
Citation: Chen , H.; Zhang, Y.; Bhatti,

U.A.; Huang, M. Safe Decision

Controller for Autonomous Driving

Based on Deep Reinforcement

Learning in Nondeterministic

Environment. Sensors 2023, 23, 1198.

https://doi.org/10.3390/s23031198

Academic Editors: Sanislav Teodora,

Ovidiu P. Stan and Dan Gota

Received: 29 November 2022

Revised: 15 January 2023

Accepted: 17 January 2023

Published: 20 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Safe Decision Controller for Autonomous Driving
Based on Deep Reinforcement Learning in
Nondeterministic Environment
Hongyi Chen 1, Yu Zhang 1,*, Uzair Aslam Bhatti 2 and Mengxing Huang 2

1 School of Computer Science and Technology, Hainan University, Haikou 570228, China
2 School of Information and Communication Engineering, Hainan University, Haikou 570228, China
* Correspondence: yuzhang2015@hainanu.edu.cn

Abstract: Autonomous driving systems are crucial complicated cyber–physical systems that com-
bine physical environment awareness with cognitive computing. Deep reinforcement learning is
currently commonly used in the decision-making of such systems. However, black-box-based deep
reinforcement learning systems do not guarantee system safety and the interpretability of the reward-
function settings in the face of complex environments and the influence of uncontrolled uncertainties.
Therefore, a formal security reinforcement learning method is proposed. First, we propose an environ-
mental modeling approach based on the influence of nondeterministic environmental factors, which
enables the precise quantification of environmental issues. Second, we use the environment model
to formalize the reward machine’s structure, which is used to guide the reward-function setting in
reinforcement learning. Third, we generate a control barrier function to ensure a safer state behavior
policy for reinforcement learning. Finally, we verify the method’s effectiveness in intelligent driving
using overtaking and lane-changing scenarios.

Keywords: autonomous driving; formal specification; deep reinforcement learning; safe decision
controller generation; nondeterministic environment

1. Introduction

Autonomous driving systems are complicated cyber–physical systems (CPS) that in-
tegrate physical environment awareness with intelligent computing, and their functioning
includes both computational and physical processes that interact with and influence one an-
other. A typical autonomous driving system includes the physical environment, plant, sensor,
decision controller, and actuator. The decision controller is based on sensing physical environ-
ment information and integrating the physical environment and self-vehicle information to
generate safe and reasonable driving behavior and control the vehicle’s movement.

Currently, a data-driven approach is common when obtaining autonomous driving
decisions. Among data-driven approaches, training through deep reinforcement learning
(DRL) is popular. Deep reinforcement learning seeks the best strategies through extensive
learning training by interacting with the environment; however, for complex driverless
traffic scenarios, the decision-making system cannot understand the complex traffic envi-
ronment around it. Safe decision-making behavior cannot be provided for unrecognized
states; therefore, the safety of deep reinforcement learning has been widely discussed.

However, most DRL tasks not only require a considerable amount of training time and
iterations, but they also do not guarantee the safety of the actions taken during the learning
process, which can be a serious problem in some safety-critical areas (e.g., autonomous
driving, medical, etc.).

There are two main reasons why reinforcement learning is currently primarily applied
in simulation environments rather than real-world scenarios. On the one hand, there is
a lack of interpretability for deploying reward functions for deep reinforcement learning

Sensors 2023, 23, 1198. https://doi.org/10.3390/s23031198 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8743-2783
https://doi.org/10.3390/s23031198
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031198?type=check_update&version=1

Sensors 2023, 23, 1198 2 of 20

because the state and action space inputs for reinforcement learning come from a network
of black boxes. The reward function allows the combination of prior knowledge [1];
however, reward functions based on prior human knowledge are typically subjective and
sparse and thus cannot accurately represent the task goal [2]. Subjectivity, in other words,
leads to reward functions that may focus on specific explicit criteria while ignoring the
relationship between specific states and task goals. This lack of interpretability has become
one of the main obstacles in the field. On the other hand, the real-world environment is
characterized by many uncertain environmental factors. Because of the complexity of the
physical environment in which autonomous driving exists, it is possible to ignore some
nondeterministic environmental factors, which means that performing the same action
in the same state may result in a different next state or reward value, implying that the
intelligent driving system is unpredictable. This means that the autonomous driving system
cannot complete the task based on the original planning decision, and it must adjust the
original decision based on the cognitive outcomes of the nondeterministic environment. In
the face of these uncontrolled changes in conditions, reinforcement learning cannot provide
strict safety constraints for safety-critical unmanned systems.

To address the above issues, we combine formal methods and DRL to propose a
DRL-based approach for generating decision controllers for autonomous driving CPS
in a nondeterministic environment, where the learning process is guided by expected
behavioral constraints.

First, we modeled the environment for describing the physical environment of the
autonomous driving system and quantitatively evaluated its impact on the system. Second,
we designed the structure of a reward machine through a nondeterministic environment
model. The reward machine, based on the policy model, guides the design of the reward
function, which allows the system state and goal to be combined and provides an inter-
pretable method for the reward function. Simultaneously, we used safety properties to
generate control barrier functions to monitor the safety of the decision’s output to the
actuators and to improve the satisfaction of safety specifications to compensate for the DRL.
Finally, we evaluated the decision controller’s performance in the overtaking lane-change
scenario in terms of safety, efficiency, and satisfaction with the constraints. The following
are our main research contributions:

• We proposed a method for modeling the environment of autonomous driving systems
in nondeterministic environments. We quantitatively described the surrounding environ-
mental risk by means of a well-defined nondeterministic physical environment model.

• Our proposed method combined safety verification and DRL. We defined a form
of reward-machine ground description based on the environmental risk model to
guide the setting of the reward function in DRL, making the reward function for
DRL interpretable. We also designed a monitor using safety properties to ensure that
decisions satisfying the safety properties were output to the controller.

The rest of our paper is structured as follows: Section 2 provides a synopsis of related
work. Section 3 introduces the fundamental theory of metric temporal logic and reinforce-
ment learning. Section 4 defines the general structural framework. Section 5 describes
methods for modeling systems in nondeterministic environments. Section 6 proposes a
decision-making generation method for safety-constrained guidance. Section 7 includes
experiments and evaluations of the proposed method’s effectiveness. Finally, we draw our
conclusions in Section 8.

2. Related Work

The safety control of a CPS system is a new research field, in which the use of safety
reinforcement learning (RL) is a considerable topic. There are many methods of safety
RL, which were summarized by Garcia and Fernández [3]. They divided these methods
into two categories: modifying the optimality criteria and changing the learning process
of agents.

