article is relevant to the task of polyp detection by assessing the introduction,
problem statement, proposed method and the reported result. Second, we look into the
proposed method’s novelty and uniqueness and how it attempts to bridge some of the
existing gaps. The third criterion we consider is the publication date, as we mainly focus on
presenting the most current methods. Next, we look into the impact of the reviewed article
based on the number of citations and mentions. In addition to the reviewed articles, our
presentation of the challenges and common architectures is also based on an examination
of the existing literature. During the literature analysis, we were interested in discovering
the limitations that authors have reported in their work, which have been presented as
existing challenges in this survey. Moreover, the polyp detection architectures reviewed in
this survey are based on how frequently a specific design is mentioned in the reviewed work.

The articles were collected from journals from various databases, namely Google Scholar,
ScienceDirect, the National Institute of Health (NIH) database, Nature, and SpringerLink.

Some of the primary keywords used to search for relevant articles were “colorectal
polyp detection”, “colorectal polyp segmentation”, and “colorectal polyp classification”.
As for the datasets reviewed in this survey, we analyze the reviewed articles, and a list of
standard datasets is made based on how many times a specific dataset is mentioned.

3. Contributions

Our contribution to the body of literature can be summarized in the following points:

1. We present a review of several recently proposed colorectal polyp detection methods.
2. We review and analyze the various architectures available to build colorectal

polyp detectors.
3. Based on the current work, we present several common challenges researchers face

when building colorectal polyp detection algorithms.
4. We present an analysis of the existing benchmark colorectal polyps datasets.
5. We analyze the findings in the reviewed literature and investigate the current gaps

and trends.

4. Common Challenges

Building a colorectal polyp detection model to work on media fed from colonoscopies
comes with several obstacles and challenges. Those challenges can be classified into
intrinsic issues, i.e., limited to the detection model, and extrinsic issues, i.e., caused by
other external factors. Some examples of intrinsic issues include the demand for high
computational power to detect as many polyps as possible and overfitting caused by data
disparity. In contrast, extrinsic issues include poor bowel preparation and reflection caused
by the light emitted from the colonoscopy, which could confuse the model. In this section,
we discuss some of the common challenges based on the current work of literature.

4.1. Data Disparity

The lack of enough diverse samples is a significant issue in most deep-learning appli-
cations. As polyps come in different shapes and sizes, the lack of enough diverse samples
to cover most of the possible variations is a significant issue, as reported in [8,9]. This issue
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can be considered external as it is linked to the quality of the training samples. Although
this issue can be addressed through various augmentation techniques or the introduction
of artificially generated samples, misidentifying flat, depressed polyps still occur due to
the lack of samples.

4.2. Poor Bowel Preparation

Proper bowel preparation is an essential preliminary step that, if done incorrectly,
can increase misidentifications, as the model might identify non-polyp objects such as
feces or normal blood vessels as polyps. Studies like [10,11] have reported that their
methods misidentified polyp-like objects as being polyps, accounting for most of the
detected false positives. Poor bowel preparation is an external factor that depends on the
physician’s experience and the preparation process rather than fine-tuning the model or
the introduction of new samples.

4.3. High Demand for Computational Resources

When working with live colonoscopy video streams, the efficiency of a model is
a priority. However, optimizing the detection speed of a model usually means a drop
in performance and an increase in inaccurate predictions. In [8,12], although promising
performances were reported, the authors admitted that their proposed method demands
sophisticated, high-end computational resources. The design of a model and the way it works
is an internal problem that can be solved by bridging the gap between performance and speed.

4.4. Colonoscopy Light Reflection

As colonoscopies are equipped with light to ease navigation during the procedure,
the reflection caused by the light source can affect the model performance during the
detection phase. The reflection of white light can either hide the polyps or create a polyp-
like anomaly in the colon. The researchers in [9,10] reported poor performance due to white
light reflection. This issue is considered external, and can be solved through methods like
the one introduced in [13].

4.5. Colonoscopy Viewpoints

The viewpoint of a colonoscopy refers to the field of vision of the camera attached to
the colonoscope. In some cases, polyps may exist on the edges of a video frame, making
them hard to detect even with the naked eye. In studies like [13,14], the researchers reported
that one of the main challenges they faced was misidentifying actual polyps as non-polyp
regions because the lesions were near the boundary of the video frame. Since this issue is
related to the field of vision of the equipment itself, it can be classified as an external factor.

4.6. Pre-Training on Samples from an Irrelevant Domain

Transfer learning is considered the go-to solution in most deep-learning applications.
The preference for using pre-trained models derives from the fact that such models are
initially trained to handle much more complicated tasks, and the model’s hyperparameters
are tweaked to solve a much simpler problem. In most of the existing polyp detection
methods, transfer learning has been the preferred method for solving the problem; however,
the original domain in which a model is pre-trained is primarily irrelevant to colorectal
polyp detection. This discrepancy between colonoscopy images and the pre-training
domain has resulted in poor performance, as reported in [15,16].

5. Benchmark Datasets

Any computer vision problem requires a high-quality, diverse training dataset. The
types of data available for colorectal polyp detectors include both live videos and static
photos extracted from live video streams. This section analyzes the standard datasets used
to build polyp detection models. In Table 2, a summary of all the datasets is presented and
in Figure 3 a diagram describing the total number of samples for each dataset is illustrated.
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Table 2. A summary of the existing benchmark colonoscopy datasets.

Name Number of Samples Resolution Media Type

Kvasir-SEG 1000 Between 332 × 487 and 1920 × 1072 Static images
ETIS-Larib 196 1225 × 996 Static images
CVC-ClinicDB 612 384 × 288 Static images
CVC-PolypHD 56 1920 × 1080 Static images
CVC-ColonDB 300 574 × 500 Static images
EndoTect 110,709 images + 373 videos - Static images/videos
BKAI-IGH NeoPolyp-Small 1200 - Static images
NeoPolyp 7500 - Static images
PolypGen 8037 - Static images

EndoScene 912 384 × 288 (CVC-ClinicDB)
574 × 500 (CVC-ColonDB) Static images

SUN 49,136 - Video
EndoTest 48 - Video
ASU-Mayo clinic colonoscopy 38 - Video
Colonoscopic Dataset 76 768 × 576 Video
CVC-ClinicVideoDB 18 768 × 576 Video

Sensors 2023, 23, x FOR PEER REVIEW 8 of 25 
 

 

5.15. CVC-ClinicVideoDB 

CVC-ClinicVideoDB was first introduced in 2017 by [35], and it is a video dataset that 

consists of 18 video sequences with a size of 768 × 576. Each video sample is accompanied 

by a polyp location mask which identifies the location of a polyp in a video. The videos 

cover a variety of properties, including different sizes, shapes, and variations of polyps. 

