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Abstract: This paper presents a high-precision positioning method using raw global navigation satel-
lite system (GNSS) observations from smartphones in the Google smartphone decimeter challenge
(GSDC). Compared to commercial GNSS receivers, smartphone GNSS observations are noisy owing
to antenna limitations, making it difficult to apply conventional high-precision positioning methods.
In addition, it is important to exclude outliers in GSDC because GSDC includes data in environments
where GNSS is shielded, such as tunnels and elevated structures. Therefore, this study proposes
a smartphone positioning method based on a two-step optimization method, using factor graph
optimization (FGO). Here, the velocity and position optimization process are separated and the
velocity is first estimated from Doppler observations. Then, the outliers of the velocity estimated
by FGO are excluded, while the missing velocity is interpolated. In the next position-optimization
step, the velocity estimated in the previous step is adopted as a loose state-to-state constraint and the
position is estimated using the time-differenced carrier phase (TDCP), which is more accurate than
Doppler, but less available. The final horizontal positioning accuracy was 1.229 m, which was the
first place, thus demonstrating the effectiveness of the proposed method.

Keywords: GPS; GNSS; smartphone; localization; time-differenced carrier phase

1. Introduction

High-precision positioning with smartphones has become important for various appli-
cations, such as pedestrian navigation, vehicle lane-level navigation, and the increasing
number of location-based games and virtual reality technologies. GNSS is conventionally
used for location estimation in outdoor environments and as a means of location estimation
in smartphones as it can estimate absolute positions on the Earth provided signals can be
received from a satellite. Although smartphones have long been equipped with GNSS,
users have only been able to access location information output using the GNSS receivers
of smartphones. In 2016, the Android operating system released an application program
interface to access raw GNSS measurement data from GNSS installed in smartphones [1].
Accordingly, raw GNSS data (pseudorange, pseudorange rate (Doppler), and accumulated
delta range (carrier phase)), could be acquired. This facilitated the development of position-
estimation algorithms for smartphones using raw GNSS measurements. Consequently,
high-precision positioning at the decimeter and centimeter levels on smartphones has
garnered significant attention [2–5].

However, there are several challenges associated with smartphone positioning com-
pared with positioning using commercial GNSS receivers [4,5]. The GNSS antennas of
smartphones exhibit lower performance than those of GNSS receivers for surveying and the
noise in GNSS observations is very significant. Consequently, the application of existing
high-precision positioning methods to smartphones, such as precise point positioning
(PPP) [6,7] and real-time kinematic (RTK) GNSS [8,9], is challenging. The usual positioning
accuracy of a smartphone is approximately 3–10 m, which results in significant challenges
for advanced navigation and other applications, such as sidewalk- and lane-level navigation
for pedestrians and vehicles.
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To address this challenge, in 2020, Google released a dataset with GNSS raw mea-
surements acquired by Android smartphones to develop positioning algorithms using
smartphones [10]. Furthermore, in 2021, Google launched the Google smartphone decime-
ter challenge (GSDC) to further accelerate the development of high-precision positioning
technology for smartphones [11]. In 2022, GSDC 2022 was held from 3 May to 30 July 2022,
using a new dataset based on the raw GNSS measurements of smartphones [12]. This paper
describes the winning solution at GSDC 2022.

2. Related Researches

Various high-precision positioning methods using GNSS measurements from smart-
phones have been studied. When applying PPP or RTK-GNSS to smartphones, noise from
the built-in GNSS antenna of the smartphone becomes a problem [13]. The methods of
installing a smartphone on a choke ring antenna [14,15], or using a re-radiating antenna or
an external antenna [16,17], can achieve high-accuracy positioning with centimeter accuracy.
However, PPP and RTK-GNSS are not effective when a smartphone is mounted on the
dashboard of a vehicle and GNSS data is acquired by an internal antenna, as in the case
of GSDC. Some research has been conducted to improve the accuracy of RTK-GNSS and
PPP by combining GNSS observations from smartphones and IMUs [18,19]. However, time
synchronization between Android-based IMU and smartphone’s GNSS is an issue.