Sensors 2023, 23, 1198 3 of 20

Many approaches to safety RL use a restricted optimality criterion in RL. The agent
searches the entire policy space for a priori safe control behaviors [4]. Xu and Mannor
modified the optimality criterion to reflect the safety problem [5], providing the agent with
some preliminary knowledge to guide policy exploration away from unsafe states.

It is critical to distinguish between optimization within known safety policies and an
exploration of existing control options. Katz et al. [6] examined learning-process policies,
which are appropriate when the learning phase is not safety critical but not when the
system must operate safely while learning. Value consistency and safety policy validation
are two considerable evaluation metrics in safety RL. The goal of value consistency is to
ensure that the learning system’s goals are consistent with human intentions [7]. This is
because RL agents can profit from the wrong goals.

The goal of policy validation is to understand how and why learned policies make
certain decisions. This is critical for the secure deployment of RL agents. The task’s goal
can be expressed in a reward-based or -free manner through value consistency. Reward
shaping is a popular method for developing intense reward functions.

On the one hand, forming a dense reward function that is well-aligned with the true
task goal can be difficult for complex tasks. Learning from demonstrations, on the other
hand, allows agents to learn without an explicit reward function; to this end, J. Lee et al. [8]
provided a recent overview of recent advances in value alignment. Recent value align-
ment efforts include iterative scaling [9,10], in which agents and personnel collaborate to
learn the desired strategy (possibly during iteration). However, the approaches described
above do not allow strategies to avoid risk simply by using maximizing returns as an
optimization criterion.

For RL in an uncertain environment, G. Mason et al. [11] used a probabilistic model
to check the verification strategy according to the constraints specified in probabilistic
temporal logic; then, they modeled the environment as an abstract Markov decision process
to validate the policy. However, few studies consider the worst-case scenario under
uncertainty and minimax criteria, outputting a control strategy after optimizing the target
to maximize the reward.

At the same time as maximizing the income expectation, Richa et al. [12] proposed that
other types of utility, including risk, should be within certain given boundaries, taking such
constraint-system states as fence functions and strategy space constraints or boundaries.
Further research [13] examined the risk-related prior information for agents, which allows
to avoid risk states during training and ensures a more efficient learning.

Another study [14] combined interpretable rule-based policies and black-box rein-
forcement learning to achieve system safety and robustness. Krasowski [15] used an
ensemble-based approach to enhance the safety of reinforcement learning by extending the
reinforcement-learning safety layer to limit the action space. Wachi et al. [16] proposed a
reinforcement learning method with a constrained Markov decision process, which con-
tinuously learned security constraints by extending the security region. Bastani et al. [17]
proposed a method for learning and verifying decision tree strategies. In the DRL field,
strategy verification to a large extent belongs to the category of neural network verification.
Strategy verification is usually used to explain the learned strategies after training. Some
studies [18,19] combine temporal logic and automata to solve the non-Markov reward
decision process, while other studies [20,21] use the robustness of signal sequential logic to
stimulate the learning process. Wen et al. [22] combined the maximum likelihood IRL with
a task constraint in the form of common safety linear sequential logic. Alshiekh et al. [23]
used finite-state automata as a safety measure to supervise the agent-release operation.
In our study, we used temporal logic and the corresponding automata to represent task
goals and guide learning, respectively. In addition to verifying the decision, there are also
interventions to ensure the safety of the training process. Hahn et al. [24] proposed a
technique to compile w-regular attributes into limit-deterministic Büchi automata, which
led to w-regular rewards that RL agents could learn. Toro et al. [25] introduced the reward
machine, which closely reorganizes an automaton, and demonstrated its use on the RL

Sensors 2023, 23, 1198 4 of 20

benchmark. Araki et al. [26] developed a logic-based value iteration network, which
integrated FSA into value iteration through demonstration.

Li [27] proposed a deep reinforcement learning algorithm that incorporated a risk-
assessment function to find the optimal driving strategy and minimize the desired risk.
However, the authors only assessed driving risk in terms of positional uncertainty and
distance-based safety measures, which lacked any consideration of uncertain environmental
factors, such as driving style. As such, we used a formal approach to define driving risk for
nondeterministic environmental factors. Muzahid et al. [28] made several contributions to
the scheme for adapting the reward function. They used a multiobjective reward system
to balance achievement rewards from cooperative and competitive approaches, accident
severity, and passenger comfort. However, they considered this from the perspective of
multivehicle crashes and overlooked the effects of differences in speed and driving style.

In general, the lack of interpretability and ensuring security in complex environments
have become considerable research topics for deep reinforcement learning research.

3. Basic Theory
3.1. Metric Temporal Logic

Linear temporal logic (LTL) is a kind of temporal logic. It models time as a series of
states and describes the constraints that the system needs to meet in the past, present, and
future through time operators. Linear temporal logic is used to represent the properties or
constraints that the system is expected to meet. If the AP is an atomic proposition set, the
LTL formula on the set AP can be recursively defined as follows [29].

ϕ ::= p|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 → ϕ2|ϕ1 ↔ ϕ2|Gϕ|Fϕ|Xϕ|ϕ1Uϕ2 (1)

In the above definition, they are all LTL formulas, and the standard operators logi-
cal and (∧), logical or (∨), not (¬) and implication (→) are propositional logic symbols.
Operators F (future), G (globally), X (next) and U (until) are sequential operators. The
explanation is as follows.

• ϕ, ϕ1, ϕ2 are logical propositions, and the return value is true or false.
• G(ϕ):ϕ is always true on the time axis.
• F(ϕ):ϕ is always true on the time axis and will be true at some time in the future.
• X(ϕ):ϕ is true at the next point in time.
• ϕ1Uϕ2: Before ϕ2 becomes true at some point in the future, ϕ1 is continuously true.

Metric temporal logic (MTL) [30] is an extension of LTL that uses discrete-time,
interval-time arithmetic to specify the time limits that must be maintained for certain
temporal properties and is thus well-suited to represent real-time monitoring require-
ments. It is a timing logic that operates in real time. Each temporal logic operator, such as
G[i, j], F[i, j], ϕ1U[i, j]ϕ2 and so on, has a subscript representing the duration of the oper-
ator. G[1, 2]ϕ indicates that ϕ must be true between the times 1 and 2. LTL formulas are
analogous to MTL formulas without time intervals.

3.2. Reinforcement Learning (RL)

RL is a method for maximizing long-term rewards in Markov decision processes
(MDPs) that has found widespread application in artificial intelligence [31]. In RL training,
the agent without prior knowledge must obtain the information about the environment
through continuous exploration (i.e., interaction with the environment) and obtain the
optimal decision strategy through repeated experiments. The agent can learn the decision-
making strategies for specific tasks independently, without the need for designers to
describe the implementation of tasks in detail. In the learning process of the agent, after
each agent makes a tentative decision, the environment will change its state correspondingly,
and give the agent a reward value (or reward) according to the changed state. According
to the continuous observation of the environment and the feedback obtained, the agent

Sensors 2023, 23, 1198 5 of 20

will optimize its strategy in the process of continuous exploration, continue to evolve, and
finally get the optimal decision strategy.