Table 2. A summary of the existing benchmark colonoscopy datasets. 

Name Number of Samples Resolution Media Type 

Kvasir-SEG 1000 Between 332 × 487 and 1920 × 1072 Static images 

ETIS-Larib 196 1225 × 996 Static images 

CVC-ClinicDB 612 384 × 288 Static images 

CVC-PolypHD 56 1920 × 1080 Static images 

CVC-ColonDB 300 574 × 500 Static images 

EndoTect 110,709 images + 373 videos - Static images/videos 

BKAI-IGH NeoPolyp-Small 1200 - Static images 

NeoPolyp 7500 - Static images 

PolypGen 8037 - Static images 

EndoScene 912 
384 × 288 (CVC-ClinicDB) 

574 × 500 (CVC-ColonDB) 
Static images 

SUN 49,136 - Video 

EndoTest 48 - Video 

ASU-Mayo clinic colonoscopy 38 - Video 

Colonoscopic Dataset 76 768 × 576 Video 

CVC-ClinicVideoDB 18 768 × 576 Video 

 

Figure 3. Total number of samples in every dataset. 

6. Common Architectures 

Building an automated polyp detection model depends primarily on the main objec-

tive of the model. In some instances, multiple architectures are combined to perform a 

Figure 3. Total number of samples in every dataset.

5.1. Kvasir-SEG

The Kvasir-SEG dataset was introduced in 2020 by [17]. The Kvasir-SEG dataset
consists of 1000 polyp images with their corresponding masks. The dataset samples were
taken in unfiltered, real-life settings where the polyps were captured from different angles,
and the samples are of different resolutions ranging between 332× 487 to 1920× 1072 pixels.

5.2. ETIS-Larib

ETIS-Larib was introduced in 2014 by [18], comprising 196 samples. Unlike Kvasir-
SEG, the resolution of the samples in the ETIS-Larib dataset is fixed at 1225 × 996 pixels.
The samples are all captured in unfiltered settings, and several images are blurry. The
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dataset is mainly used for testing due to the limited number of samples; however, some
studies, such as [19,20], have used the ETIS-Larib dataset for training.

5.3. CVC-ClinicDB

CVC-ClinicDB was introduced by [21] in 2015, and is one of the most frequently used
datasets. The dataset consists of 612 polyp static frames extracted from 31 colonoscopy
sequences. The resolution of all the images is fixed at 384× 288 pixels. The dataset has been
widely used to test several segmentation methods, including the infamous U-NET [22].

5.4. CVC-ColonDB

CVC-ColonDB is another frequently used dataset introduced by [23] in 2012. There
are 300 static samples in this dataset, and each image has a size of 574 × 500 pixels. The
dataset was constructed based on 15 short colonoscopy video frames. The samples in this
dataset are unique in terms of the polyps’ sizes, variations and types.

5.5. CVC-PolypHD

Introduced by [24] in 2017, CVC-PolypHD contains 56 high-resolution static samples,
each sized at 1920 × 1080 pixels. Each sample is accompanied by a ground truth annotation
mask that locates the position of the polyp. This dataset is not used for training as frequently
as CVC-ColonDB, CVC-ClinciDB and Kvasir-SEG.

5.6. EndoTect

EndoTect was introduced as part of a challenge during the 25th International Confer-
ence on Pattern Recognition [25]. The dataset is relatively large, containing 110,079 static
images and 373 videos of various resolutions. Out of the 110,079 images, 10,662 are labeled
with the polyp classes, 99,417 images are not labeled, and 1000 samples are provided with their
respective masks. The videos provided in this dataset amount to about 11.26 h and 1.1 million
video frames.

5.7. BKAI-IGH NeoPolyp-Small

This dataset was proposed by [26] in 2022, and it is relatively medium in terms of
size, with about 1200 static images. The dataset is already segregated, with 1000 samples
detected for training and the remaining 200 samples for testing. The samples in this dataset
are divided by class into neo-plastic and non-neoplastic, making it a suitable dataset for
classification problems.

5.8. NeoPolyp

Neopolyp was introduced by [27] in 2020, and is an extension of BKAI-IGH NeoPolyp-
Small. The dataset consists of 7500 labeled polyp images with fire-grained annotations. The
images are of various resolutions and polyp sizes and shapes.

5.9. PolypGen

PolypGen [28–30] is a dataset used for segmentation and classification. Introduced in
2021, PolypGen was introduced as part of the 3rd International workshop and challenge on
Endoscopic Computer Vision. The dataset consists of 8037 samples with 3762 positive samples
(with polyps) and 4275 negative samples (without polyps). The samples are diverse in terms
of resolution and quality.

5.10. EndoScene

EndoScene was introduced by [24] in 2017, and it is a result of merging two datasets,
CVC-ColonDB and CVC-ClinicDB. The dataset consists of 912 samples, 300 from CVC-
ColonDB and 612 from CVC-ClinicDB. The samples share the same characteristics as
CVC-ColonDB and CVC-ClinicDB.
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5.11. S.U.N. Colonoscopy Video Database

The Showa University and Nagoya University Database (SUN) was introduced by [31]
in 2020. The dataset consists of 49,136 samples of 100 different polyps. In addition, the
dataset contains 109,554 frames of non-polyp areas from live stream videos. The 100 polyps
consist of the following: 82 Low-grade adenomas, seven Hyperplastic polyps, four Sessile
serrated lesions, four High-grade adenomas, two traditional serrated adenomas and one
invasive carcinoma. The polyps are of different shapes and sizes. The resolutions of the
samples are diverse.