Graph-based optimization has been extensively studied in robotics; however, it has
recently been actively studied in the GNSS field. The factor graph optimization (FGO)
was proposed to model factorizations [20]. FGO can apply various complex non-linear
constraints and simultaneously optimize all state variables (the entire driving trajectory).
A factor graph is a graphical representation in which there is an unknown state variable
(variable nodes) and a factor (factor nodes) that is a function of the state variable. The edges
connecting the factor and variable nodes can be considered as constraints on the state
variable by the factor. Hence, the state estimation problem is reduced to an optimization
problem using the objective function constructed by the factor graph representation. One
of the earliest studies proposed a robust optimization method using only GPS pseudorange
observations based on factor graph optimization [21], which improved positioning accuracy
better than least-squares-based positioning. Subsequently, extensions to real-time position
estimation [22] and combinations with IMU and other sensors have been studied [23–25].
In [26], the authors discussed a comparative evaluation of GNSS positioning based on
graph-based optimization with that based on least-squares-based positioning and extended
Kalman filter. Several applications of time-differenced carrier phases (TDCP) to FGO have
also been studied [27–29]. The study by [30] implemented precise point positioning using
carrier phase measurements with graph optimization and compared it with Kalman-filter-
based implementation. The results indicated that factor graph-based optimization exhibited
better performance than conventional filtering methods, such as the extended Kalman filter.
This is due to the global optimization with all the observations from past to present in the
graph structure.

In this study, we propose a method to estimate location using FGO based on GNSS
observations of smartphones, especially TDCP. The performance of positioning by graph-
based optimization significantly depends on the graph structure. In most of the previous
studies, the pseudorange of GNSS is adopted for graph construction. In addition, the FGO
target is commercial GNSS receivers and GNSS observations of smartphones are yet to
be used. This study is unique in that it adopts TDCP for graph optimization using GNSS
observations from smartphones. Its optimization process is divided into two steps.

3. GSDC 2022 Overview
3.1. Dataset

At the GSDC, each dataset included raw GNSS measurements collected by several
Android smartphone devices, together with the ground truth trajectories collected by a high-
grade GNSS and an inertial navigation unit (IMU) integration system for reference [10,11].
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The log data of multiple smartphones mounted on the dashboard of a vehicle were provided
in two datasets: training data with reference position and test data for evaluation in the
competition. The smartphone logs included observations such as the GNSS pseudorange,
pseudorange rate, accumulated delta range, etc. Furthermore, the smartphone’s IMU data,
such as acceleration and angular velocity, were also included in the log data.

Driving data for five types of smartphones (Google Pixel4, Google Pixel5, Google
Pixel6 Pro, Samsung Galaxy S20 Ultra, and Xiaomi Mi8) were provided at the GSDC 2022.
Although the driving data for the San Francisco area was provided at GSDC 2021, that
for the Los Angeles area was included at GSDC 2022. Figure 1 presents the GSDC 2022
data from the 36 runs included in the test dataset. At GSDC 2021, each run included data
acquired simultaneously by multiple smartphone models; however, at GSDC 2022, only one
type of smartphone was used for each run. This implies that the technique of improving
accuracy by assembling the positions estimated independently for each smartphone was
no longer available. All smartphones had a built-in dual-frequency GNSS receiver chip and
included dual-frequency L1 and L5 observations relative to GPS and Galileo.

The driving data provided can be divided into two categories: highway driving in an
open-sky environment and street driving in an area lined with trees and buildings. The Los
Angeles driving data included several long tunnels and elevated sections, including several
10 s GNSS signal blockages. In approximately half of the runs included in the test data,
the data were run on different courses not included in the training data. Figure 2 illustrates
a section of the Los Angeles travel trajectory in the test data that stops under an elevated
track or travels in a tunnel. There are certain sections where receiving GNSS signal is
difficult, which results in large outliers and missing data.

Figure 1. Driving trajectories included in test data provided at GSDC 2022. In total, 36 runs were
provided and divided into two parts: one run in the San Francisco area and another in the Los
Angeles area.
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Figure 2. Los Angeles vehicle driving trajectory included in GSDC 2022. (a) Stops under elevated
tracks and (b) runs through long tunnels where GNSS signals are completely blocked.

3.2. Score Metric

In the GSDC, the trajectories of all smartphones in the test dataset are estimated and
evaluated using a score according to their accuracies. Here, the score is computed via the
mean of the 50th and 95th percentile of the horizontal positioning errors. The estimated
latitudes Φi and longitudes Λi of the i-th smartphone trajectory can be defined as follows.

Φi = {φ1 · · · φM}, Λi = {λ1 · · · λM} (1)

where M denotes the total epochs of the smartphone’s trajectory. Di = {d1 · · · dM} rep-
resent the horizontal errors of the trajectory computed from the Haversine formula [31].
The horizontal error of j-th epoch dj is represented as follows.

dj = harversine((φj, λj), (φGT,j, λGT,j)) (2)

where harversine is a function that calculates the Haversine distance between two sets of
latitudes and longitudes, while the subscript GT represents the ground truth. The score for
N trajectories is calculated as follows.

score =
1
N

N

∑
i=1

percentile(Di, 50) + percentile(Di, 95)
2

(3)

where percentile(D, p) computes a value that is greater than p percent of the values in D.
Note that the altitude of the smartphone is ignored. In addition, the smartphone positioning
can exhibit significantly large errors owing to multipath; however, in the afore-presented
metric, the large top 5% positioning errors are ignored and do not affect the score.

