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Abstract: The heart is the most vital organ of the human body; thus, its improper functioning has a
significant impact on human life. Coronary artery disease (CAD) is a disease of the coronary arteries
through which the heart is nourished and oxygenated. It is due to the formation of atherosclerotic
plaques on the wall of the epicardial coronary arteries, resulting in the narrowing of their lumen
and the obstruction of blood flow through them. Coronary artery disease can be delayed or even
prevented with lifestyle changes and medical intervention. Long-term risk prediction of coronary
artery disease will be the area of interest in this work. In this specific research paper, we experimented
with various machine learning (ML) models after the use or non-use of the synthetic minority
oversampling technique (SMOTE), evaluating and comparing them in terms of accuracy, precision,
recall and an area under the curve (AUC). The results showed that the stacking ensemble model after
the SMOTE with 10-fold cross-validation prevailed over the other models, achieving an accuracy of
90.9 %, a precision of 96.7%, a recall of 87.6% and an AUC equal to 96.1%.

Keywords: healthcare; long-term risk prediction; machine learning; coronary artery disease;
feature analysis

1. Introduction

The heart is a tireless muscular pump, the size of a large fist and weighing 300–400 g.
It circulates tons of blood during human life. Cardiovascular disease remains the leading
cause of death despite significant advances in medical science. It needs special attention
and awareness to minimize the factors that cause it, as nowadays, the habits and lifestyle
of modern people directly impact it [1,2].

The coronary arteries are the arteries that transport blood to the heart muscle and
supply it with the necessary ingredients for its function. The term “coronary artery disease”
is used to describe the narrowing of these arteries, which is caused by the accumulation
of atherosclerotic material in their lumen. Due to the stenosis, the heart muscle is not
adequately supplied with blood–especially in situations where it has increased needs–and
this causes myocardial ischemia [3]. In the vast majority of cases, CAD is caused by the
progressive accumulation of atherosclerotic material, which narrows the lumen of the
arteries and causes myocardial ischemia. Atherosclerotic material is a soft, fatty material
that forms on the inner surface of the arteries by interacting with blood elements (cells and
coagulation factors) and fats carried by the blood. Atherosclerotic plaque “hardens” over
the years due to calcium deposition [4].

Angina pain is a common manifestation of insufficient perfusion of the myocardium,
and manifests in discomfort in the centre of the chest which may be tight, or feel like
burning or pressure. Angina may be felt in both hands, in the area of the neck, lower jaw, in
the mid-shoulder area and in the epigastrium. Sometimes, when the pain is intense, sweat,
nausea or vomiting occur. Manifestations of CAD include [4,5]:
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• The asymptomatic period: The process of atherosclerosis does not cause symptoms.
Furthermore, patients who do not have severe coronary artery stenosis may have no
symptoms, despite the presence of atherosclerotic lesions in the coronary arteries [6].

• Stable angina: The appearance of angina pain either during physical activity or
during intense emotional stress. Stable angina is generally a relatively benign clinical
condition and usually offers the opportunity to select and apply the appropriate
treatment [7].

• Unstable angina: The appearance of angina pain at rest. This is a more dangerous
form of coronary artery disease, which is why it has been described as pre-infarction
angina. It is clear that such an unstable condition must be treated with hospitalization
so that the administration of appropriate treatment can be commenced in order to
avoid undesirable progression to myocardial infarction [8].

• Acute myocardial infarction: This is the necrosis of an area of the heart muscle that
manifests itself with typical angina, which, however, is prolonged, does not stop
with rest and lasts more than half an hour. The immediate transfer of the patient
to a hospital is imperative, because only in a specialized area and by specialized
personnel can such a serious medical problem be treated with the greatest possible
rate of success [9].

• Sudden cardiac death: This is the most dramatic manifestation of the entire clinical
spectrum of coronary artery disease [10].