5.12. EndoTest

EndoTest was introduced by [32] in 2022, comprising two subsets. The first subset
consists of 48 short videos with 22,856 manually annotated areas with polyps presence.
Of the 22,856 samples, approximately 12,160 are positive, while the remaining 10,696 are
negative. The second subset contains ten full-length colonoscopy videos with 230,898 annotated
frames. Of the 230,989 frames, about 15% are positive samples, while the remaining are
negative samples. The dataset is diverse in resolution and image quality.

5.13. ASU-Mayo Clinic Colonoscopy

ASU-Mayo Clinic is a video dataset introduced in 2017, and it is commonly used to
build and test real-time polyp detection systems [33]. The dataset is divided into 38 video
sequences and further segregated into 20 videos for training and 18 for testing. The training
videos come with ground-truth masks. The resolution of the videos is not stated in the
author’s work.

5.14. Colonoscopic Dataset

The colonoscopic dataset is another video dataset introduced in 2016 [34]. The dataset
comprises 76 short colonoscopy videos, each sized 768 × 576 pixels and is mainly used in
polyp classification problems. The polyps in this dataset are classified into three classes:
(1) Hyperplastic, (2) Adenoma and (3) Serrated.

5.15. CVC-ClinicVideoDB

CVC-ClinicVideoDB was first introduced in 2017 by [35], and it is a video dataset that
consists of 18 video sequences with a size of 768 × 576. Each video sample is accompanied
by a polyp location mask which identifies the location of a polyp in a video. The videos
cover a variety of properties, including different sizes, shapes, and variations of polyps.

6. Common Architectures

Building an automated polyp detection model depends primarily on the main objective
of the model. In some instances, multiple architectures are combined to perform a particular
task. For example, a model could be trained to detect and classify polyps; therefore,
combining segmentation and classification into one model could be the ideal solution. This
section presents the common architectures and designs available for carrying out polyp
segmentation, classification and detection.

6.1. Segmentation Methods

Segmentation algorithms are deep-learning models commonly used to match the
pixels of an image with a given class [36]. In colorectal polyp detection, segmentation
algorithms are commonly used to locate polyps using a pre-defined mask during the
training process.

6.1.1. U-NET

U-Net was introduced in 2015, and since then, it has been one of the preferred seg-
mentation networks in the medical imaging domain [22]. The network has an encoder,
decoder and residual connections, and it consists of 23 convolutional layers, with each
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layer activated using the rectified linear unit (ReLU) function. U-NET has been used in
relevant colorectal polyp detection studies [37,38].

6.1.2. SegNet

SegNet is a semantic segmentation network that follows the encoder–decoder design
and was introduced in 2015 [39]. Unlike U-Net, SegNet does not have a series of residual
connections; however, it follows the encoder–decoder design and a pixel-wise classification
layer. The encoder consists of 13 convolutional layers identical to the VGG16 design [40],
and it downsamples the input image. The decoder consists of 13 convolutional layers;
however, the pooling layers are replaced by upsampling layers to upsample the input
image. Studies such as [41] have utilized SegNet to segment colonoscopy images.

6.1.3. Fully Convolutional Networks (FCN)

The fully convolutional network (FCN) is a segmentation network that comprises
convolutional layers only [42]. According to the authors, FCN is flexible, since it does not
require a specific input size, and the training speed is much faster because there are no
dense layers in the network. The network has a downsampling path, upsampling path and
several skip connections to recover any lost information during the downsampling process.
In [43,44], the authors used FCNs to detect colorectal polyps during colonoscopy.

6.1.4. Pyramid Scene Parsing Network (PSPNet)

Pyramid Scene Parsing Network (PSPNet) was introduced in 2017 by [45]. The core
concept behind the network’s design is that it uses a pyramid parsing module that produces
more accurate global context information using different-region context aggregation. PSNet
depends on a pre-trained convolutional neural network and dilated convolution to obtain
a feature map. PSPNet usage in colorectal polyp detection is not as common as SegNet and
U-Net; however, a recent study by [46] used the network and presented a comparison of its
performance with F.C.N., SegNet and U-Net.

6.2. Object Detection Methods

Object detection algorithms such as YOLO and R-CNN networks are commonly used
to detect specific objects of interest from medical images, including colorectal polyps. A
typical object detection algorithm would draw a bounding box around a detected object in
a given scene [47].

6.2.1. Region-Based Convolutional Neural Networks (RCNN)

Region-based CNN is an object detection algorithm introduced in 2014 by [48]. R-
CNN uses high-capacity convolutional neural networks to localize objects of interest and
independently extracts features from each region of interest for further processing. Several
studies, such as [49–51], have proven that RCNN-based polyp detectors can effectively
locate polyps of different shapes and sizes.

6.2.2. Faster Region-Based Convolutional Neural Networks (Faster R-CNN)

A faster version of RCNN was introduced by [52] in 2015, known as Faster R-CNN.
This algorithm is similar to the original RCNN; however, it uses a region proposal network
(RPN) that shares all the convolutional features with the detection network, making it
an appropriate solution for real-time detection. Fast R-CNN was used to build several
real-time polyp detection models, such as [53–55].

6.2.3. Single-Shot Detector (SSD)

Single-shot detector (SSD) was introduced in 2016 by [56], and it depends on a single
deep neural network to detect an object. The SSD model discretizes the output space of
bounding boxes into several boxes with different aspect ratios. After the bounding boxes
are discretized, the network scales per feature map location. The location of an object of
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interest is predicted using several feature maps with different resolutions. SSD detectors
were used in recently proposed colorectal polyp detection methods such as [57,58].

6.2.4. You Only Look Once (YOLO)

The first version of You Only Look Once (YOLO) was introduced in 2016 by [59], and
it is one of the more popular object detection algorithms. The original algorithm, YOLOv1,
treats detection as a regression problem in which a single neural network predicts bounding
boxes and class probabilities from an entire image in one iteration. The YOLO architecture
has been the preferred go-to solution for real-time detection tasks, as it can process 45 frames
per second. Over the years, the YOLO algorithm has been modified, and better versions
such as YOLOv2, YOLOv3, YOLOv4 and YOLOv5 have been introduced. The current
work [60–63] shows that the YOLO algorithm has been used more frequently than other
detection algorithms.