3.3. Baseline Position

In addition to the raw GNSS data, the competition hosts provided a “baseline” of
location estimation results for each smartphone. This baseline is the result of least-squares-
based processing of the pseudorange observed by the smartphone in estimating the position.
Table 1 presents the scores for the two categories of driving data in the GSDC 2022 training
dataset. The highway represents an open-sky environment. The 3.6 m score is practical for
positioning with pseudorange. However, in street areas, GNSS signals were blocked by
roadside trees, which increased the positioning error to 4.6 m.

The satellite observation performance of smartphones has the following characteristics.
First, smartphones cannot track satellite signals stably and only a small number of satellites
can be observed continuously with dual-frequency signals. In addition, regarding satellite
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signal quality, satellites observed by smartphones generally exhibit a low carrier-to-noise
ratio [5,32]. Furthermore, the positioning accuracy of smartphones is significantly impaired
by multipath. The observed pseudorange of a smartphone is substantially noisier than that
of a commercial GNSS receiver and GNSS code positioning using only the pseudorange
has limited positioning accuracy.

Table 1. Score of baseline position for each course type in training dataset of GSDC 2022.

Course Type Highway Street All

Score (50%) m 2.296 2.772 2.599
Score (95%) m 4.943 6.431 5.890

Mean m 3.620 4.602 4.245

4. Strategy

From the exploratory data analysis, GNSS observations, such as pseudorange and
Doppler shift, from smartphones are more significantly noisy than commercial GNSS
receivers. In addition, owing to the limitations of antennas on smartphones, the real-time
kinematic (RTK)-GNSS technique, which is usually used for high-precision positioning,
is difficult to utilize because it is difficult to solve the integer ambiguities in the carrier
phase measurements using smartphone antenna. In addition, missing data, abnormal
values, and unsynchronized observation time for each smartphone exist. Even in an
open-sky environment, a 3-m accuracy cannot reach the decimeter level. Hence, we have
to improve the absolute position accuracy beyond the limits of pseudorange accuracy.
Because excessive noise and several outliers exist in the observations, a robust position-
estimation method is required. Finally, because GSDC targets high-precision positioning
by post-processing, methods specific to post-processing are beneficial.

At GSDC 2021, the author proposed a location estimation method based on smart-
phone observations using global optimization with FGO [33]. Here, the method developed
in 2021 was modified to improve the location estimation accuracy, particularly in environ-
ments where the accuracy of pseudorange deteriorates under trees and elevated structures.
The pseudorange of smartphones is noisy; hence, achieving highly accurate position es-
timation using the pseudorange alone is challenging. However, if the carrier phase can
be tracked continuously, the relative position change (velocity) can be estimated with
high accuracy from the TDCP [34]. Because of the limited availability of valid TDCPs,
velocity can be estimated from more robust Doppler observations, although they are less
accurate than TDCP. However, Doppler observations remain unavailable when satellites
are shielded for long periods, such as in elevated structures or tunnels.

Therefore, we adopted a two-step optimization to estimate the position of the smart-
phone. Figure 3 illustrates the flow of the proposed method. First, we estimated the
velocity, where the 3D velocity of the smartphone and receiver clock drift were estimated
by employing FGO with Doppler observations, which are readily available but less ac-
curate. From the 3D velocity estimated by the optimization, outliers in velocity were
detected, excluded, and interpolated to obtain an estimate of the 3D velocity continuously.
Subsequently, the states to be optimized were the 3D position and receiver clock bias of
each satellite system. The 3D velocity and clock drift obtained in the previous step were
adopted as loose constraints between the states in this step. In addition, if valid TDCPs
were obtained, TDCP-based constraints between the states were added and, as an absolute
position constraint, the pseudorange of the smartphone, whose error was corrected using
the GNSS base-station, was utilized. Even when no TDCP was available, this method
added a state-to-state constraint based on the velocity estimated using Doppler in the first
step and the position could be obtained even in the tunnel.
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Figure 3. Flow of the proposed method comprising two optimization steps: velocity estimation and
position estimation via factor graph optimization (FGO).

5. Preprocessing

In the preprocessing step, the initial values of the optimized state to be determined,
including the GNSS pseudorange, carrier phase, and Doppler observations, are calculated
from the smartphone logs. Here, various filtering processes are adopted to discard invalid
GNSS observations and reject unreliable observations. Because smartphone observations
contain larger amounts of unreliable data than commercial receivers, it is very important to
screen GNSS observations in preprocessing.