Definition 1. A MDP (Markov decision process) is defined as a tuple M = (S, A, T, R), where

• S is the state space, S ⊆ Rn.
• A is the action space, S ⊆ Rm.
• T is a transfer function S×S×A→ [0, 1]. T(st+1st, at) is the conditional probability that

st ∈ S, at ∈ A is in state st+1.
• R is a reward function R : S × A × S → R, which is a reward obtained by performing

operation at in state st and transitioning to state st+1.

Time is defined as discrete t = 0, 1, 2, st and at represent the state and action
at time t, respectively. The best strategy π = S → A is a strategy for maximizing the
expected return:

π = arg maxπ

(
E

[
T−1

∑
t=0

r(st, at, st+1)

])
. (2)

T is the maximum number of time steps allowed per execution P and thus the maxi-
mum length of the trajectory. E is the expected value after policy p in the equation. The
action-value function of the state is defined as

Qp(s, a) = E

[
T−1

∑
t=0

r(st, at, st+1)s0 = s, a0 = a

]
(3)

This is the expected payoff for selecting as an action a strategy P in state s. Qp is
typically used to assess the quality of strategy P. Qp and P are usually in the form of
parametric function approximators for problems with continuous states and action spaces
(e.g., automatic driving).

4. Framework

The overall proposed framework for the safe decision controller generation proposed
in this paper is shown in Figure 1. Figure 1 shows a diagram of the framework generated
by the controller which describes the forward flow of data. More specifically, Figure 1 is
divided into two components. The left and right regions are processes in the training and
physical domains, respectively, and the right region is a process in the physical domain.
The controller obtained through the training domain is able to act on the entity.

In the training domain, in the first step, a simulation environment is obtained by
accurately modeling the real environment of the autonomous driving system, from which
nondeterministic environmental factors are obtained. In the second step, a nondeterministic
environment model is constructed by analyzing the classifiers of risk factors and safety
properties, and the environment model is defined based on a formal approach to the
constraints. In the third step, the environment model is constructed as both a reward
machine and a monitor, respectively. The reward machine is used to guide the reward
function in RL. The monitor is used to set the monitoring barrier, which monitors the
output actions. If the safety properties are not satisfied, the action that satisfies the safety
properties are selected from the action set as a way to ensure the decision. The fourth
step is the routine execution of reinforcement learning. Data are fed to the agent from the
simulation environment, after which an action is obtained for feedback.

Sensors 2023, 23, 1198 6 of 20

Figure 1. Framework for safe decision controller generation.

5. Modeling of the Nondeterministic Physical Environment

There are three types of nondeterministic effects on autonomous driving systems:
internal uncertainty, external uncertainty, and sensor uncertainty [32]. Internal uncertainty
refers to the differences among the system’s actions, external uncertainty refers to the
uncertainty of the system’s surrounding factors, and the sensor uncertainty refers to the
deviation of the information received by the sensor. Because the internal and sensor
uncertainties are mainly affected by their own design, we mainly focused on the external
nondeterminism; that is, the nondeterminism of environmental factors around the system.

Weather and location type are examples of nondeterministic surrounding environ-
mental factors. Temperature, humidity, rainfall, and other factors all have an impact on
the weather category. The location category refers to the unpredictability of the activity
trajectory of the surrounding objects. The vehicle lane-changing decision-making process
is often affected by the nondeterministic environment, in which the interaction with other
vehicles is a factor. In the overtaking lane-change scenario, we may be concerned about the
vehicle behind us colliding with us because we do not know whether it will accelerate or
decelerate. The nondeterministic environment around the vehicle is defined as follows.

Definition 2. The nondeterministic physical environment model ENV is represented as the tuple
ENV = (ER, PR), where

• ER is a formal description of the static structure of the nondeterministic physical
environment model;

• PR is a dynamic description of the nondeterministic physical environment model.

Definition 3. The static structure of the nondeterministic physical environment model ER is a
four-tuple ER = (Objects, Parameters, Function, Type), where

• Objects represents the set of surrounding nondeterministic objects;
• Parameters represents the parameter set of nondeterministic factors;
• Function represents the probability formula for calculating the category under the nondeter-

ministic environment;
• Type represents the set of types of nondeterministic environments.

Definition 4. The dynamic description of the nondeterministic physical environment model PR is
represented as a six-tuple PR = (Q, Q0, acts, prob, E, L), where

• Q represents a finite state set;
• Q0 represents the initial state;
• acts is a finite set of actions;
• prob: Q× prob→ E; prob is the probability of possibility transfer, expressed in a nondeter-

ministic environment;
• E: E ⊂ Q× acts× L×Q is the transfer function;

Sensors 2023, 23, 1198 7 of 20

• L: the migration condition.

The driving style of surrounding vehicles, as a typical factor of the nondeterministic
environment, has great influence on automatic driving. Thus, we took the driving style
of surrounding vehicles as an example to demonstrate the nondeterministic physical
environment model. We assigned a trust level to the surrounding vehicles and attached
a value. For example, in the interval [0, 1], if we really do not trust it, its value is 0; if we
completely trust it, its value is 1. Typically, we will have an intermediate value depending
on how much we know about the vehicle behind us. If we have elements that help the
vehicle to perform safe driving (e.g., the amount of speed change, distance between cars,
etc.), we can set a value closer to 1, while in the opposite case it is closer to 0. With this level
of trust, we can consider the assertion’s veracity.

Figure 2a shows a forced lane change for the rear car’s aggressive style may result in
a collision. It is easy to avoid a collision with a conservative style, as shown in Figure 2b.
Driving styles were classified as aggressive, normal, or conservative. The aggressive type
of rear car should avoid changing lanes, the ordinary type could be taken to change lanes
or not, and the conservative type could safely change lanes.

(a)

(b)

(c)

Figure 2. Driving environment. (a) Radical collision. (b) Conservative successful lane change.
(c) Surrounding objects.

We used the environmental model ER to identify environmental factors and risk
probabilities. Objects = {L1, B1, R1, R2} represented the other vehicles in each of the three
lanes. Parameter = {x1, x2, x3, x4, x5, x6, x7} represented the parameter for calculating the
probability. Function = {Funp(xi|1 < i < 7) → (type, p)} represented the formula for
calculating the probability. type = {type1, type2, type3} represented three different driving
styles. Each style of transition had a migration relation with probability p. We used the
parameters in Table 1 to calculate the likelihood of each driving style being judged.