6.3. Pre-Trained Convolutional Neural Network Models

A pre-trained network is a model trained on a much larger dataset to solve a complex
problem and then fine-tuned to work on a more straightforward task. This process of using
existing knowledge to solve another problem is known as transfer learning. Several polyp
classification methods have utilized pre-trained models as it is much faster to fine-tune and
more accurate than classification methods built from scratch [64–66].

6.3.1. VGG16

The VGG16 network was introduced by [40], and it is a standard network used in
many computer vision tasks, including colorectal polyp classification. The network consists
of 16 convolutional layers and takes an input size of 224 × 224 pixels. The network was
trained on a large dataset known as ImageNet, a collection of 14 million images belonging
to 22,000 classes [67]. The methods proposed in both [68,69] used the VGG16 model to
extract polyp features from colonoscopy images.

6.3.2. VGG19

VGG19 is identical to the VGG16 network except for the number of layers and model
size. VGG19 has 19 convolutional layers and accepts an input size of 224 × 224, similar to
VGG16. The VGG19 was trained on the ImageNet dataset as well. The authors in [70,71]
used VGG19 as the backbone feature extraction network to automatically classify polyp images.

6.3.3. ResNet50

ResNet50 is another pre-trained network used widely in various computer vision tasks,
requiring an input size of 227× 227 pixels [72]. ResNet50 is 50 layers deep with 48 convolutional
layers, one max-pooling layer, and a single average-pooling layer. ResNet50 implements
skip connections to allow information to flow directly without passing through an activation
function. ResNet50 was trained on the ImageNet dataset and can classify 1000 categories.
ResNet50 was the backbone network to detect and segment colorectal polyps in studies
such as [73,74].

6.3.4. Xception

Xception consists of 71 depthwise-separable convolutional layers [75]. The network
takes an input size of 299 × 299 pixels and was trained on ImageNet. Xception is not used
as frequently as the VGG networks or ResNet; however, [76] attempted to analyze the
classification performance of the Xception model with the Swish activation function on
colorectal polyps.

6.3.5. AlexNet

AlexNet is designed as a typical convolutional neural network with pooling and dense
layers [77]. AlexNet is only eight layers deep and takes an input size of 227 × 227, and it
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was trained on the ImageNet dataset to classify 1000 different objects. Although AlexNet
is not the most common go-to network for classifying polyps, several recent studies have
reported that AlexNet was the best-performing classification model [78–80].

6.3.6. GoogLeNet

GoogLeNet is a convolutional neural network with 22 layers [81]. The network takes
images of size 224 × 224 by default. Similarly to the other network covered in this section,
it was trained on the ImageNet dataset to classify more than 1000 images. GoogLeNet
was used to identify and localize polyps in [82–84], but it consistently underperformed
when used as a standalone network. Therefore, GoogLeNet is mainly used as part of
ensemble-based architectures.

7. Performance Evaluation

Evaluating the performance of any deep learning application is a critical step, as it
provides an image of how generalized a model is. For automated colorectal polyp detectors,
various metrics can be used to evaluate a model’s performance. The available metrics
are used in specific scenarios, depending on whether the task involves segmentation,
localization or classification.

7.1. Classification and Localization Metrics

The most common combination of metrics used to evaluate automatic polyp detectors
and classifiers is the precision, recall and F1 scores. Precision is used to calculate the number
of correctly predicted outputs over the total number of correct and incorrect predictions,
and it can be represented as follows:

Precision =
TP

TP + FP
(1)

TP is the number of true positives, and FP represents the number of false positives.
The recall metric is another measurement used to assess the model’s ability to correctly
detect positive samples. The recall formula is defined as follows:

Recall =
TP

TP + FN
(2)

In the equation above, TP remains the number of true positives, and FN is the num-
ber of false negatives. When both precision and recall formulae are combined, the F1
measurement can be obtained using the following formula:

F1 = 2
Precision × Recall
Precision + Recall

(3)

The main objective when using the abovementioned formulae is to achieve a value that
is either 1 or close to 1, which indicates that the model performs well. The three formulae
are usually used to evaluate how well a model can classify or detect polyps in a given image.

Another standard set of metrics among researchers is sensitivity and specificity mea-
sures. Sensitivity simply measures how well a model can detect positive instances. In
contrast, specificity measures how well a model can identify true negatives. Both measure-
ments can be represented as follows:

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)
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Accuracy is another metric used to evaluate polyp detection methods; however, it is
unreliable when the dataset is unbalanced; therefore, researchers prefer using the F1 score
to assess performance. Accuracy is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. A preferable metric that
can be used to assess polyp detection models built using YOLO, RCNN and Fast-RCNN
architectures is mean average precision (mAP). Mean average precision is a better metric
for evaluating object detection algorithms, as it uses both recall and precision to assess a
model. The mAP metric can be represented using the following formula:

mAP =
1
n

k=n

∑
k=1

APk (7)

APk represents the average precision of class k, while n is the number of classes

7.2. Segmentation Metrics

The standard evaluation metric for polyp segmentation tasks is the Intersection-Over-
Union (IoU), also known as the Jaccard Index. The IoU formula is defined as follows:

IoU(A, B) =
|A ∩ B|
|A ∪ B| (8)

In Equation (8), |A ∩ B| is the area of overlap and |A ∪ B| is the area of union. An IoU
that is greater than or equal to 0.5 is considered acceptable.

8. Survey of Existing Work

This section presents a survey on recently proposed colorectal polyp detection methods.
The survey covers the details of each method, datasets, reported performance, and any
reported limitations.

In [8], the authors introduced a real-time polyp detection algorithm based on modified
YOLOv3 and YOLOv4 algorithms. The authors modified the YOLOv3 network by replacing
the original DarkNet53 with a CSPNet [85]. As for the YOLOv4 network, a modified CSPNet
denoted as CSPDarkNet53 was introduced as the new backbone of the YOLOv4 network.
In addition, another modification was made to the YOLO networks, in which SiLU replaced
all the ReLU activation functions. To overcome overfitting, the authors utilized various
augmentation methods such as rotation, flip, scale, and translate. The main objective of this
study was to improve the performance of both YOLO networks by modifying their core
structure. The proposed method was trained on the SUN and PICCOLO Widefield datasets
and scored a precision of 90.61, recall of 91.04 and F1 score of 90.82 on the Etis-Larib dataset.
Some of the main limitations reported in this study include an increase in misclassification
when the model encountered fecal matter and bubbles.