5.1. Initial State Estimation

The estimated states in the optimization step are the 3D position and velocity in the
Earth-centered Earth-fixed (ECEF) coordinate system and the receiver clock bias and drift.
These initial values need to be pre-determined before optimization.

Regarding the initial 3D position for the optimization, the baseline position is uti-
lized. However, the baseline position contains some large jumps and missing parts; hence,
the following process is applied.

1. Convert to the east-north-up (ENU) coordinate system and detect large jumps in
the altitude.

2. Delete the epoch detected in Step 1 as an outlier.
3. Interpolate the 3D position of missing epochs from the previous and next data.

The above process determines the initial values of 3D positions for all epochs. The ini-
tial value of 3D velocity is determined by simply calculating the difference in the initial
3D positions.

For the initial clock bias and drift, the log data from the smartphone contains estimates
of the built-in GNSS receiver clock bias and drift, which are adopted as the initial values.
Note that, among the smartphones, for the XiaomiMi8, the difference between the estimated
clock bias is adopted as the initial value of the clock drift, because the clock drift is an
invalid value. The missing data are also complemented with the previous and next data
to calculate the initial values of the clock and clock bias for all epochs.

5.2. Selection of GNSS Observations

Similar to normal GNSS positioning, the satellite elevation angle and carrier-noise
ratio (CNR) masks are used to reject all observations (pseudorange, Doppler, and carrier
phase) for satellites with a low elevation angle and low signal strength. Here, the values of
the satellite elevation angle and CNR masks are tuned and determined for each run. If the
multipath indicator (MultipathIndicator) in the smartphone log is turned on, the ob-
servations for that satellite are rejected. The following is a description of the process for
each observation.

5.2.1. Pseudorange Selection

Similar to [35], the observation values of valid GNSS signals are selected based on the
pseudorange tracking status contained in the smartphone logs. In addition, the pseudor-
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ange residuals are calculated using the initial 3D position and clock bias described above.
Thresholding in the pseudorange residual rejects pseudorange observations with large
multipath errors.

5.2.2. Doppler Selection

Doppler observations (or pseudorange rates) ρ̇ are the most robust observations
in smartphones, even in adverse environments. To circumvent large errors in Doppler
observations, the residuals of Doppler observations are calculated using the initial 3D
velocity and clock drift and the aforementioned pseudorange; in addition, the Doppler
observation values with large errors are rejected by thresholding.

5.2.3. Carrier Phase Selection

From the carrier-phase tracking status, the carrier phases continuously tracked with
no cycle slip are reserved [35]. However, even in the carrier phases that have passed these
processes, some carrier phases that contain cycle slips or errors still remain. Therefore,
by comparing the Doppler observation and the aforementioned carrier phase, the outliers
of the carrier phase are rejected by checking the consistency. The consistency of the carrier
phase of the satellite k at the i-th φk

i and i + 1-th epochs φk
i+1 can be calculated from Doppler

observation (in m/s) ρ̇k
i and ρ̇k

i+1 as follows.∣∣∣∣∣λ(φk
i+1 − φk

i )−
(ρ̇k

i + ρ̇k
i+1)

2
∆t

∣∣∣∣∣ < Dth (4)

where, λ, ∆t, and Dth denote the wavelength, time step (1 s in the GSDC), and threshold
value, respectively. The TDCP residuals of L1 signals in Equation (4), illustrated using the
actual smartphone observations in the training dataset, are presented in Figure 4. The colors
of the plots in Figure 4 represent different satellites and the increase in the residuals due to
cycle slips in the carrier phase can be observed. Here, we used 1 m as the threshold value
of Dth to exclude cycle slips.

Figure 4. TDCP residual of L1 signals computed by Equation (4). The Doppler observation is used to
detect and exclude cycle slips in the carrier-phase observation.

5.2.4. Example of Observation Selection

Using the aforementioned GNSS observation selection method, we preprocessed GNSS
observations for the runs included in the GSDC 2022 training dataset. Figure 5 presents the
change in the number of observations before and after selection of the GNSS pseudorange,
Doppler, and carrier phase. The number of observations decreases significantly after the
selection of the GNSS observations, thus verifying that the raw GNSS observations from
smartphones contain a large amount of unreliable data with large errors. In addition,
Doppler observations are more available than carrier-phase observations, and can be
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used even during times when the carrier phase contains cycle slips and is unavailable.
The proposed method first estimates the 3D velocity using Doppler observations that are
robust to adverse GNSS reception environments and then estimates accurate positions
using less available, but more accurate, carrier phases in the next step.

Figure 5. Selection of GNSS observations by preprocessing. Compared to the carrier phase, Doppler
is highly available.