We calculated driving style probabilities using the following formula based on the
mean values of the plain Bayesian classifier’s driving style classification parameters [33].

Funp =
7

∑
i=1

wi × Bxi (4)

wi denotes the weights obtained by training the classifier, where ∑7
i=1 wi = 1. Bxi denotes

whether xi satisfies the computed metric, with a value of 0 or 1. The driving style was
predicted by inferring high-level information from low-level data, namely the experimental

Sensors 2023, 23, 1198 8 of 20

calculated value and the parameter index. Figure 3 is an example of a dynamic structural
representation of a risk model, containing aggressive, conservative, and ordinary types,
which were transformed between them by an identification function, and entering a state
triggered a reset condition that reset the probabilities.

Figure 3. Obstacle avoidance and lane change decision.

Table 1. Various characteristics of the parameters.

Parameters’ Characteristics

x1 Average velocity
x2 Standard deviation of vehicle speed
x3 Maximum lateral acceleration
x4 Standard deviation of lateral acceleration
x5 Following distance
x6 Lane change time
x7 Lane change clearance

Self-driving cars on the road need to avoid obstacles as a case of extreme safety. When
the blue car on the road overtakes, it has two options: change lane from the left or right.
However, the car’s CPS system can only observe the distance between the vehicles and
cannot determine the trajectory of the side vehicle. If the rear vehicle is aggressive, it is
likely to change lane when the rear vehicle speeds up, resulting in a collision.

6. Decision Controller Generation Algorithm for Safety Protocol Guidance

Although RL has been shown to be applicable to complex environmental-interaction-
like problems, it faces the problem of lack of interpretability in safety-sensitive domains,
and it is difficult for the output policies to guarantee their safety reliability, which poses
safety hazards. The reward function of RL is designed to be interpretable in this section.
The structure of the reward machine is designed through migration changes between envi-
ronmental risk model states to guide the setting of the reward function in RL. Additionally,
the monitor is designed to guarantee that the output decisions are safe according to the
safety properties.

Sensors 2023, 23, 1198 9 of 20

6.1. System Specification Modeling

In the automatic driving environment, the safety property that needs to be monitored
is often related to time. For example, before changing lanes, it is necessary to turn on the
turn signal for 3 s before completing the lane-changing task. This kind of system-safety
property with a constraint relationship is usually called a real-time property. The difference
between real-time and conventional nature is often reflected in timeliness, which affects
the effective time of the decision-making and determines whether the decision can be
completed within the specified time.

Because real-time monitoring is time-constrained, it is different from a traditional
monitoring process. To monitor the real-time property at run-time, a real-time sequential
logic is first used to describe it. In this paper, MTL was used to describe the safety property.

R1: the autonomous vehicle maintains the maximum safe speed of 50 km/h.

G(Vmax ≤ 50)

R2: when the vehicleis in the leftmost lane, it is not allowed to change lanes to the left.

G((loc = le f t)→ (¬turnle f t_cmd))

R3: when deciding to change lanes to the left, 3 s after the left side still has a safe
distance, the lane change can be completed in 1 s.

G(((CMD = turnle f t) ∧ F[0, 3]not_le f t)→ F[3, 4]turnle f t)

R4: the time spent not in the center of the lane while driving shall not exceed 10 s.

G¬(G[0, 9](loc 6= center))

6.2. Setting of Reward Function for Safety Constraint Guidance

The reward function is usually treated as a black box in RL, with no way to understand
the settings inside. Because of this approach, the agent-trained decision-maker is unaware
of the environmental transfer changes or the state–change relationships and can only obtain
the final result. We must accurately perceive the returns from environmental data and allow
the agent to learn from environmental interactions. We propose using safety properties
and a nondeterministic environment model to guide the setting of the reward function. To
express the reward function, we used a reward machine.

Definition 5. The reward machine RM is a six-tuple RM = (U, u0, acts, σ, E, τr), where

• U is a finite set of states;
• u0 ∈ U is the initial state;
• acts is a collection of actions;
• σ are migration conditions;
• E is the transfer set, E ⊆ U × acts× σ×U;
• τr is a reward function; the current reward τri = τr(ui−1, ui).

The reward machine decomposes the problem of safety constraints into a group of
high-level states U and defines transitions of δu using if conditions. These conditions apply
to the safety constraint properties ϕ, which can be tested to see if they satisfy truth values.

Definition 6. The reward form RF is a five-tuple: τr =< r, ϕ, ϕr, risk, riskr >, where

• r represents the base reward set;
• ϕ represents the safety constraint property;
• ϕr represents positive feedback provided by the satisfaction of ϕ when it is true;
• risk represents the risk’s probability of occurrence;
• riskr is a function of the negative feedback.

Sensors 2023, 23, 1198 10 of 20

First, we set basic rewards. The primary concerns are safety and efficiency, which can
be obtained by understanding the nature of safety. The system designer wishes to drive the
vehicle efficiently while remaining safe on the road in order to avoid collisions. The reward
function provides a way to combine prior knowledge and change the decision according to
the previous feedback response. One criterion for determining the reward function is to
improve the alignment of values between intentions and system goals, as well as to reduce
decision errors caused by malicious perturbations of the reward function. Therefore, setting
the reward value according to the task result cannot accurately express the advantages and
disadvantages of the actual situation, and it needs to be able to measure the different good
and bad situations of the execution in different environments.

To improve efficiency, self-driving cars should try to drive as fast as possible while
not exceeding the maximum speed limit. Therefore, the following rewards were defined
according to the vehicle speed.

rv = λ1(v− vres + ω1) (5)

where v represents an average speed since the last decision period, vres is the threshold
speed limit, λ1, ω1 are the normalization coefficient, and rv ∈ [−1, 1] is the reward function
of the vehicle speed.

According to the formal description of the safety problem of self-driving cars, in the
process of learning the optimal policy, the agent needs to respond to the dynamic evaluation
of policy changes in a dynamic environment. Different decisions are made in the current
environment due to the different driving styles of other driving vehicles around, resulting
in different changes in the distance between vehicles. Due to the different driving styles of
other surrounding vehicles and the different decisions made in the current environment,
the change of vehicle distance is also different. A big reason for collision accidents on the
road is that the vehicle distance from the surrounding vehicles is far less than the safe
distance. Therefore, the reward function of dynamic change concerning vehicle distance
was formulated to measure whether it was good or bad. According to the critical safety
time distance [34], it was defined as

d =
(vr + |ar|tτ − v f)

2

2(|ar| − |a f |)
− |ar|t2

τ

2
(6)

where vr is the vehicle speed of the rear vehicle, v f is the vehicle speed of the front vehicle,
ar is the acceleration of the rear vehicle, a f is the acceleration of the front vehicle, and tτ

is the response lag time. The acceleration a and vehicle speed v were calculated by the
instantaneous displacement, and the formula was as follows:{

v = d(t+∆t)−d(t)
∆t

a = v(t+∆t)−v(t)
∆t

(7)

The violation of the safety distance constraint causes RL to make the vehicle drive
at a safe distance during the learning process. According to the relationship of the safety
distance, we gave a reward function about the distance:

rd = λ2(d− dact + ω2) (8)

where d represents the critical safety time distance, dact is the observed distance, λ2 and
ω2 are the normalization coefficients, and the reward function of the vehicle speed is
rd ∈ [−1, 1].