In another study, a saliency detection network was introduced to detect polyps from
static polyp images [13]. In their study, the authors used Neutrosophic theory to decrease
the effect of white light reflections caused by the colonoscopy light. The authors introduced
an image-suppressing technique to rebuild a colonoscopy image without the white light
reflection using a single-value Neutrosophic set (SVNS). The specular regions are then
recovered using a dynamic window that searches non-specular pixels near each specular
pixel. An 8 × 8 window is used with a specific size and rotated counter-clockwise until the
whole image is covered and all specular regions are recovered. The RGB pixels’ average
value is used to paint the specular pixels in the recovered image. The authors introduced a
saliency network known as NeutSS-PLS, inspired by the design of U-Net and DSS, for the
detection and segmentation part. The introduced network had two-level short connections
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on both sides of the VGG. The training was conducted on the EndoScene and Kvasir-SEG
datasets, and precision and F1 scores of 92.30 and 92.40 were reported, respectively. The
proposed method struggled to identify polyps near the boundary of colonoscopy images.

In [10], an automatic polyp detection and segmentation system was introduced. The
proposed method is called shuffle-efficient channel attention network (sECA-NET), and it
segments colonoscopy images to detect polyps. At first, a CNN is applied to extract the
feature map from an input image and a region proposal network (RPN), which predicts
bounding boxes around polyps in the feature map, is developed. A region of interest align
(RoiAlign) is applied to extract features from the feature map based on the bounding box
of each detected object. Two parallel branches then compute the extracted features for
every ROI. In the first branch, the features are computed by the fully connected layers,
followed by softmax activation, and then a bounding box regression is performed. The
second branch concerns mask segmentation, which predicts the category of each pixel in
the region of interest. The proposed method was trained on the CVC-ClinicDB, ETIS-Larib
and Kvasir-SEG. A private cross-validation dataset was used to evaluate the proposed idea.
The authors reported a precision score of 94.9%, a recall score of 96.9% and an F1 score of 95.9%.

A dual-path CNN architecture was proposed in a different study by [9]. The proposed
model takes an input colonoscopy image and produces a label corresponding to one of
two classes: polyp and non-polyp. The first step of this method is image enhancement, in
which the images are transformed into HSV color space. The V value in the HSV space
is extracted using a multiscale Gaussian function; then, gamma correction is executed to
correct the image’s brightness. After conversion, image fusion is conducted, in which the
HSV image is converted back to RGB. Next, a custom, dual-path CNN that is eight layers
deep extracts features from the processed image; then, the features are fed to a sigmoid
layer, and mapped onto polyp and non-polyp. The training of this network was done
on the CVC-ClinicDB, while testing was conducted on the CVC-ColonDB and ETIS-Larib
datasets. The model performed best on CVC-ColonDB, with a precision of 100%, recall of
99.20% and F1 score of 99.60%. The main limitation observed with this method is that the
model assumes the location of the polyp manually, which is impractical when working
with real-life samples.

Inspired by U-NET, the authors of [14] introduced Y-Net to detect polyps in colonoscopy
images. The proposed Y-Net consists of two encoders and a single decoder, and it can
be trained on a limited number of samples. Both encoders follow the VGG19 design,
while the decoder is a custom-built CNN with five deconvolutional blocks and one final
convolution block. The first encoder is initialized on the ImageNet weights, the second
encoder is initialized using the Xavier normal initializer, and both use the SELU activation
function instead of ReLU. Y-Net was trained and tested on the ASU-Mayo dataset without
a cross-validation dataset. The authors reported a precision of 87.4, recall of 84.4% and
F1 scores of 85.9%. The authors reported that this method did not work well with reflections,
polyp-shaped objects, and flat lesions.

The authors in [58] proposed a deep learning-based method to detect and classify
polyps from colonoscopy images. The proposed method utilizes the single-shot detector
algorithm (SSD) to locate a polyp in a given image. At first, the images are manually
annotated by specialists in which a bounding box is drawn around each polyp, and this
bounding box is used to train the proposed model algorithm. After annotation, the images
are pre-processed using dynamic histogram equalization to enhance the quality of the input
image. The authors used a dataset provided by the University of Leeds, and an accuracy of
92% was reported. This method was not evaluated against any available datasets.

A method that utilizes ensemble learning was proposed in [83], in which three models
were used together to classify whether a polyp exists in a given image. The authors in this
method stacked three pre-trained classifiers: (1) ResNet101, (2) GoogLeNet, and (3) Xception.
The proposed model attempts to first classify whether a polyp exists in an image; the
model then classifies the polyp again to check whether the detected lesion is malignant or
benign. The three models extract features independently then a weighted majority voting
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representing whether a polyp exists and whether it is malignant or benign is produced.
The training and testing were performed using a private collection of colonoscopy images
and the Kvasir-SEG datasets. The authors reported precision and recall scores of 98.6 and
98.01, respectively, for the polyp detection task. In addition, precision and recall of 98.66
and 96.73 were reported for the malignant/benign classification task.

In a different approach, researchers in [11] used a no-code, deep-learning platform to
predict colorectal polyps from colonoscopy images. The authors used a platform known as
Neuro-T, as it had the most user-friendly GUI and it produced the best performance scores.
The authors fed the system with white light colonoscopy images that were manually labeled
with ground-truth labels according to a pathological evaluation. The authors acquired a
different colonoscopy dataset to evaluate the proposed method. The authors reported a
precision of 78.5, a recall of 78.8 and an F1 score of 78.6. One of the main limitations reported
in this paper is that the system consistently misclassified normal blood vessels as polyps.