6. Velocity-Estimation Step

In the velocity-estimation step, the state V estimated in epoch i was the 3D velocity
and receiver clock drift. The state V can be expressed as:

Vi =

[
vi
ṫi

]
(5)

vi =
[

vx,i vy,i vz,i
]T ṫi = ṫgpsL1,i (6)

where ṫgpsL1,i represents the receiver clock drift relative to the GPS time in m/s. The 3D ve-
locity vi is represented in the ECEF coordinate system. Here, only the clock drift computed
from the GPS L1 signal was included in the state because the inter-system bias, including the
receiver clock bias, between GPS L1 and other satellite systems can be considered constant.

The graph structure of the proposed FGO is presented in Figure 6. The circled markers
in the figure represent the factor nodes, where the variable nodes are connected to the
Doppler factors from each satellite and the motion factor is connected between variable
nodes as an acceleration constraint.

Figure 6. Graph structure of proposed method in velocity-estimation step. The Doppler and motion
factors are adopted to estimate the velocity.
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6.1. Doppler Factor

The observed Doppler frequency can be converted to a pseudorange rate. GNSS
pseudorange rate from the Doppler of the satellite k in the i-th epoch ρk

i can be modeled
as follows.

ρ̇k
i = uk

i

(
vk

s,i − vi

)
+ ṫi (7)

where vk
s,i represents the satellite velocity in the ECEF coordinate system. uk

i =
[
uk

x,i, uk
y,i, uk

z,i

]
denotes the unit line-of-sight vector from the receiver to the satellite k in ECEF.

The error function of the Doppler factor is represented as follows.

ek
d,i = Hk

v,iVi −
(

ρ̇k
i − uk

i vk
s,i

)
(8)

Here, the measurement matrix Hk
v,i can be formulated as:

Hk
v,i =

[
uk

i 1
]

(9)

Together with the error function, the optimization utilizes the information matrix
Ωk

d,i, which represents the accuracy of the Doppler observations. Here, the information
matrix is determined from a simplified model, where the error depends on the satellite
elevation angle.

6.2. Motion Factor

The variable nodes in the graph are the velocity and clock drift and the constraints
between the nodes function as acceleration constraints. Although acceleration observations
can be obtained from the smartphone’s IMU, they were not utilized in this study because
they require a coordinate transformation based on the smartphone’s orientation, including
synchronization with GPS time. The motion factor uses the assumption that the velocity
does not change significantly (i.e., acceleration is small) between successive variable nodes.
The error function was simply defined as acceleration being close to zero, such that the
velocity changed smoothly, as follows:

em,i = Vi+1 −Vi (10)

Here, by appropriately providing Ωm,i, the information matrix during optimization
based on the maximum value of the vehicle’s actual acceleration, large jumps in the velocity
estimated by optimization can be suppressed and a continuous velocity can be estimated.

6.3. Optimization

The objective function to be optimized is presented as follows.

V̂ = argmin
V

∑
i
‖em,i‖2

Ωm,i
+ ∑

i
∑
k

∥∥∥ek
d,i

∥∥∥2

Ωk
d,i

(11)

The M-estimator was used to reject the multipath error of Doppler measurements
during the optimization [27]. The Huber function was adopted as the influence function
of the M-estimator. The Huber function works remarkably for GNSS observations with
several outliers, as adopted in [28,36]. The hyperparameters of the Huber function are
determined by trial and error and the same values are used for all runs. Furthermore,
the GTSAM [37] was utilized for the graph optimization backend, while RTKLIB [38] was
used for GNSS general computation.

6.4. Outlier Removal and Interpolation

Interpolation was performed to discard outliers in the estimated velocity via FGO and
also to obtain velocity estimates at all epochs. The estimated velocities in the ECEF coordi-
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nate system were transformed to the ENU coordinate system. In addition, the threshold for
the estimated velocity in the up direction excluded outliers as the vehicle was bound on
the ground.

Furthermore, to estimate the velocity at epochs where Doppler cannot be obtained,
such as in tunnels, the velocity at all epochs was interpolated from the previous and next
velocity information. Here, Makima interpolation [39] was adopted rather than simple
linear or spline interpolation. Makima interpolation does not produce the overshoot
produced by spline interpolation and it is suitable for velocity interpolation. Finally, this
estimated velocity was adopted in the next position-optimization step.

