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Abstract: Deep models have been studied in point cloud classification for the applications of au-
tonomous driving and robotics. One challenging issue is that the point cloud of the same object could
be discrepantly captured depending on sensors. Such a difference is the main cause of the domain gap.
The deep models trained with one domain of point clouds may not work well with other domains
because of such a domain gap. A technique to reduce domain inconsistency is domain adaptation. In
this paper, we propose an unsupervised domain adaptation with two novel schemes. First, to improve
unreliable pseudo-label assignment, we introduce a voting-based procedure based on the recycling
max pooling module, which involves self-paced learning. It helps to increase the training stability of
the models. Second, to learn the geometrical characteristics of point clouds in unfamiliar settings,
we propose a training method of cutting plane identification, which works in an unsupervised way.
Testing with the popular point cloud dataset of PointDA-10 and Sim-to-Real, experiments show that
our method increase classification accuracy by 6.5%-points on average, ModelNet and ShapeNet as
the source domain and ScanNet, and ScanObjectNN as the target domain. From an ablation study, it
was observed that each method contributes to improving the robustness of domain adaptation.

Keywords: point cloud classification; unsupervised domain adaptation; self-paced learning;
self-supervised learning

1. Introduction

The most straightforward way to depict a 3D object is as a point cloud. Deep learning
techniques that use the point cloud to learn classification and segmentation [1–8], detec-
tion [9,10], or completion [11,12] are currently being researched. The ability of the deep
model to learn these tasks is crucial in the fields of autonomous driving and robotics.

The point cloud can be constructed by gathering sensor data from real-world objects
using a depth camera or Light Detection and Ranging (LiDAR). The point cloud can also be
created by sampling a 3D shape. The points in the synthetic point cloud, which is produced
in virtual space, are dispersed uniformly, and the data may be easily updated or modified.
On the other hand, a real-world point cloud’s distribution might not be regular due to
equipment noise, and an object might not be entirely made up of obstacles. Furthermore,
a single object’s point cloud may be captured differently depending on the sensors used.
From this perspective, it is considered that a domain shift takes place when attempting to
develop the deep model using these point clouds.

The deep model must be adjusted to the environment in which it is intended to work
in order to overcome domain shift. However, gathering data is a labor-intensive operation
that takes a lot of time. Alternatively, synthetic point clouds could be produced with
simplicity utilizing a Computer-Aided Design (CAD). A source domain is an environment
rich in labeled data. A target domain is an environment where the deep model functions
but where labeled data are scarce. Unsupervised domain adaptation (UDA) should be
employed in training to enhance the deep model’s performance in the target domain.
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There are two basic ways to apply UDA to point clouds, according to recent studies.
The first technology utilizes adversarial learning, which makes it harder to distinguish
apart different domains [13]. Tasks can be completed regardless of the domain because this
technique decreases the deep model’s ability to discriminate input domains. The second
method makes use of self-supervised learning, which teaches the geometrical properties of
the domain on its own [14–18]. Self-supervised learning is an approach for establishing
deep models about the properties of the domain so that tasks can be carried out in the
domain. The strategy using self-supervised learning is currently the one with the best
performance. Geometry-Aware Self-Training (GAST) [14], which encodes features by
identifying angle and distorted parts of point clouds, was proposed.

However, the GAST’s pseudo-label generation mechanism is unreliable because the
pseudo-label is determined by a single prediction result, which has the highest confidence
score. It ignores other prediction results even though their scores are high, resulting in
wrong label assignments. Research on UDA of the point cloud is also lacking as compared
to 2D image fields, where several self-supervised learning methods, such as predicting
positional relationships of partial images and predicting the order of partial ones, are
examined. Therefore, we suggest voting-based self-paced learning with a recycling max
pooling module and unprecedented self-supervised learning method illustrated in Figure 1.
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Figure 1. Concept of our domain adaptation method on point cloud classification.

Therefore, this paper introduces a novel UDA method that could be applied to point
clouds. Our contributions are summarized as follows.

• We propose a novel voting-based procedure based on recycling the max pooling
module and using improved cross-entropy loss function.