In [86], the authors attempt to combine the SWIN [87] transformer and EfficientNet [88]
to segment and detect polyps from colonoscopy images. The proposed method combines
architectures to capture all the critical global information through the SWIN transformer
and all the local features using the EfficientNet. The proposed method has a multi-dilation
convolutional block to refine all the local features extracted by EfficientNet and the SWIN
transformer separately. In addition, a multi-feature aggregation block is added to aggregate
both the global and local features. Once the features are refined and aggregated, an attentive
block receives the features, and a polyp mask is built. The proposed method was trained on
the Kvasir-SEG and CVC-ClinicDB datasets and tested on the CVC-ColonDB, ETIS-Larib
and Endoscene datasets. During the evaluation stage, the authors reported a mean dice
coefficient of 0.906, an IoU of 0.842, a mean weighted F-measure of 0.88, mean absolute
error of 0.001.

In [89], the authors introduced a deep learning-based method to detect colorectal
polyps from colonoscopy images. The proposed method can identify high-risk regions
and classify polyps in a given region using a traditional machine-learning algorithm. For
polyp detection, the authors use the Faster-RCNN network combined with a ResNet101 to
extract the features of the detected polyp. A gradient-boosted decision tree classifier takes
the output of Faster-RCNN and predicts whether a given region is high or low risk. The
authors used a dataset provided by Singapore General Hospital; no cross-validation on a
different dataset was mentioned in this work. The authors reported a sensitivity of 97.4%,
specificity of 60.3%, AUC of 91.7% and F1 score of 97.4%.

In a study by [90], the authors introduced a deep learning method to differentiate
premalignant and benign polyps apart from 3D colonoscopy images. The authors intro-
duced two handcrafted convolutional neural networks called SEG and noSEG. The SEG
and NoSeg networks consist of 50 3D convolutional layers, and both are stacked, forming
an ensemble-based model. Both SEG and NoSEG are trained differently. On the one hand,
the SEG network is trained on colonoscopy images with a mask to detect the location of polyps.

On the other hand, the NoSEG network was trained on 3D CT colonography images
without masks. Both networks were trained separately to predict the class of a polyp (i.e.,
premalignant or benign). The output of both SEG and noSEG are concatenated, and a
final class output is produced. The training dataset consisted of several privately collected
images of adults undergoing colonography and cross-validated on a public dataset from
the Cancer Imaging Archive (TCIA). The authors used the area under the ROC curve (AUC)
and reported a score of 83.0 for the SEG network and 75.0 for the NoSEG network.

In [91], the authors introduced a polyp characterization deep learning algorithm and
embedded it into a GI Genius V2 endoscopy [92]. The classification module of the proposed
system consists of two pre-trained ResNet18 networks. The first network is responsible
for classifying each frame as adenoma or non-adenoma. The second network produces a
polyp descriptor for every detected polyp in a frame. The authors used a privately collected
dataset of unfiltered colonoscopy videos for training. The same dataset was used to test the
system, and an accuracy of 84.8% was reported. In addition, the authors reported a sensitivity
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score of 80.7% and a specificity score of 87.3%. The main limitation observed by the authors is
that the model cannot classify other polyps that are neither adenoma nor non-adenoma.

A method that utilizes two pre-trained models, namely VGG16 and MobileNet, to
detect polyps from colonoscopy images was presented by [93]. The authors pre-process the
input images by removing the black regions in colonoscopy images, as those regions do not
contain any useful information. The second pre-processing step is normalizing the RGB
values to match the RGB mean of samples in the ImageNet dataset. The last pre-processing
step is resizing all the input images to a constant size of 224 × 224 pixels. The images are
then processed using the multi-resolution sliding window, which locates a polyp in the
image. Once a polyp has been detected, the region is cropped and fed to a probability
prediction function which outputs whether a polyp exists. The authors used the Kvasir-SEG
dataset for training and CVC-ClinicDB and ETIS-Larib datasets for cross-validation. The
precision, recall and F1 scores on the CVC-ClinciDB were 91.9, 89.0 and 0.90, respectively.
When the model was tested on the ETIS-Larib dataset, a precision of 87.0, recall of 91.0 and
an F1 score of 89.0 were reported.

In [16], the authors pre-trained a YOLOv3 network to detect polyps in real time. The
YOLOv3 was initially pre-trained on the PASCAL VOC dataset, but later fine-tuned on
28,576 colonoscopy images. After pre-training, the authors replaced all the classes in the
YOLOv3 network with one class to detect polyps, but the weights of the aeroplanes class
from the PASCAL VOC dataset were reused, as they provided the best performance. Once
a polyp is detected, a candidate bounding box (CBB) is integrated into the network, and it
is used to filter out the network output. The CBB algorithm runs on every frame, and a
threshold is set using the average of the max IoU value of the previous frame. The training
dataset is private and filtered by removing all blurry images from the training and testing
sets. The authors reported a precision of 89.0, recall of 87.0 and F1 score of 88.0. The authors
reported that the model failed to detect flat polyps due to insufficient samples.

In [94], the authors resorted to using a classic machine learning algorithm, random
forest, to detect premalignant colorectal polyps. The proposed method begins by first
manually labeling the samples. At this stage, experienced colonoscopists label the samples
by drawing a bounding box around a polyp, and samples with polyps that were hard to
identify are excluded. The training samples are then pre-processed using an open-source
Python package called Pyradiomics. The package extracts the gray-level histogram stats and
image texture from the segmented photos using 22 image filters which are then used as training
features. The features are fed to a random forest algorithm, and a prediction of whether a
polyp is premalignant is made. Training and testing were performed using a privately collected
dataset, and AUC, sensitivity and specificity scores of 91.0, 82.0 and 85.0 were reported.

Yolov5m was combined with the SWIN transformer in a study conducted by [95] to
detect polyps from real-time colonoscopy videos. The authors used the YOLOv5m back-
bone to extract features from a single frame and combine the extracted information with the
features extracted by the SWIN transformer. The authors found that combining the SWIN
transformer with a local feature extraction network improves the overall performance, since
each network can extract all the critical information in different spaces. The combination of
the transformer and YOLOv5m network is achieved by replacing the bottleneck module of
the YOLO network with the SWIN transformer. A temporal information fusion module is
introduced to minimize the effect of white light reflection in each frame. The authors used
the CVC-Clinic, ETIS-Larib and CVC-ClinicVideo datasets to train and test the proposed
method. The model performs best when tested on the CVC-ClinicVideo, scoring a precision
of 83.6, recall of 73.1 and F1 of 78.0.