7. Position-Estimation Step

In the position-estimation step, the state X estimated in epoch i was the 3D position
relative to the initial position in ECEF coordinates and multi-GNSS clock biases. The state
X can be expressed as:

Xi =

[
ri
ti

]
(12)

ri =
[

xi yi zi
]T ti =

[
tgpsL1,i tglo,i tgalL1,i tbds,i tgpsL5,i tgalL5,i

]T (13)

where tgpsL1,i denotes the receiver clock bias computed from GPS L1 signals, and tglo,i,
tgalL1,i, tbds,i, tgpsL5,i, and tgalL5,i represent the system biases including the time bias of
the GLONASS, Galileo, and BeiDou relative to the GPS L1 signal, respectively. The state
was defined by the difference in the initial values of the 3D position and clock bias for
linearization. Figure 7 presents the proposed graph structure. Three types of factors,
pseudorange, TDCP, and velocity/clock drift, were used.

Figure 7. Graph structure of proposed method in position-estimation step. Pseudorange, TDCP,
and velocity/clock drift factors were adopted.

7.1. Velocity/Clock Drift Factor

The velocity/clock drift factor is the relative constraint between time-series variable
nodes. In the previous step, the 3D velocity and clock drift at all epochs were estimated
based on Doppler observations; hence, the estimated velocity and clock drift were adopted
as loose constraints between sequential states in the position-estimation step. If TDCP
observations are not available, this velocity/clock drift factor will be the only constraint
between sequential states. The error function of the velocity/clock drift factor is denoted as:

ev,i = (Xi+1 − Xi)−
(

Ṽi + Ṽi+1

2

)
∆t (14)
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where Ṽ denotes the velocity and clock drift estimated in the previous step, with “0” added
to match the dimension of X. The velocity/clock drift factor was added between all nodes,
such that, even in epochs where the pseudorange or TDCP was not observed at all (such as
in a tunnel), the position was estimated based on the velocity estimated in the previous step.

7.2. Pseudorange Factor

In the pseudorange factor, the pseudorange compensated using the pseudorange error
computed at a base-station was adopted to estimate the absolute position. The GNSS
pseudorange of satellite k in the i-th epoch ρk

i can be modeled as follows.

ρk
i = rk

i + ti − δTk
i + Ik

i + Tk
i (15)

where rk
i denotes the geometric satellite-to-receiver distance, which is calculated using the

initial node. Further, δTk
i , Ik

i , and Tk
i represent the clock bias of the satellite, ionospheric

delay, and tropospheric delay, respectively.
To completely eliminate the satellite orbit, clock, tropospheric, and ionospheric de-

lays in the smartphone pseudorange observations, the GNSS pseudorange error at the
GNSS base-station was calculated to correct the pseudorange. The error function of the
pseudorange factor is represented as follows.

ek
pr,i = Hk

p,iXi −
(

ρk
i − rk

i − εk
i

)
(16)

where εk
i denotes the pseudorange correction value, including the tropospheric and iono-

spheric delay, and the clock and orbit error of the satellite, calculated at a base-station
whose position is known. Here, the measurement matrix Hk

p,i can be formulated as:

Hk
p,i =

[
uk

i 1 δk
glo,i δk

gal,i δk
bds,i δk

gpsL5,i δk
galL5,i

]
(17)

where δk
glo,i, δk

gal,i, δk
bds,i, δk

gpsL5,i, and δk
galL5,i are equal to “1” when the k-th GNSS measure-

ment is GLONASS, Galileo, or BeiDou, respectively. For GSDC 2022, we selected the GNSS
base-station closest to the trajectory from the NOAA CORS Network and utilized it as the
base GNSS station. Regarding the information matrix of the pseudorange factor, we used
an elevation angle-based error model and the Doppler factor.

7.3. TDCP Factor

Both Doppler and TDCP can be used to estimate the velocity. However, Doppler
observations from smartphones are noisier than those from commercial GNSS receivers
and velocity computed from TDCP measurement is significantly more accurate than those
calculated from Doppler. The TDCP measurement ∆Φk

i between sequential epochs i and
i + 1 is expressed as follows:

λ∆Φk
i = λ

[
Φk

i+1 −Φk
i

]
' ∆rk

i + ∆ti (18)

where λ, Φk
i , and rk

i denote the signal wavelength, measured carrier phase in cycles,
and satellite-receiver geometric distance, respectively. ∆ represents the operator that com-
putes the time difference. If the time difference is short, the ionospheric and tropospheric
delays and satellite orbital clock errors in the carrier phase can be canceled. Here, λ∆Φk

i
represents the exact receiver–satellite distance change between epochs i and i + 1.

The error function of TDCP factor is as follows.

ek
td,i = Hk

p,i(Xi+1 − Xi)−
(

λ∆Φk
i − ∆Lk

i

)
(19)

Here, ∆Li represents the change in distance owing to the satellite motion from the
antenna position.
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However, although TDCP is accurate, its availability is lower than the Doppler owing
to cycle slip and half-cycle ambiguity challenges. If the carrier phase with cycle slip is not
completely excluded, the TDCP factor will introduce relative position errors. Here, we
address this cycle-slip problem with robust optimization using the M-estimator.