Coronary artery disease is mainly due to atherosclerosis of the coronary arteries. The
cause of atherosclerosis is not singular; for it to occur, many factors work together, i.e., it
is a multifactorial disease. The factors that all act together as the cause of atherosclerosis
are called risk factors or predisposing factors and are the following: gender, age, heredity,
hypercholesterolemia, smoking, hypertension, obesity and sedentary lifestyle, diabetes
mellitus, metabolic syndrome, chronic renal failure and stress [11,12].

The prevention of heart disease and, therefore CAD lies mainly in changing lifestyles
and adopting healthier habits. A balanced diet, exercise and getting rid of bad habits
will keep the arteries strong and clean of atherosclerotic plaques. More specifically, some
ways to help improve the health of the cardiovascular system are the following: smoking
cessation, regular physical exercise, control of blood pressure, low cholesterol and lack of
diabetes, maintaining a stable body weight, reducing stress, eating a Mediterranean diet
rich in fruits and vegetables, avoiding salt, consuming of foods rich in fibre and limiting
alcohol consumption [13,14].

Nowadays, medicine has a variety of modern diagnostic tests, which, in cooperation
with Information technology and, especially, the fields of artificial intelligence (AI) and ma-
chine learning (ML), in the hands of cardiologists are powerful weapons for the prevention
or diagnosis of coronary artery disease. ML techniques now play an important role in the
early prediction of disease complications in diabetes (as classification [15,16] or regression
tasks for continuous glucose prediction [17,18]), cholesterol [19,20], hypertension [21,22],
chronic obstructive pulmonary disease (COPD) [23], COVID-19 [24], stroke [25], chronic
kidney disease (CKD) [26], liver disease (LD) [27], sleep disorders [28,29], hepatitis C [30],
cardiovascular diseases (CVDs) [31], lung cancer [32], and metabolic syndrome [33] etc. In
particular, the long-term risk prediction of CAD will concern us in the context of this study.
The main contributions of the present research work are the following:

• Data preprocessing is achieved with the SMOTE. In this way, the instances of the
dataset are distributed in a balanced way, allowing us to design robust classification
models to ensure a highly accurate prediction of CAD occurrence.

• Features’ importance evaluation is performed considering two commonly used meth-
ods, the gain ratio and random forest methods. This analysis is made using the initial
unbalanced data and those obtained after class balancing using SMOTE.

• Experimental evaluation is performed with various ML models, after the use or not
of SMOTE, evaluating and comparing them in terms of accuracy, precision, recall
and AUC. The experimental results indicated that the stacking ensemble model after
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SMOTE, with 10-fold cross-validation, prevailed over the other ones, constituting the
main proposition of this research paper.

The rest of the paper is organized as follows. In Section 2, a dataset description and
analysis of the methodology followed are made. Additionally, in Section 3, we discuss the
acquired research results. Then, Section 4 discusses the relevant works with the subject
under consideration. Finally, conclusions and future directions are outlined in Section 5.

2. Materials and Methods

In this section, an overview of the dataset we relied on is carried out, the methodology
followed is captured, details of the experimental setup are noted, and brief descriptions of
the ML models we experimented with and their evaluation metrics are outlined.

2.1. Dataset Description

In this research paper, we used a publicly available dataset [34]. The present dataset
includes 3655 instances. It has 15 features, 7 of which are nominal and 8 numerical.
Specifically nominal are gender [35], education [36], current smoker [37], blood pressure
medication (BPMeds) [38], prevalent stroke (prevStroke) [39], prevalent hypertension
(prevHyp) [40] and diabetes [41], while numerical are age [9], cigarettes per day (cigs per
day) [42], total cholesterol (totChol) [43], systolic blood pressure (sysBP) [44], diastolic
blood pressure (diaBP) [45], body mass index (BMI) [46], heart rate [47] and glucose [48].
The target class, denoted as CAD, is binary and refers to coronary artery disease occurrence
or not.