An automatic polyp segmentation system was presented in [96]. The proposed method
uses the SegNet architecture to segment colonoscopy images. Before training, samples are
first pre-processed using a pre-defined threshold in which every image pixel is set to 50 and
15 for every red and green channel. The authors use this threshold to filter out all pixels
with values below the pre-defined threshold, removing all black and non-polyp regions.
The images are then fed to a SegNet model, and a polyp is localized through segmentation.
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The authors used CVC-Clinic, CVC-Colon and ETIS-Larib datasets to train and test the
proposed model, achieving an IoU of 81.7%.

A YOLOv4-based method to detect polyps in real time was proposed in [97]. The
authors pre-trained the YOLOv4 network on the ImageNet dataset, which was further
improved by using the TensorRT tool to extract better performance from GPUs. The samples
were resized and then augmented before feeding them to the YOLOv4 network for further
processing. The authors used the Kvasir-SEG, CVC-Clinic, CVC-Colon and ETIS-Larib to
train and test the proposed method. The evaluation on the ETIS-Larib produced the best
performance, with a precision score of 80.53, recall of 73.56 and F1 of 76.88.

In [98], the authors introduced a plug-in module that could be integrated with any
object detection algorithm. The proposed module was named instance tracking head (ITH).
ITH introduces a feature-based mechanism to any detection framework to achieve a multi-
task training objective. The ITH and the head of any detection algorithm share the same
backbone to extract local features, which are then used for model training. The proposed
plug-in was tested with the YOLOv4 algorithm, and the training dataset combined CVC-
ClinicDB and CVC-VideoClinicDB. For evaluation, the authors used the ETIS-Larib dataset
and reported a precision of 92.60, recall of 80.70, and F1 of 86.24.

The authors in [12] introduced a polyp detection method combining 2D and 3D
convolutional layers to segment colonoscopy images. The proposed method segments
colonoscopy images using a mixture of 2D and 3D backbones. The 2D convolutional layers
extract all of the spatial representation, and it was pre-trained on colonoscopy images. In
contrast, the 3D backbone was pre-trained on colonoscopy videos, and is used to provide
a third temporal dimension. The 2D network is a pre-trained ResNet101 without dense
layers. At first, the features are extracted using the 2D network; then, the 3D network
generates a temporally coherent segmentation mask. The 3D network consists of two
convolutional layers, followed by a dropout layer and a batch normalization layer. Finally,
an interpolation layer is added to upsample the image. The method was trained on a
private dataset and tested on both the SUN dataset and Kvasir-SEG. The scores presented
were 86.14 for sensitivity, 85.32 for specificity, 93.45 for precision, and 89.65 for F1.

9. Discussion and Recommendations

Based on the reviewed literature, we can conclude that there is a specific trend among
the proposed methods. First, the YOLO algorithm seems to be the most widely used
method for detecting polyps in static images and from live-stream colonoscopy videos.
YOLO’s popularity among researchers could be due to its ability to detect objects faster
than other detection algorithms, making it the best fit for real-time polyp detection tasks.
The second reason could be YOLO’s comparatively better Intersection over Union (IoU)
performance in bounding boxes.

Another observation we noticed is the increased interest in using vision transformers
as either a standalone network or a module integrated with another system. This trend
could be because transformers are efficient compared to typical CNNs, since they divide an
image into patches instead of processing the entire image pixel by pixel.

Transfer learning and pre-trained models seem to be the preferred methods of building
feature extraction models or backbone networks. Transfer learning is used more frequently
than CNN models built from scratch because pre-trained models are easier to fine-tune
and computationally efficient. In addition, pre-trained models have been trained on larger
datasets and complex tasks; therefore, one can benefit from the knowledge obtained during
the initial training phase.

Based on the readings in Table 3, we observe that the average precision, recall and
F1 scores are around 90.26, 86.51 and 88.38, respectively. However, studies like [11,16,98]
reported scores lower than the average. In [11,16], the authors used a privately constructed
dataset for training and testing that was made of samples taken in real-life scenarios
without pre-processing or adjustments. In addition, [90,95] were trained and tested on a
private dataset and reported the lowest specificity scores of 60.3 and 85.0, respectively. This
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observation indicates that even the most recent models and techniques cannot effectively
handle unseen, real-life samples. This theory can be further confirmed by comparing the
scores reported in [9,10]. The authors in both studies used CVC-ClinicDB as their training
dataset; however, the authors in [10] reported lower scores than [9], although more training
samples were used to train the model presented in [10].

Table 3. A summary of all the reviewed methods.

Method Precision Recall F1 IoU Accuracy Sens. Spec AUC Training Set Testing Set

[8] 90.61 91.04 90.82 - - - - - SUN,
PICCOLO Widefield ETIS -Larib

[13] 92.30 - 92.40 - - - - - EndoScene,
Kvasir-SEG

EndoScene,
Kvasir-SEG

[10] 94.9 96.9 95.9 - - - - -
CVC-ClinicDB,
ETIS-Larib,
Kvasir-SEG

Private dataset

[9] 100 99.20 99.60 - - - - - CVC-ClincDB CVC-ColonDB,
ETIS-Larib

[14] 87.4 84.4 85.9 - - - - - ASU-Mayo ASU-Mayo
[58] - - - - 92% - - - University of Leeds dataset University of Leeds dataset

[82] 98.6 98.01 - - - - - - Private dataset,
Kvasir-SEG

Private dataset,
Kvasir-SEG

[11] 78.5 78.8 78.6 - - - - - Private dataset Private dataset

[86] - - 88.0 84.2 - - - - Kvasir-SEG,
CVC-ClinicDB

CVC-ColonDB,
ETIS-Larib,
EndoScene

[89] - - 97.4 - - 97.4 60.3 91.7 Private dataset Private dataset
[90] - - - - - - - 83.0 Cancer Imaging Archive Cancer Imaging Archive
[91] - - - - 84.8% 80.7 87.3 - Private dataset Private dataset