• We suggest a training method of cutting plane identification, which is a novel self-
supervised learning method for domain adaptation. A corresponding cross-entropy
loss function was also presented for learning.

• We showed that the proposed methods improve point cloud classification accu-
racy through ablation studies, comparison studies with existing methods, and addi-
tional studies.

2. Related Work

Point Cloud Classification–There are two sorts of recent point cloud classification
networks. The first one is a method for understanding the point cloud’s characteristic
features using multi-layer perception (MLP), which can represent the association between
all points [1,2,5,7]. This tactic includes a methodology for encoding all information between
points into the MLP. The method has a weakness in that the deep model could not recognize
local features due to a lack of regional information. An approach using local features with
surrounding points [19] and was using a graph with those local features [3,4,6,8] were
investigated to address the drawbacks. These networks tried to learn global or regional
geometric features through point cloud classification. The domain adaptation on the point
cloud has not been considered.
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Unsupervised Domain Adaptation for Point Cloud–An UDA method used in a 2D
image field could be classified into two types. In the first scheme, domain adaptation is
attempted by reducing domain disparities. This approach is broken down into two parts:
a way to utilize a statistical distribution and a technique to leverage domain distance.
Minimizing the maximum mean discrepancy (MMD) between the source domain and
the target domain is a representative way to increase classification accuracy [20,21]. The
second way aligns features across domains is by employing adversarial learning. The
method for aligning domains with a domain classifier and an inverse gradient layer has
been proposed [22,23].

In a recent point cloud study, domain adaptation was attempted using both a method
of minimizing domain difference and adversarial learning. Qin et al. [13] proposed a node
module that could learn partial features of the point cloud and a way to minimize MMD
between nodes. At the same time, adversarial learning was also applied to take in overall
characteristics between domains. The amount of information the point cloud contains
when learned partially is limited. Therefore an optimal local issue may arise.

Self-supervised Domain Adaptation for Point Cloud–Self-supervised learning is
the process of exploiting input data that has been transformed into a format suitable
for supervised learning. Through self-supervised learning, deep learning models could
explore what the dataset represents. Recent 2D image research has suggested learning
representativeness through tasks including predicting the positional relationship of two
parts in an image [24], predicting the rotation angle of an image [25], and predicting order
using a jigsaw puzzle [26]. These works have demonstrated that when supervised learning
is implemented after comprehending the representation of images via self-supervised
learning, the performance of deep models may be enhanced.

Studies have sought to increase classification accuracy in point clouds by adopting
self-supervised learning. Sauder [15] used a method to predict position after dividing
a point cloud into voxel units, and Poursaeed et al. [16] tried to improve classification
accuracy by rotating the entire point cloud and then predicting the rotated angle. Recently,
researchers have tried to acquire the geometrical properties of point clouds that use self-
supervised learning in an effort to adapt the domain. In Achituve et al. [17], a point cloud
is partially distorted and then reconstructed. Zou et al. [14] suggested a methodology for
self-supervised learning that predicts the rotation angles of two-point clouds and distorted
positions. In addition, in Shen et al. [18], the reconstruction of the point cloud is carried out
with a feature map of the point cloud and sampled points.

These strive at domain adaption employing self-supervised learning on point clouds.
There have been relatively few studies on self-supervised learning algorithms for point
clouds since, unlike 2D images, they cannot be described simply using coordinates. For ex-
ample, the self-supervised learning method using a jigsaw puzzle could not be easily imple-
mented since the three-dimensional coordinate is more intricate than the two-dimensional
coordinate. Therefore, research is required into how to effectively employ point clouds as
self-supervised learning data.

3. Unsupervised Domain Adaptation for Point Cloud Classification

Source domain labeled point clouds S =
{
P s
〉 , †s
〉

}ns

〉=1
and target domain unlabeled

point clouds T =
{
P t
〉

}nt

〉=1
are utilized in UDA on point cloud classification. The point

cloud P ∈ X ⊂ RN×3 consists of N three-dimensional coordinated (x, y, z). A classification
result is obtained by Equation (1).