Further statistical details about the features in terms of the target class labels are
presented in Table 1. More specifically, the number of participants who have been diagnosed
with CAD is 556 (15.2%). Furthermore, the number of women is 2033 (55.6%), while the
number of men is 1622 (44.4%). The age of the participants varies from 32 to 70 years.

Table 1. Numerical and nominal features’ description in the initial dataset before SMOTE.

Attribute Description Attribute Description

Min Max Mean ± stdDev Gender male (1622), Female (2033)

Age 32 70 49.5 ± 8.56
Education PhD (423), BSc (1100),

High School (1526), MSc (606)Cigs/day 0 70 9 ± 11.92

totChol 113 464 236.8 ± 43.69 Current
smoker Yes (1788), No (1867)

SysBP 83.5 295 132.3 ± 22.1

DiaBP 48 142.5 82.9 ± 11.97 BPMeds Yes (111), No (3544)

BMI 15.54 56.8 25.8 ± 4.07 prevStroke Yes (21), No (3634)

Heart rate 44 143 75.7 ± 11.99 prevHyp Yes (1138), No (2517)

Glucose 40 394 81.8 ± 23.89 Diabetes Yes (98), No (3557)

2.2. Methodology

The following subsections emphasize the methodology followed in order to evaluate
the ML models we experimented with.

2.2.1. CAD Risk Prediction

The long-term risk prediction of coronary artery disease is formulated as a classi-
fication problem with two possible classes c = “CAD” or c = “non-CAD”. The trained
ML models will be able to predict the class of a new unclassified instance either as CAD
or non-CAD, based on the input features’ values, and thus predict the risk of coronary
artery disease.
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2.2.2. Data Preprocessing

The accurate identification of CAD and non-CAD instances may be impacted by the
unbalanced distribution of the instances in the two classes. Here, an oversampling method is
applied, namely SMOTE [49], which is based on the K-Nearest Neighbors (KNN) [50] classifier
with K = 5 and creates synthetic data [51] on the minority class (see Algorithm 1). The instances
in the CAD class are oversampled, such that the subjects in the two classes are uniformly
distributed. After the application of SMOTE, the dataset becomes balanced, the number of
participants is 6198 and the class variable includes 3099 CAD and 3099 non-CAD instances.

Algorithm 1 SMOTE

Input: M (number of samples in the minority class), N (% ratio of synthetic minority
samples for class balancing), K (number of nearest neighbors), ssyn synthetic instance;
Choose randomly a subset S of the minority class data of size S = N

100 M (synthetic
samples in the minority class) such that the class labels are uniformly distributed;
for all si ∈ S do

(1) Find the K nearest neighbors;
(2) Randomly select one of KNN, called ŝi;
(3) Calculate the distance di,k = ŝi − si between the randomly selected NN ŝi and the
instance si;
(4) The new synthetic instance is generated as ssyn = si + δdi,k (where δ = rand(0, 1) is
a random number between 0 and 1);

end for
Repeat steps number 2–4 until the desired proportion of minority class is met.

The number of women is 2805 (45.3%), while the number of men is 3393 (54.7%).
Finally, statistical details about the features in the balanced data are outlined in Table 2.

Table 2. Numerical and nominal features’ description after SMOTE.

Attribute Description Attribute Description

Min Max Mean ± stdDev Gender Male (3393), Female (2805)

Age 32 70 51.5 ± 8.34
Education Phd (665), BSc (1693),

High School (3198), MSc (642)Cigs/day 0 70 9.4 ± 11.79

totChol 113 464 240.5 ± 44.18
Current smoker Yes (2803), No (3395)

sysBP 83.5 295 136.8 ± 23.8

diaBP 48 142.5 84.7 ± 12.59 BPMeds Yes (111), No (6087)

BMI 15.54 56.8 26 ± 3.91 prevStroke Yes (21), No (6177)

Heart rate 44 143 75.8 ± 11.45 prevHyp Yes (2335), No (3863)

Glucose 40 394 84.3 ± 30.95 Diabetes Yes (183), No (6015)

2.2.3. Features Analysis

In the context of this subsection, our aim is to investigate the importance of the features
that represent the instances of the dataset. Two different methods were used: gain ratio
and random forest.