[93] 91.9 89.0 90.0 - - - - - Kvasir-SEG CVC-ClinicDB,
ETIS-Larib

[16] 89.0 87.0 88.0 - - - - - Private dataset Private dataset
[94] - - - - - 82.0 85.0 91.0 Private dataset Private dataset

[95] 83.6 73.1 78.0 - - - - -
CVC-ClinicDB,
ETIS-Larib,
CVC-ClinicVideoDB

CVC-Clinic,
ETIS-Larib,
CVC-ClinicVideo

[96] - - - 81.7 - - - -
CVC-ClinicDB,
CVC-ColonDB,
ETIS-Larib

CVC-Clinic,
CVC-ColonDB,
ETIS-Larib

[97] 80.53 73.56 76.88 - - - - -
Kvasir-SEG,
CVC-ClinicDB,
CVC-ColonDB

Kvasir-SEG,
CVC-Clinic,
CVC-ColonDB

[98] 92.60 80.70 86.24 - - - - - CVC-ClinicDB,
CVC-VideoClinicDB ETIS-Larib

[12] 93.45 - 89.65 - - 86.14 85.32 - SUN,
Kvasir-SEG

SUN,
Kvasir-SEG

The best-performing models in terms of precision, recall and F1 scores are the ones
reported in [9,10,82]. The standard approach among the three methods is to utilize multiple
models or paths to extract features from a given image. For example, in [9], the authors
used a dual-path CNN to extract all the local and global features. Meanwhile, in [82], the
authors stacked several classifiers and used the weighted prediction as the final output
class. This pattern indicates that performance can be improved by combining feature
maps extracted using different architectures. The observed pattern can be confirmed when
examining the scores reported in [8,13], which are based on several models, versus the ones
reported in [11,97], which use single sources to extract the feature map.

We discovered several unaddressed gaps based on the literature reviewed in the
previous section. First, many studies have reported that the many variations and sizes
of polyps are one of the reasons models fail to effectively detect a polyp in a given photo
or video. Usually, flat polyps that are even hard to detect with the naked eye pose the
main challenge to some of the proposed models. To better visualize the challenge faced
by a convolutional neural network when working on images with flat polyps, we used a
pre-trained ResNet50 to extract the feature map from two samples; one has a flat polyp,
and the other contains an elevated polyp. The samples were randomly picked from the
Kvasir-SEG dataset; the results are presented in Figure 4.
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features extract from an image with an elevated polyp. Samples were taken from Kvasir-SEG dataset.

In Figure 4, it can be observed that ResNet50 was able to detect the edges and the
rounded shape of the polyp in addition to the white light reflection. In contrast, the
ResNet50 network could not detect any edges or shapes when a sample with a flat polyp
was provided; however, the edges of the white light reflection were extracted instead. To
the best of our knowledge, there has not been an adequately tested method to optimize the
extracted feature map so that flat polyps are identified, primarily from unseen samples.

The second gap is that most existing models struggle to differentiate white light
reflection, fecal matter and other polyp-shaped objects from actual polyps. Despite a few
studies introducing mechanisms to reduce the effect of white light reflection, such methods
could not reduce the false positives caused by other factors. This issue is a potential gap for
future research, since none of the methods were able to reduce the false positives caused by
polyp-like objects. This issue can be observed in the features extracted in Figure 4, in which
the edges of white light glare were detected and could mistakenly be identified as polyps.

Another common gap is the lack of sufficient samples to cover all the possible varia-
tions and types of polyps. The current publicly available datasets do not cover all the possi-
ble polyp variations with respect to size, shape and type. This issue is usually addressed by
combining several datasets for training; however, generative adversarial networks (GANs)
could augment existing samples or generate new ones.

In addition, some existing methods, like [94], discarded blurred samples that may rep-
resent real-life settings during training, causing the reported performance to be inaccurate,
since it was not tested on suboptimal samples.

Besides the dataset aspect, a significant limitation identified in the current work is the
gap between accuracy and optimization. Methods such as [10,12,86,89] have all produced
good performances; however, because each model is complex, high-end computational
resources would be a critical prerequisite for a model to run. In comparison, real-time
methods such as [8,11,16,91], which attempt to detect polyps in a real-time manner, yielded
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comparatively lower scores. An exciting research problem would be discovering ways to
optimize colorectal polyp detection models to work on low-power colonoscopies while
retaining good performance.

Colonoscopes come in various resolutions and framerates, and are frequently man-
ufactured differently, depending on the manufacturer’s engineering philosophy. To date,
comprehensive tests on different colonoscopes have yet to be conducted and reported in the
literature. It has been observed that the present work does not consider the specifications of
the colonoscope used to collect the samples, which is a significant limitation, as one cannot
confirm whether a specific model is scalable and able to work on images collected from
various sources.

In future work, it would be worth looking into using vision transformers to detect and
classify polyps. Additional fine-tuning of the parameters or the architecture of existing
transformers might be required to fit the task of polyp detection.

Another recommended architecture that would be worth looking into is generative
adversarial networks (GANs). GANs have evolved over the years, and impressive models
such as StyleGAN produce realistic-looking samples, while CGAN renders samples condi-
tionally available for the public to use. These architectures could be used to tackle the data
disparity issue, either by generating new samples or augmenting existing samples during
training. Aside from the technical recommendations, it is highly recommended to engage
professional physicians in the industry to verify whether such methods would help reduce
stress and fatigue among colonoscopists and radiologists.

10. Conclusions

Colorectal polyp detection using deep learning is an exciting area of research, given
the advancement in the healthcare sector and the increased interest in utilizing artificial
intelligence to improve efficiency and reduce the workload of physicians. However, most
existing methods do not perform well in real-life settings due to several common issues.
Those issues include data disparity, white light reflection from colonoscopy, demand for
high-end computational resources, and the different variations, sizes and shapes of polyps.
This article reviews the latest trends and methods to automatically detect colorectal polyps
from colonoscopy using deep learning techniques. Our review presents the benchmark
colonoscopy datasets, evaluation metrics, common challenges, and various approaches to
building colorectal polyp detectors. In addition, we analyze and discuss several recently
proposed methods by looking into their implementation, reported performance and limita-
tions. We conclude the study by discussing the trends, gaps and potential future directions
based on the analyzed literature.
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