Φ(P) = Φcls

(
Φ f ea(P)

)
(1)

where Φ f ea creates features of the input point cloud, and Φcls which is composed of fully
connected (FC) layers and classifies a category of the point cloud. The equation of the
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classification deep model Φ in GAST [14] has been replaced as follows in Equation (1)
because. The reason is that, in our opinion, the output of Φ f ea is used as the input of Φcls.

Figure 2 depicts the suggested UDA procedure. It consists of three main components.
The multiple one-dimensional feature vectors from the point cloud are produced by the
feature extractor Φ f ea and recycling max pooling module. The category classifier Φcls
identifies the class of the point cloud, and the cut plane classifier Φcut distinguishes the
direction of cutting planes. We propose a novel UDA that makes use of self-paced learning
and self-supervised learning. Before providing the proposed method, Section 3.1 explains
the GAST learning category classification and domain adaptation method. Section 3.2 then
introduces the proposed self-paced learning method. Finally, Section 3.3 illustrates the
suggested self-supervised learning strategy.
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3.1. Domain Adaptation on Geometry-Aware Self-Training
3.1.1. Learning Category Classification

For the point cloud
{
P s

i , †s
i
}ns

i=1 in the source domain, the model Φ predicts a category
with

{
ps

i
}ns

i=1, category classification learning in the source domain is conducted using
cross-entropy loss, as shown in Equation (2).

Lcls = −
1
ns

ns

∑
i=1

C

∑
c=1

I[c = †s
i ] log ps

i,c (2)

where ps
i,c means c-th predicted value of

{
ps

i
}ns

i=1, and I[·] means indicator function.
I
[
c = †s

i
]

means a value in that class. It has a value of 0 or 1, and one value of 1 per
object ns.

Since there are no labeled data, category classification learning in the target domain
uses self-paced learning. Creating pseudo labels based on the model’s computed prediction
results and applying them for training is known as self-paced learning. For the point cloud{
P t

i
}nt

i=1 in the target domain, the model Φ predicts a category
{

pt
i
}nt

i=1. The category with
the highest predicted value is taken into consideration as the label, and a pseudo-label is
formed. When the label of the corresponding category is †̂t

i,c, a pseudo label is brought
about in Equation (3).

†̂t
i,c =

1, i f c = argmax
c′

pt
i,c′ , pt

i,c > exp(−γ)

0, otherwise.
(3)

where pt
i,c means c-th predicted value of

{
pt

i
}nt

i=1.
It is considered that producing pseudo labels with only the highest value is an unreli-

able method, so the methods that could generate reliable pseudo labels have been studied.
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Fan et al. [27] proposed a voting-based pseudo-label generation method using the k-nearest
neighbors (k-NN) algorithm. However, it has the shortcoming that pseudo labels can be
determined only after all the feature vectors of input data are fed into the k-NN algorithm,
unable to be used during the deep model training in real time. Our proposed method
addresses this problem by having the pseudo-label determination process run during the
model training at the same time.

3.1.2. Self-Supervised Learning on Geometry-Aware Self-Training

Through encoding geometrical features of point clouds to deep models using two
approaches, domain adaptation by self-supervised learning was attempted in GAST. The
first method is rotation angle identification (RotCls), and the other method is distortion
area identification (LocCls). The identification results are trained using cross-entropy loss
in both methodologies.

The angle is the rotated point cloud is anticipated throughout the RotCls phase. In
the beginning, the point cloud P is divided into two-point clouds Pa and Pb. Then, Pa is
rotated along x-axis clockwise and Pb is rotated along y-axis in clockwise angle within {0◦,
90◦, 180◦, 270◦}. A new point cloud Prot which would be used as input for a deep model
consisting of Pa and Pb rotated in x-axis and y-axis. Using Prot as input, Pa and Pb are
each identified in rotation angle.

LocCls refers to the process of distorting a portion of the point cloud and predicting a
number of distorted regions. First, P is separated into k3 regions in units of voxels, and
then one section is selected for distortion. A new point cloud Ploc is created by applying
distortion by sampling with an isotropic Gaussian distribution around the point is selected
one point in the chosen area. Using Ploc as input, which of the k3 region is distorted
is classified.