First, we employed the gain ratio (GR) method [52] to measure the importance of
the features in predicting the target class, calculating it as GR(Xi) = H(C)−H(C|Xi)

H(Xi)
, for

i = 1, 2, . . . , 15. In the previous equation, the denominator is the entropy of feature Xi
defined as H(Xi) = −∑xi∈Vi

p(xi)log2(p(xi)) (with Vi be the set of different values and pxi

denotes the probability of state xi of feature Xi). Furthermore, the left term in the nominator
is the entropy of class variable C defined as H(C) = −∑c∈C p(c)log2(p(c)) (with p(c)
being the probability of state c ∈ C = {CAD, Non − CAD}). Finally, the right term in



Sensors 2023, 23, 1193 5 of 13

the nominator is the conditional entropy of feature Xi given the C which is calculated
as H(C|Xi) = −∑c∈C ∑xi∈Vi

p(c|xi)log2(p(c|xi)) (where p(c|xi) is the related conditional
probability of state c given value xi).

In Figure 1, we exploited the GR method to capture the features’ order of importance
before and after the use of SMOTE. We observed that after SMOTE, heart rate and cigarettes
per day were categorized third and fourth in order, respectively, which without SMOTE
were last in order with zero scores.

Figure 1. Gain ratio features’ importance evaluation before and after SMOTE.

Random forest is a popular machine-learning algorithm characterized by high-accuracy
predictive ability, low overfitting (better generalization), and easy interpretability. Fea-
ture selection using random forest is categorized as an embedded method that achieves
a ranking of importance by the Gini impurity index. Gini impurity is computed at every
node split during the construction of a decision tree and measures the quality of the split
in terms of separating the samples of the different classes in the specific node. The higher
the increment in leaf purity, the higher the importance of the feature. This is applied for
each tree and averaged among all the trees normalized to 1. So, the sum of the importance
scores calculated by a random Forest is 1. Gini impurity index is computed based on
Equation [53]:

G =
c

∑
i=1

pi(1− pi)
2, (1)

where c denotes the number of classes and pi is the probability of a sample being categorized
in class i.

In Figure 2, features’ importance is computed based on random forest, which exploits
(1). Observing this figure, the features’ importance was essentially increased, and some of
them, such as BMI, cigarettes per day, and heart rate were elevated from the bottom to the
top of the hierarchy. Both in the case of random forest, most of the features’ importance was
enhanced except for diabetes, stroke prevalence and blood pressure medication (BPMeds).
For the models’ training and testing, all of these features were exploited.
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Figure 2. RF features’ importance evaluation before and after SMOTE.

2.3. Machine Learning Models

In this research article, we experimented with various ML models to discover which
one outperforms the others by evaluating their prediction performance. Specifically, we
focused on naive Bayes (NB) [54], which assigns an instance to that class for which the
conditional probability of the features’ set given class label is maximized, and logistic
regression (LR) [55], which are probabilistic classifiers. Furthermore, we used a decision-
tree-based model, especially J48 [56]. From ensemble ML algorithms, bagging [57], random
forest (RF) [58], rotation forest (RotF) [59], voting [60] and stacking [61] were exploited.
Furthermore, a fully connected class of feedforward artificial neural network (ANN), i.e.,
multilayer perceptron (MLP) [62], and KNN, a distance-based classifier, were evaluated.
Finally, in Table 3, we illustrate the optimal parameters’ settings of the ML models that we
experimented with.

Table 3. Machine learning models’ settings.