According to the automaton representation of safety property transformation, when
facing the leftmost or rightmost side of the road, the vehicle is not allowed to change
lanes left or right, so a negative feedback reward rillegal is set. When the decision is made

Sensors 2023, 23, 1198 11 of 20

successfully, a positive feedback reward rsucceed is given. If a collision occurs, it is a great
safety problem, and a strong negative feedback reward rcollision is set.

At the same time, there is a possibility that the RL will cause the vehicle to make a
lane change even if there is no vehicle in front of it. There is no safety accident following a
legal lane change, but this violates one of the constraints (frequent lane changes increase
the probability of collision and reduce the number of lane changes to reach the destination
as soon as possible). Thus, in order to alter this phenomenon, we established a negative
feedback reward rvalid.

r =

ry + rd Current Lane
ry + rd + rsuccess Succeed Change
ry + rd + rinvalid Invalid Change
rillegal Illegal Change
rcollision Collision

(9)

We designed the rewards directly from high-level specifications to make the reward
synthesis problem more formal and easier to interpret and handle. Figure 4 shows a reward
machine with reward specification τr =< r, ϕ, ϕr, risk, riskr >.

Figure 4. Reward machine.

Figure 4 shows the state change of an autonomous vehicle in a three-lane highway.
U = (u0, u1, u2) represents a high-level state in the right lane, the middle lane, and the
left lane. δ = (δ1, δ2, δ3, δ4, δ5, δ6, δ7) represents a state transition, which is determined
by the previous state and the current state. Where < r, (ϕ1, ϕ2), ϕr, risk, riskr > is the
reward function for changing from the right lane state u0 to the middle lane u1, and r is
the set basic reward. (ϕ1, ϕ2) denotes the property constraint of changing lanes at a safe
distance and whether there is speeding, respectively, ϕr denotes the positive feedback
reward of 1 when the property ϕ is true. risk is the risk probability of identifying the
nondeterministic environment, which is obtained by quantifying the nondeterministic
environment risk mentioned above, riskr is −2, and the coefficient of negative feedback
given to the probability risk function is −2.

6.3. Feedback Based on Safety Monitoring Barrier

The ability of a CPS real-time system to react to surrounding data in a timely and
accurate manner and then hand it over to the controller for response is critical to safe system
operation. It is also possible to quickly determine whether the system will be impacted in a
way that is not expected. To monitor the system’s operation, a runtime monitoring barrier
was established. Its safety was verified for various safety properties, i.e., whether the
safety constraints were violated and that the controller performed safe operations. Figure 5
depicts the structure of the monitoring barrier.

Sensors 2023, 23, 1198 12 of 20

Figure 5. Monitoring barrier.

The monitoring barrier intercepts the intelligence’s decision, accepts the decision
action as input, and determines whether the action decision satisfies the safety property
constraint. The monitoring barrier has two primary functions: satisfaction verification and
safety assurance output.

Definition 7. Satisfaction verification. When the monitor verifies the satisfaction of a property,
it can be considered as a Boolean function output to determine whether the current system state
satisfies the safety property constraint through the state migration triggered by the selected action.
It is expressed as

(s, act, ϕ)→ bool

where s ∈ S is the current state, act ∈ acts is the selected action, ϕ is the safety property
specification, and the output is {true, f alse}.

Definition 8. Safety assurance output. When the input action does not satisfy the property statute,
a safe new action should be selected from the set of candidate actions.

6.4. Generation Algorithm of Safe Decision Controller

In this section, monitoring barriers transformed by safety properties are used in
conjunction with the DRL algorithm to create a controller capable of making safe decisions
through training. We propose a general safety learning algorithm, which sets the reward
function guided by the safety property, and then uses the monitoring barrier to verify the
output of the algorithm, so as to ensure the safety of the output decision and to be able
to apply the safety RL algorithm to the safety-critical CPS system. By adding a monitor
to the DRL algorithm as the intelligence’s supervisory layer, the information exchange
between the environment and the intelligence is constantly monitored, and the decision’s
safety is judged through verification, so that when a risk is perceived, a safe decision can
be provided, and the risk can be avoided as much as possible.

Algorithm 1 gives the algorithm for solving the optimal action for the conventional
DQN. In the traditional DQN algorithm, the agent selects an action with probability p,
then obtains immediate returns and subsequent states from the environment feedback, and
finally performs the update function.

Sensors 2023, 23, 1198 13 of 20

Algorithm 1 DQN Algorithm

Input: MDP = (S, A, T, R), done, update
Output: Optimal policy π

1: Init (π)
2: st ← s0
3: a← NOP
4: while st! = done and episode < episodes do
5: // Iterative selection of optimal value
6: A

′
= A

7: a← RandomSelect(A
′
)

8: update(st, a, π) // Update parameters
9: Go to the next state st+1

10: end while

However, when faced with inexperienced scenarios and complex decision-making
tasks, black-box-based DRL systems do not guarantee the safety of the system and the
complex interpretability of the reward function settings for complex tasks, so using the
traditional DQN algorithm to generate decisions does not work very well. In the following,
the nondeterministic environment model is combined into the algorithm implementation
based on the methodology from the previous sections.

Algorithm 2 shows the algorithm for safe decision-making generation. When the envi-
ronment is accurately modeled, the system selects from a set of validated safety actions; oth-
erwise, the system selects conservative policy actions from the action space. The inputs are
a reinforcement model MDP = (S, A, T, R), a reward machine τr = < r, ϕ, ϕr, risk, riskr >,
an end state, and an update of a function that records state transitions. The monitoring
barrier is used to monitor the system for previously observed states, previous control
actions, and the current state to satisfy safety requirements. The controller receives the
decision whenever the monitoring barrier is true.