7.4. Optimization

The final objective function to be optimized, using all the factors, is presented as follows.

X̂ = argmin
X

∑
i
‖ev,i‖2

Ωv,i
+ ∑

i
∑
k

∥∥∥ek
pr,i

∥∥∥2

Ωk
pr,i

+ ∑
i

∑
k

∥∥∥ek
td,i

∥∥∥2

Ωk
td,i

(20)

Similar to that in the velocity estimation step, robust estimation by the M-estimator
with the Huber function was applied to the pseudorange and TDCP factors. Because the
pseudorange observations contain multipath errors and the TDCP observations contain
cycle slips, the M-estimator was adopted to exclude outliers. The hyperparameters of the
Huber function were determined by trial and error. The smartphone position optimized in
the position-estimation step was directly used as the final estimate.

8. Evaluation and Discussion
8.1. Evaluation Using Training Data
8.1.1. Evaluation of Positioning Accuracy

The training dataset, for which reference locations were provided, was used to evaluate
the positioning accuracy of the proposed method. The GSDC 2022 training dataset contains
170 smartphone trajectories on 62 different routes. From these trajectories, we constructed
a dataset for evaluation considering the following points:

1. Exclude runs for which the ground truth does not include altitude. Although the final
score is determined by the horizontal positioning error, runs without ground truth
for altitude were excluded. This is because we cannot compute position and velocity
references in the ECEF coordinates.

2. Exclude runs for which the carrier phase has not been obtained. The HardwareClock-
Discontinue flag in the log is only reported on Google Pixel 4, which includes some
runs for which the carrier phase has not been obtained correctly. Because TDCP cannot
be used in these cases, they were excluded from the evaluation.

3. During the competition, a participant pointed out that the ground truth for some runs
was not sufficiently accurate. The competition host then made an announcement and
published a list of the inaccurate ground truths. The runs containing these inaccurate
ground truths were eliminated.

Using the above process, the proposed method is evaluated on the 55 runs extracted
from the training dataset.

Three runs were selected from the entire evaluation data; the trajectories of each
baseline are illustrated in Figure 8. Figure 8a–c present the data from the highway runs,
street driving, and the area around Los Angeles, including the GNSS signal blockage for a
long period of time, respectively.

Figure 9 presents the time-series horizontal positioning error. The blue line indicates
the baseline position error and the red line indicates the proposed method. The colored
areas in Figure 9 are the sections that traveled under the elevated tracks. In highway driving
(Figure 9a), the TDCP factor estimated the relative position with high accuracy and the
pseudorange factor corrected the absolute position. Furthermore, the baseline position
sometimes exhibited an abrupt error of approximately 10 m, which occurred when the
vehicle went under an elevated road while driving on the highway. However, the proposed
method suppressed the increase in error by interpolating the velocity estimated from
Doppler. Figure 9b presents the positioning error of street driving. The pseudorange and
carrier-phase noise were large and the position-estimation accuracy was worse than that of
highway driving. Furthermore, the baseline exhibited frequent position errors exceeding
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10 m; however, the proposed method could estimate the accurate position. Figure 9c
presents the positioning error of driving in the Los Angeles area. Although the error
increased at the point where the vehicle went under the overpass, the proposed method
significantly suppressed the increase in error when compared to the baseline.

Figure 8. Driving trajectory of three vehicles extracted from the training dataset for evaluation
(a) highway environment, (b) street driving, and (c) driving with GNSS blockage for a long period
of time.

Figure 9. Comparison of horizontal positioning error between baseline (blue line) and proposed
method (red line).
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Figure 10 illustrates the horizontal cumulative distribution function (CDF) for each run
and the entire evaluation dataset. Table 2 presents the 50 percentile error, the 95 percentile
error, and the score calculated using Equation (3). The score was 0.372 m in the highway
driving case, thus implying the achievement of decimeter accuracy. The score was 1.116 m
in the street driving data. The final score for all runs included in the evaluation dataset
was 1.023 m. The proposed method significantly improved the baseline scores provided by
the host, thereby achieving decimeter accuracy when evaluated only on the highway data,
but only slightly more than 1 m when evaluated on all runs.

Figure 10. Comparison of horizontal cumulative distribution function (CDF) for each run and
the entire evaluation dataset. The blue and red lines represent the baseline and proposed
method, respectively.

Table 2. Comparison of positioning error between baseline and proposed method.