Models Parameters Models Parameters

NB useKernelEstimator: False
useSupervisedDiscretization: True RotF

classifier: RF
numberOfGroups: True

projectionFilter: PrincipalComponents

LR ridge = 10−8

useConjugateGradientDescent: True J48

reducedErrorPruning: False
savelnstanceData: True

useMDLCorrection : True, subtreeRaising: True
binarySplits = True, collapseTree = True

MLP
learning rate = 0.1
momentum = 0.2

training time = 200
Stacking classifiers: RF and NB

metaClassifier: LR

KNN

K=3
Search Algorithm: LinearNNSearch

with Euclidean
cross-validate = True

Voting
classifiers: RF and NB

combinationRule: average
of probabilities

RF
breakTiesRadomly :True

numIterations = 500
storeOutOfBagPredictions: True

Bagging
classifiers: RF

printClassifiers : True
storeOutOfBagPredictions: True
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2.4. Evaluation Metrics

In order to evaluate the ML models’ performance, we relied on the accuracy, precision,
recall and AUC metrics [63]. The confusion matrix consists of the elements true positive
(TP), true negative (TN), false positive (FP) and false-negative (FN). The aforementioned
metrics are defined as follows:

• Accuracy: Summarizes the performance of the classification task and measures the
number of correctly predicted instances out of all the data instances.

Accuracy =
TN + TP

TN ++FN + TP + FP
(2)

• Precision: Shows the ratio of positive subjects in relation to true and false positive
subjects.

Precision =
TP

TP + FP
(3)

• Recall: Corresponds to the proportion of participants who were diagnosed with CAD
and were correctly considered positive, concerning all positive participants.

Recall =
TP

TP + FN
(4)

• In order to evaluate the distinguishability of a model, the AUC is exploited. It is a
metric that varies in [0, 1]. The closer to one, the better the ML model performance is
in distinguishing CAD from non-CAD instances.

2.5. Experimental Setup

For the evaluation of our ML models, we relied on the Waikato environment for knowl-
edge analysis (Weka) [64]. In addition, the experiments were performed on a computer
system with the following specifications: 11th generation Intel(R) Core(TM) i7-1165 G7
@ 2.80GHz, RAM 16 GB, Windows 11 Home, 64-bit OS and x64 processor. We applied
10-fold cross-validation in order to measure the ML models’ efficiency in the balanced
dataset of 6198 instances after SMOTE, and in the unbalanced dataset of 3655 instances
without SMOTE.

3. Results

The purpose of our evaluation is to highlight the role of the SMOTE technique in
terms of developing ML models of high reliability and accuracy. In this direction, we
experimented with well-known ML models, such as NB, LR, RotF, MLP, KNN, J48, bagging,
RF, voting and stacking, evaluating them in terms of accuracy, recall, precision and AUC
after 10-fold cross-validation with and without the use of SMOTE.

Specifically, the initial dataset includes 3655 instances. The number of participants
who have been diagnosed with CAD is 556 (15.2%), while the non-CAD participants are
3099 (84.8%). According to Table 4 and without the application of SMOTE, the ML models
we experimented with have quite high accuracy rates (as this metric captures the overall
classification performance in both states of the class label) and less good rates in terms of AUC.
AUC is a measure that shows the separation ability of a model among the distributions of
CAD and non-CAD instances. The smaller their overlap is, the higher the AUC values will
be. In the current dataset, the AUC values without SMOTE reveal that the models have a
chance between 55.4% (KNN) and 71.3% (RotF) of being able to distinguish between CAD
and Non-CAD classes. Moreover, focusing on the values of the Recall metric, which captures
how many of the samples belonging to the CAD class were correctly classified, these ones are
significantly low, ranging from 4.5% (bagging) to 31.8% (NB).

Furthermore, from Table 4, we see that after applying SMOTE, the ML models achieved
very high-performance metrics. Focusing on the acquired experimental outcomes of the
recall metric, its superiority over the No-SMOTE case is significant due to the reduction in
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false-negative predictions. This is of great importance and plays a decisive role in the design
of efficient ML models and techniques. The ratio of correctly recognized CAD samples ranges
from 74.2% (LR) to 87.6% (stacking). The accuracy was less enhanced by the application of
SMOTE, while the highest improvement of 10.6% is observed by the NB classifier.