Algorithm 2 Generation algorithm for the safe decision controller

Input: MDP = (S, A, T, R), τr =< r, ϕ, ϕr, risk, riskr >, done, update
Output: Optimal safety policy π

1: Init (π)
2: st ← s0
3: a← NOP
4: while st! = done and episode < episodes do
5: // Iterative selection of optimal value
6: A

′
= A

7: a← choose(A
′
) // Select action

8: env← Environmental sampling
9: while monitor(st, a, env) do // monitor

10: A
′ ← A

′ − a
11: if A

′
! = ∅ then

12: a← choose(A
′
)

13: else
14: a← choose(aconservative ∈ A)
15: break
16: end if
17: end while
18: update(st, a, π) // Update parameters
19: Go to the next state st+1
20: end while

Lines 1–3 show the process starting in its initial state. Lines 4–20 represent the choice
of the next action and its execution until the termination state is reached or the maximum

Sensors 2023, 23, 1198 14 of 20

number of rounds is reached. Lines 6–7 describe the chosen action. Line 8 describes the
process of acquiring environmental parameters. Lines 9–17 express the monitoring barrier,
which monitors the state, environment, and the selected action; if it returns true, an action is
output; otherwise, the greedy idea is used to choose another action from the action subset;
and if none of them return true, a conservative policy action is output. Line 18 updates the
state based on the environment and the learning model. The entire algorithm consists of
two layers of loops, the first of which is about the abort state and the number of training
rounds (episodes). The second loop is a monitor that selects the optimal values from the
action space for the output. The algorithm complexity is O(n2).

7. Evaluation
7.1. Training Details

In our study, we used the path-planning project simulator from the Udacity self-driving
car project [35]. The simulator can provide the vehicle’s positioning and sensor fusion data,
obtain the map information around the vehicle, give a visual graphical interface, and produce
an effective definition and simulation of time and position. It also provides a visual interface
and a controller module, which can communicate information with each other through sockets.
The observation-state information data in the simulation environment was transmitted to
the algorithm, and then the high-level action decisions calculated by the algorithm were
transmitted back to the target vehicle agent. The simulator is shown in Figure 6.

Figure 6. Simulation environment.

The experimental scenario was designed as a self-driving car traveling at 50 MPH
on a highway with surrounding vehicles traveling at 40–60 MPH. The car should drive as
close to the speed limit as possible. When facing a blocked road section, it should try to
change lanes to overtake. At the same time, the vehicle should ensure safety when making
lane-change decisions. The experimental environment we used is shown in Table 2. As for
the safety properties, we chose a safe distance for side vehicles when changing lanes. The
property is Section 6.1—R3.

The simulation environment was a three-lane highway road map. A 45 × 3 matrix
was used as the road’s state-information representation, with three columns representing
the corresponding three lanes and each vehicle in each lane occupying four cells. The
number filled in the matrix was the speed of the vehicle. The action space was chosen as
a = a0, a1, a2, a0 for keeping the current lane, with a1 for changing lanes to the left and a2
for changing lanes to the right. The reward function was defined by the reward machine in
Section 6.

The algorithm used in this paper was based on Tensorflow’s DQN algorithm [36].
We improved the safe DQN algorithm by incorporating safety monitoring to implement

Sensors 2023, 23, 1198 15 of 20

the car intelligent lane-change decision. In our study, we trained the two algorithms for
100 rounds of deep reinforcement, with each round consisting of a loop on a 6946-meter-
long highway, which took about 6 min to complete. We set all the parameter weights of
nondeterministic probabilities to 1/7. During the training process, after each round of the
task was completed, the vehicle agent returned to the initial point for the next round of
training.

Table 2. Experimental settings for the simulation.

Experimental Settings

Processor: Intel Xeon W-2225
Video card: NVIDIA Quadro rtx5000, 16 GB
Memory: 128 GB
Operating system: Ubuntu 18.04
Development language: Python 3.6
Development framework: tensorflow 2.4.0

7.2. Comparing with Tensorflow’s DQN Algorithm

We compared the average speed, lane-change time, and collision time for each phase
of the two methods.

Figure 7 shows that the car’s behavior was ideal. Figure 7a shows the average speed
obtained by the algorithm in each round of training. As the number of rounds increased,
the average speed was closer to the speed threshold, and the vehicle agent could complete
the route task more efficiently. The vehicle’s speed was greatly improved in the 20th round
of training. At the same time, when the training round reached 72 rounds, the safety RL
algorithm could achieve speed stability faster; Figure 7b shows the number of lane-changing
events in each round. The frequency of lane changing was significantly reduced, and the
average vehicle speed was increased. A faster speed was obtained by fewer lane-changing
behaviors, and a faster speed in the task was met to reach the destination. Figure 7c shows
the number of collisions per round. The number of intelligent vehicle collisions decreased
with the increase in the number of training rounds, which indicated that the intelligent
vehicle learned correct driving actions through exploration and RL, reducing the number
of collisions.

The graph shows a counterexample at rounds 30–40, when the algorithm had not
yet stabilized, which produced a high collision rate. The figure compares the traditional
way of designing the DQN algorithm with our method over the course of 100 training
rounds. The overall average increase in driving speed was 3.371 MPH, the overall average
reduction in the number of lane changes was 11.64, and the overall average reduction in
the number of collisions was 25.52. Collisions could be avoided as much as possible by
using the safety RL algorithm; however, the risk of collision still existed in the experiment,
which we observed through the visual interface when the distance between the vehicle and
the rear vehicle was too small when changing lanes, causing a collision when decelerating.
From our experimental results, we observed that the use of safety monitoring in RL could
make the agent’s decision-making safer while ensuring the algorithm’s decision-making
output converged faster.

We compared the trained model with several different approaches, including a random
lane-change strategy with rule constraints, a rule-based lane-change strategy, and a pure
DQN lane-change strategy. Compared with several other methods, the car’s average
execution speed in our method was slightly better. Additionally, our method had a higher
security rate than several of the remaining policies, which ensured the safety of the decision.
This showed that our approach achieved a more efficient and safer performance compared
with other methods (see Table 3).

Sensors 2023, 23, 1198 16 of 20

(a)

(b)

(c)
Figure 7. Comparison of traditional and improved methods. (a) Comparing speed. (b) Comparing
lane-change times. (c) Comparing collisions.

Sensors 2023, 23, 1198 17 of 20

Table 3. Advantages and disadvantages of different methods.

Method Avg Speed Avg Lane Changes Safety Rate

Random action [37] 44.59 152.60 0.6
Rule-based [38] 45.22 8.40 0.6
DQN-based [39] 46.16 37.40 0.2

Our method 46.73 11.80 0.9

7.3. Assessing the Effect of the Nondeterministic Environment

Figure 8 shows a comparison experiment between the monitor considering the effect
of the nondeterministic environment and the case without it. We intercepted the data
from rounds 0–40. In the figure, we compared the effect of considering environmental
factors with not considering environmental factors and analyzed the first 40 rounds with
significant differences. Our method showed a significant reduction in the number of
collisions; however, at the same time, the driving speed was slightly lower compared with
the conventional method. This is because our method considered the uncertain driving
style variation, and if there was a high probability of risk, it chose to follow the car, resulting
in a lower speed.