Course
Phone

2021-03-16-US-MTV-3
GooglePixel5

2021-03-16-US-MTV-1
SamsungGalaxyS20Ultra

2021-12-07-US-LAX-1
GooglePixel6Pro

All

Baseline Two-Step Baseline Two-Step Baseline Two-Step Baseline Two-Step

Score (50%) m 2.322 0.225 3.963 0.782 2.494 0.648 2.599 0.749
Score (95%) m 4.697 0.520 9.072 1.450 4.777 1.230 5.890 1.297

Mean m 3.510 0.372 6.517 1.116 3.635 0.939 4.245 1.023

8.1.2. Evaluation of Two-Step Optimization

The key contribution of the proposed method is that the velocity and position-
estimation steps are separated and the position is estimated in a two-step optimization.
To evaluate the effectiveness of the two-step optimization, we compared it with a one-step
optimization method that simultaneously estimates position and velocity. The one-step opti-
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mization method is based on an implementation based on GSDC 2021, which adds 3D posi-
tion, velocity, and receiver clock bias drift to the estimated state [36]. The GNSS observations
used are completely equivalent to those of the two-step optimization method and equiva-
lent parameters, such as the information matrix of the observations, were adopted.

Figure 11 compares the scores of the one-step and two-step optimizations for each
run in the evaluation data. Figure 11 demonstrates that the proposed two-step optimiza-
tion method outperforms the former in almost all runs. Table 3 presents the scores of
the one-step and two-step optimization methods for all runs. The score of the one-step
optimization is 1.122 m, thus indicating that the proposed two-step optimization method
exhibits better performance.

Figure 11. Comparison of positioning error between one-step and two-step optimization.

Table 3. Summary of positioning error comparison between one-step and two-step optimization.

Course All

One-Step Two-Step

Score (50%) m 0.801 0.749
Score (95%) m 1.442 1.297

Mean m 1.122 1.023

8.2. Evaluation Using Test Data

Using the above method, the position of the smartphone was estimated and the
competition was addressed. Finally, the public score for the proposed method was 1.382 m,
which ranked first. The final private score was 1.229 m, which was also in the first place.
Hence, the proposed method can be used to estimate the position of smartphones with high
accuracy. After the competition, the scores were calculated again with the final adjusted
parameters (equivalent to those used in the evaluation of the training dataset above),
resulting in public and private scores of 1.364 m and 1.177 m, respectively.

8.3. Discussion

The proposed two-step optimization method can estimate the position of the smart-
phones with an accuracy of 1.229 m in the GSDC 2022 test dataset. Here, the second
place score was 1.499 m. Therefore, the proposed method is substantially the most accu-
rate method for smartphone position estimation. The RTK-GNSS, which estimates the
ambiguity of the carrier phase using the double-differenced GNSS observation from the
base-station, is difficult to adopt with the noisy carrier phase of a smartphone; however,
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the TDCP observation, which is the time difference of its own carrier phase, can estimate
the relative position with high accuracy.

The proposed two-step optimization was more accurate than the one-step optimization
because the velocity was estimated first using Doppler observations, which are more robust,
and the outliers of the estimated velocity were rejected beforehand and interpolated for
missing values, which is considered to have an effect on accuracy.

The training data with position references for machine learning were provided; how-
ever, the proposed method did not use machine learning. Therefore, the incorporation of
machine learning into the graph optimization framework represents a future challenge.
In addition, IMU data from smartphones were also provided; however, the method de-
scribed in this paper adopts only GNSS. Although there is a time synchronization problem
between the smartphone IMU and GNSS [40], the combined IMU data are expected to
improve accuracy in environments where GNSS signals are more shielded.

9. Conclusions

This paper described a method for estimating the position of a smartphone used in
GSDC 2022. The proposed method adopted factor graph optimization to estimate the
entire trajectory of a smartphone by creating various factors from the smartphone’s GNSS
observations. A two-step optimization method that estimates velocity and position in
separate steps was proposed. The proposed method first estimated the velocity from the
GNSS Doppler observation via graph optimization. The outliers of the estimated velocity
were then excluded, interpolated, and subsequently used as loose constraints between
states in the position-optimization step to make the position estimation more robust and ac-
curate. Absolute constraints were added to the graph using corrected GNSS pseudoranges.
In addition, the graph optimization process enabled highly accurate estimation of the 3D
position of a smartphone.

Using the GSDC2022 training dataset, we compared the proposed two-step optimiza-
tion with a one-step optimization that simultaneously estimates position and velocity
and found that the two-step optimization improved the score from 1.12 m to 1.02 m. The re-
sults confirmed that estimating the velocity first improves the position estimation accuracy.
Accordingly, from the proposed method presented at GSDC2022, the final private score
was 1.229 m, which won the first place.
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