Table 4. Performance evaluation of ML models in terms of accuracy, precision, recall and AUC metrics.

Accuracy Precision (CAD class) Recall (CAD Class) AUC

No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE No SMOTE SMOTE

NB 0.700 0.906 0.336 0.973 0.318 0.835 0.700 0.941

LR 0.754 0.779 0.645 0.710 0.088 0.762 0.729 0.793

MLP 0.730 0.798 0.355 0.742 0.146 0.801 0.661 0.833

3-NN 0.722 0.796 0.311 0.760 0.140 0.867 0.585 0.854

RF 0.748 0.855 0.493 0.844 0.063 0.871 0.693 0.931

RotF 0.751 0.845 0.625 0.827 0.054 0.872 0.713 0.925

J48 0.714 0.787 0.268 0.777 0.205 0.804 0.636 0.857

Stacking 0.747 0.909 0.482 0.967 0.059 0.876 0.698 0.961

Bagging 0.748 0.843 0.500 0.827 0.045 0.866 0.702 0.926

Voting 0.787 0.908 0.367 0.960 0.187 0.852 0.702 0.958

To further interpret the classification performance of ML models, AUC–ROC curves are
plotted in Figures 3 and 4, before and after the application of SMOTE. These are probability
curves that capture the relationship between the true positive rate (TPR or recall) and the
false positive rate (FPR), where FPR is defined as the ratio FP

FP+TN . As the results indicate,
the SMOTE benefited most of the models by significantly improving the recall of the CAD
class; thus, the AUC curves of ensemble models became more abrupt, starting from lower
values of FPR and attaining one. As a final note, it is observed that after class balancing,
stacking and voting have identical AUC curves, with a small lead in stacking in all metrics.

Figure 3. Performance Evaluation with AUC ROC Curves before SMOTE.
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Figure 4. Performance Evaluation with AUC ROC Curves after SMOTE.

Concluding the results section, we should highlight that the stacking ensemble model
after SMOTE with 10-fold cross-validation prevailed over the other models, achieving an
accuracy of 90.9%, a precision of 96.7%, a recall of 87.6% and an AUC equal to 96.1%.

4. Discussion

In this section, a brief description of relevant works on coronary artery disease risk
prediction is provided with the contribution of ML models and techniques.

First, the authors in [65] tested ten traditional ML algorithms. They also intro-
duced a new optimization technique called the N2 Genetic optimizer. The experiments
demonstrated that N2 Genetic-nuSVM provided an accuracy of 93.08% and an F1 score of
91.51% when predicting CAD outcomes among the patients included in the Z-Alizadeh
Sani dataset.

Similarly, the authors in [66] used the publicly available Z-Alizadeh Sani dataset, which
contains random samples of 216 cases with CAD and 87 normal controls with 56 different
features. Five different supervised classification ML algorithms, LR, a classification tree
with bagging (bagging CART), RF, SVM, and KNN, were applied. Finally, the results
indicate that the SVM model is able to predict the presence of CAD more effectively and
accurately than other models, with an accuracy of 89.4%, a sensitivity of 94.3%, a specificity
of 78.2%, and an AUC of 88.7%.

In addition, the authors in [67] compare the accurate prediction results of NB and
SVM in order to predict CAD in a timely manner. This research paper uses two types of
datasets (noisy and less noisy images along with numerical features), where the models
experimented with them. The NB model has lower accuracy compared to the SVM in
both cases.