(a)

(b)
Figure 8. Cont.

Sensors 2023, 23, 1198 18 of 20

(c)

Figure 8. Comparison of nondeterministic environmental impact. (a) Comparison of speed under envi-
ronmental factors. (b) Comparison of lane change times under environmental factors. (c) Comparison
of collisions under environmental factors.

Through the above analysis, our method overcame the disadvantage of not being able
to guarantee safety in the nondeterministic environment compared with the traditional
method and achieved the safety requirements of autonomous driving.

8. Conclusions

In our study, we proposed a DRL-based generation method for autonomous driving
CPS decision controllers to address the problem of obtaining a safe decision controller for
CPS systems in nondeterministic environments. First, we obtained a simulation environ-
ment by accurately modeling the real environment of the autonomous driving system,
from which we obtained nondeterministic environmental factors. In the second step, we
constructed a nondeterministic environment model by analyzing the classifiers of risk fac-
tors and safety properties, and then we defined the environment model based on a formal
approach of the constraints. In the third step, we constructed the environment model as
both a reward machine and a monitor. We used the reward machine to guide the reward
function in RL and utilized the monitor to set the monitoring barrier, which monitored the
output actions. If the safety properties were not satisfied, we selected the action that satis-
fied the safety properties from the action set to ensure the decision. The fourth step was the
routine execution of reinforcement learning. Data were fed to the agent from the simulation
environment, after which an action was obtained for feedback. Through experiments, we
verified the feasibility of our method, and the addition of our method ensured the safety of
the decisions. We verified the practicability of formal modeling and verification methods in
nondeterministic environments and strengthened the learning process from safety property
specification and formal modeling constraints. The definition of a reward function in a
practical application can be explained by the formal method. Our method provides an idea
for the combination of formal methods and reinforcement learning.

However, our work was carried out in a three-lane motorway environment, which
still lacks validation for more complex scenarios. In future work, we also need to consider
optimizing the design and training of reinforcement learning safety constraints, considering
the influence of traffic rules. Secondly, we can also improve the reward–reward function of
the reinforcement learning by making more precise definitions to improve the efficiency of
learning and the interpretability of learning strategies. Finally, simulations should be vali-
dated with more nondeterministic environmental factors to gradually promote the diffusion
and practical application of safety-based reinforcement learning in unmanned systems.

Sensors 2023, 23, 1198 19 of 20

Author Contributions: Conceptualization, H.C. and Y.Z.; methodology, H.C. and Y.Z.; software,
H.C. and Y.Z.; validation, H.C. and Y.Z.; formal analysis, H.C. and Y.Z.; investigation, H.C. and
Y.Z.; resources, H.C., Y.Z. and M.H.; writing—original draft preparation, H.C., U.A.B. and Y.Z.;
writing—review and editing, H.C., U.A.B., Y.Z. and M.H.; visualization, H.C. and Y.Z.; supervision,
H.C., Y.Z. and M.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(grant no. 62062030), in part by the Key R&D Project of Hainan province (grant no. ZDYF2021SHFZ243),
in part by the Major Science and Technology Project of Haikou (grant no. 2020-009).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luo, J.H.; Xiao, Z.H.; Zhong, C.P. Analysis of the development trend of information physics systems. Telecommun. Sci. 2012, 28,

127–132. (In Chinese)
2. Xie, Y.; Zeng, G.; Kurachi, R.; Xiao, F.; Takada, H.; Hu, S. Timing Analysis of CAN FD for Security-Aware Automotive Cyber-

Physical Systems. IEEE Trans. Dependable Secur. Comput. 2022. 99, 1–14.
3. García, J.; Fernández, F. A comprehensive surveyon safe reinforcement learning. J. Mach. Learn. Res. 2015, 16, 1437–1480.
4. Moldovan, T.M.; Abbeel, P. Safe exploration in Markov decision processes. In Proceedings of the 29th International Conference

on Machine Learning, ICML 2012, Edinburgh, UK, 26 June–1 July 2012.
5. Tamar, A.; Xu, H.; Mannor, S. Scaling up robust MDPs by reinforcement learning. arXiv 2013, arXiv:1306.6189.
6. Katz, G.; Barrett, C.W.; Dill, D.L.; Julian, K.; Kochen-Derfer, M.J. Reluplex: An efficient SMT solver for verifying deep neural

networks. In Proceedings of the Computer Aided V Erification—29th International Conference, CAV 2017, Heidelberg, Germany,
24–28 July 2017; Part I, pp. 97–117.

7. Arnold, T.; Kasenberg, D.; Scheutz, M. Value Alignment or Misalignment—What Will Keep Systems Accountable? AAAI
Workshops; AAAI Press: Palo Alto, CA, USA, 2017.

8. Leike, J.; Krueger, D.; Everitt, T.; Martic, M.; Maini, V.; Legg, S. Scalable agent alignment via reward modeling: A research
direction. arXiv 2018, arXiv:1811.07871.

9. Christiano, P.F.; Abate, M.; Amodei, D.; Supervising strong learners by amplifying weak experts. arXiv 2018, arXiv:1810.08575.
10. Hadfield-Menell, D.; Russell, S.J.; Abbeel, P.; Dragan, A. Cooperative inverse reinforcement learning. In Proceedings of the

Advances in Neural Information Processing Systems (NeurIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 3909–3917.
11. Mason, G.; Calinescu, R.; Kudenko, D.; Banks, A. Assured reinforcement learning with formally verified abstract policies. In

Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), Porto, Portugal, 24–26
February 2017; pp. 105–117.

12. Cheng, R.; Orosz, G.; Murray, R.M.; Burdick, J.W. End-to-end safe reinforcement learning through barrier functions for safety-
critical continuous control tasks. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI,
USA, 27 January–1 February 2019. [CrossRef]

13. Lütjens, B.; Everett, M.; How, J.P. Safe Reinforcement Learning with Model Uncertainty Estimates. In Proceedings of the 2019
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8662–8668. [CrossRef]

14. Talamini, J.; Bartoli, A.; De Lorenzo, A.; Medvet, E. On the Impact of the Rules on Autonomous Drive Learning. Appl. Sci. 2020,
10, 2394. [CrossRef]

15. Krasowski, H.; Wang, X.; Althoff, M. Safe Reinforcement Learning for Autonomous Lane Changing Using Set-Based Prediction.
In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece,
20–23 September 2020. [CrossRef]

16. Wachi, A.; Sui, Y. Safe Reinforcement Learning in Constrained Markov Decision Processes. In Proceedings of the 37th International
Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 9797–9806.

17. Bastani, O.; Pu, Y.; Solar-Lezama, A. Verifiable reinforcement learning via policy extraction. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018; pp. 2494–2504.

18. De Giacomo, G.; Iocchi, L.; Favorito, M.; Patrizi, F. Foundations for restraining bolts: Reinforcement learning with LTLf/LDLf
restraining specifications. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS 2019),
Berkeley, CA, USA, 11–15 July 2019; pp. 128–136.

19. Camacho, A.; Chen, O.; Sanner, S.; Mcllraith, S.A. Non-Markovian rewards expressed in LTL: Guiding search via reward shaping.
In Proceedings of the 10th Annual Symposium on Combinatorial Search (SoCS 2017), Pittsburgh, PA, USA, 16-17 June 2017;
pp. 159–160.

http://dx.doi.org/10.1609/aaai.v33i01.33013387
http://dx.doi.org/10.1109/ICRA.2019.8793611
http://dx.doi.org/10.3390/app10072394
http://dx.doi.org/10.1109/ITSC45102.2020.9294259

Sensors 2023, 23, 1198 20 of 20

20. Aksaray, D.; Jones, A.; Kong, Z.; Schwager, M.; Belta, C. Q-learning for robust satisfaction of signal temporal logic specifications.
In Proceedings of the IEEE 55th Conference on Decision and Control (CDC 2016), Las Vegas, NV, USA, 12–14 December 2016;
pp. 6565–6570.

21. Balakrishnan, A.; Deshmukh, J. Structured reward functions using STL. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control (HSCC 2019), Montreal, QC, Canada, 16–18 April 2019; pp. 270–271.

22. Wen, M.; Papusha, I.; Topcu, U. Learning from demonstrations with high-level side information. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI 2017), Melbourne, Australia, 19–25 August 2017; pp. 3055–3061.

23. Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.; Niekum, S.; Topcu, U. Safe reinforcement learning via shielding. In Proceedings
of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, LA, USA, 2–7 February 2018; pp. 2669–2678.

24. Hahn, E.M.; Perez, M.; Schewe, S.; Somenzi, F.; Trivedi, A.; Wojtczak, D. Omega-regular objectives in model-free reinforcement
learning. In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2019), Prague, Czech Republic, 8–11 April 2019; Springer: Berlin/Heidelberg, Germany, pp. 395–412.

25. Icarte, R.T.; Klassen, T.Q.; Valenzano, R.A.; Mcllraith, S.A. Using reward machines for high-level task specification and decompo-
sition in reinforcement learning. In Proceedings of the International Conference on Machine Learning (ICML 2018), Stockholm,
Sweden, 10–15 July 2018; pp. 2112–2121.

26. Araki, B.; Vodrahalli, K.; Leech, T.; Vasile, C.I.; Donahue, M.; Rus, D. Learning to plan with logical automata. In Proceedings of
the Robotic: Science and Systems (RSS 2019), Breisgau, Germany, 22–26 June 2019; pp. 1–9.

27. Li, G.; Yang, Y.; Li, S.; Qu, X.; Lyu, N.; Li, S.E. Decision making of autonomous vehicles in lane change scenarios:
Deep reinforcement learning approaches with risk awareness. Transp. Res. Part C Emerg. Technol. 2021, 134, 103452.
10.1016/j.trc.2021.103452. [CrossRef]

28. Muzahid, A.J.M.; Rahim, M.A.; Murad, S.A.; Kamarulzaman, S.F.; Rahman, M.A. Optimal Safety Planning and Driving
Decision-Making for Multiple Autonomous Vehicles: A Learning Based Approach. In Proceedings of the 2021 Emerging
Technology in Computing, Communication and Electronics (ETCCE), Dhaka, Bangladesh, 21–23 December 2021; pp. 1–6.
10.1109/ETCCE54784.2021.9689820. [CrossRef]

29. Pnueli, A. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science,
Washington, DC, USA, 30 September–31 October 1977; pp. 46–57.

30. Thati, P.; Roşu, G. Monitoring Algorithms for Metric Temporal Logic Specifications. Electron. Notes Theor. Comput. Sci. 2005, 113,
145–162. [CrossRef]

31. Kober, J.; Peters, J. Reinforcement Learning in Robotics: A Survey; Springer: Berlin/Heidelberg, Germany, 2012; pp. 579–610.
32. Tan, C.; Zhang, J.X.; Wang, T.X.; Yue, T. Uncertainty-wise software engineering of complex systems: A systematic mapping study.

J. Softw. 2021, 32, 1926–1956.
33. Tan, D.D.; Liu, J.; Chen, X.H.; Sun, H.Y. Formal modeling and dynamic verification for human cyber physical systems under

uncertain environment. J. Softw. 2021, 32, 1999–2015.
34. Chen, C.; Lü; N.; Liu, L.; Pei, Q.Q.; Li, X.J. Critical safe distance design to improve driving safety based on vehicle-to-vehicle

communications. J. Cent. South Univ. 2013, 20, 3334–3344. [CrossRef]
35. Virgo, M.; Brown, A. Self-Driving Car Engineer Nanodegree Program. Available online: https://github.com/udacity/CarND-

Path-Planning-Project (accessed on 20 August 2022).
36. Wang, J.; Zhang, Q.; Zhao, D. Highway lane change decision-making via attention-based deep reinforcement learning. IEEE/CAA

J. Autom. Sin. 2022, 9, 567–569. [CrossRef]
37. Bojarski, M.; Testa, D.D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al.

End to End Learning for Self-Driving Cars. ArXiv 2016, arXiv:1604.07316.
38. Li, S.; Shu, K.; Chen, C.; Cao, D. Planning and Decision-Making for Connected Autonomous Vehicles at Road Intersections: A

Review. Chin. J. Mech. Eng. 2021, 34, 133. [CrossRef]
39. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. 10.1038/nature14236.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.trc.2021.103452
http://dx.doi.org/10.1109/ETCCE54784.2021.9689820
http://dx.doi.org/10.1016/j.entcs.2004.01.029
http://dx.doi.org/10.1007/s11771-013-1857-4
https://github.com/udacity/CarND-Path-Planning-Project
https://github.com/udacity/CarND-Path-Planning-Project
http://dx.doi.org/10.1109/JAS.2021.1004395
http://dx.doi.org/10.1186/s10033-021-00639-3
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

	Introduction
	Related Work
	Basic Theory
	Metric Temporal Logic
	Reinforcement Learning (RL)

	Framework
	Modeling of the Nondeterministic Physical Environment
	Decision Controller Generation Algorithm for Safety Protocol Guidance
	System Specification Modeling
	Setting of Reward Function for Safety Constraint Guidance
	Feedback Based on Safety Monitoring Barrier
	Generation Algorithm of Safe Decision Controller

	Evaluation
	Training Details
	Comparing with Tensorflow's DQN Algorithm
	Assessing the Effect of the Nondeterministic Environment

	Conclusions
	References