In [68], the authors applied ML algorithms, including SVM, KNN, RT, RF, NB, gradient
boosting (GB) and LR, on a dataset obtained in the two General Hospitals in Kano State,
Nigeria for the prediction of CAD. In terms of accuracy, the random forest model emerged
as the best model with 92.04%; for specificity, the NB model was the best, with 92.40%. For
sensitivity, the SVM model was the best, with 87.34%, and for the AUC, the best model was
the RF model, with 92.20%.
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The research study in [69] aimed to improve the accuracy of CAD diagnosis by select-
ing the most significant features. For this purpose, several ML models such as the RT, the
C5.0 DT and the SVM, were evaluated. The RT showed promising results, achieving the
highest accuracy of 91.47%.

Moreover, in [70], the LR, SVM and ANN algorithms are the points of interest. In
order to evaluate the results, the accuracy and AUC scores have been performed using the
10-fold cross-validation. The SMOTE technique has been used to balance the dataset. The
ANN achieved the highest accuracy of 93.35% and an AUC of 98% for CAD prediction.

Furthermore, the same methodology is followed by the authors in [71]. Three feature
selection methods have been used on 13 input features from the Cleveland dataset with
297 entries, and 7 were selected. Specifically, SVM, NB and KNN using 10-fold cross-
validation were applied for CAD prediction. The NB classifier performs the best on this
dataset, achieving an accuracy of 84%.

Furthermore, the authors in [72–74] experimented with the same dataset [34] as the
current study. In [72], the neural network is the algorithm that yielded the greatest AUC
in R-studio when excluding observations in which there was at least one missing value
(AUC = 71%). When the data was analyzed in RapidMiner, the best algorithm was SVM
(AUC = 75%).

The study in [73] applied LR, NB, DT, KNN, SVM and RF in order to predict whether
a subject runs a risk of future development of CAD or not in the next ten years. The RF
model outperformed the other models with an accuracy of 91.1%, a precision of 64.3% and
a recall equal to 6.4%. In [74], work suggested the cloud RF (C-RF) model, which prevailed
compared to CART (classification and regression tree), SVM and CNN, with accuracy and
an AUC of 85%, similarly.

Here, in the balanced dataset after SMOTE, we exploited more efficient schemes
to design the desired classification models, with an emphasis on ensemble techniques.
Furthermore, we further validated the expected performance of ensemble models with a
graphical illustration of the AUC–ROC curves. To sum up, comparing the performance
of [72–74], our proposed trained and tested classifier (i.e., stacking) presents an accuracy
of 90.9 %, a precision of 96.7%, a recall of 87.6% and an AUC equal to 96.1% after SMOTE
with 10-fold cross-validation, thus confirming its high accuracy rates.

5. Conclusions

Cardiovascular disease remains the leading cause of death despite significant progress
in medical science and contains a wide range of diseases, including all pathological changes
involving the heart and/or blood vessels. The long-term risk prediction of CAD disease
was the topic under consideration in this research. Furthermore, the features’ importance
evaluation, based on the gain ratio and RF, was performed. Through risk factor monitoring
and analysis, personalized guidelines and interventions can be suggested to prevent CAD
occurrence. Such an analysis can help medical experts regularly reassess underlying risks,
and even if CAD occurs, they can provide patients with novel guidelines and treatments
based on individual patient characteristics, that may enhance their daily life, increase life
expectancy and restrict mortality.

Furthermore, experimental evaluation with various ML models, including NB, LR,
RotF, MLP, KNN, J48, bagging, RF, voting and stacking with 10-fold cross-validation, after
the use or not of SMOTE, was made. Comparing the ML models in terms of accuracy,
recall, precision and AUC, the reliability of the SMOTE technique was demonstrated. The
stacking ensemble model after SMOTE with 10-fold cross-validation was the model that
prevailed over the other ones, achieving an accuracy of 90.9%, a precision of 96.7%, a recall
of 87.6%, and an AUC equal to 96.1%; this constitutes the main proposition of this paper. In
future work, we aim to extend the machine learning framework by using deep learning
methods and comparing the results based on the aforementioned metrics.
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