3.2. Preliminary: Recycling Max Pooling

The backbone network of the point cloud deep model creates a feature matrix ex-
pressing correlation for each point or graph. By utilizing max pooling on the matrix, a
feature vector is produced, after which classification or segmentation is carried out using
the feature vector’s information. In order to improve the performance of the point cloud
deep model, a method of utilizing the feature matrix has been studied.

Chen et al. [28] argued that a lot of information is discarded from the feature matrix
in the max pooling. Chen et al. suggested a recycling max pooling module that extracts
the second and third max pooling vectors in addition to the first max pooling vector. The
experiment was presented, showing similar performance even when the classification
was performed using the second or third feature vector. This showed that not only the
first max pooling vector but also the subsequent max pooling vectors contributed, have
significant values. By using these sequential max pool processes, we can extract multiple
label candidates from a single input, contributing to the improved label determination
scheme. All feature vectors generated by the recycling max pooling module had their loss
values calculated and were reflected in the deep model. Additionally, it reveals that the
accuracy increased when the scheme was used with various deep-point cloud models.

3.3. Proposed Self-Paced Learning: Voting Pseudo Label with Recycling Max Pooling

The recycling max pooling is applied to the following procedure to produce multiple
feature vectors. When point cloud P passes through the feature extractor Φ, the feature
matrix P f

1 ∈ RN1×M can be obtained. N1 denotes the number of points before the first max
pooling, and M means the dimension of the feature matrix. After the first max pooling is
performed, we will gain a feature vector F1 ∈ RM and a feature matrix P f

2 ∈ RN2×M which
excludes the feature vector F1. N2 implies the number of points after the first max pooling
vector is excepted. The process is repeated r times until the rth feature vector Fr ∈ RM

is earned.
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r feature vectors will be utilized for supervised learning of the source domain point
cloud, self-paced learning of the target domain point cloud, and self-supervised learning.
Section 3.3.1 introduces the procedure of learning category classification using the feature
vectors of the source domain point cloud. The issue with the existing pseudo-generating
method is brought up in Section 3.3.2, and a revised approach that makes up for the
disadvantage while presenting the voting procedure is suggested in Section 3.3.3.

3.3.1. Supervised Learning in Source Domain with Recycling Max Pooling

When the point clouds in the source domain are given such as
{
P s

i , †s
i
}ns

i=1, r feature
vectors can be obtained for one point cloud. Each feature vector will pass through the
category classifier Φcls to obtain a category prediction result ps

i . The loss is calculated with
a cross-entropy function using the prediction results as shown in Equation (4) by obtaining
the average of the r feature vectors.

Ls
cls = −

1
ns

ns

∑
i=1

1
r

r

∑
j=1

C

∑
c=1

I[c = †s
i ] log ps

i,j,c (4)

ps
i,j,c means c-th predicted value. The deep model may learn to be more generalized

than when employing a single feature vector because learning happens with the outcomes
from several feature vectors.

3.3.2. Problem of Existing Self-Paced Learning

The pseudo-label generation method of GAST has a disadvantage that could happen
while determining the learning direction. The reason is that the deep model recognizes the
category with the highest score as the answer. If the deep model sees one object as another
category at the beginning of learning and generates an incorrect answer, the issue that
the deep model keeps learning with the incorrect label emerges. As a result, classification
performance for the target domain point cloud suffers.

In order to reimburse the drawback, we propose the pseudo-label generation method
using voting with the recycling max pooling module. In the previous study, the pseudo
label was determined by examining just one classification result because the deep model of
GAST makes one-dimensional output. Ours uses votes from a variety of results to choose
the label. The dependability of the pseudo label is projected to be increased by this method,
which is anticipated to be crucial in establishing the learning direction.

3.3.3. Pseudo Label Generation with Voting

Figure 3 illustrates the voting-based pseudo-label generation mechanism leveraging
the recycling max pooling module. When the target domain point cloud P t

i passes through
the feature extractor Φ f ea, recycling max pooling module, and the category classifier Φcls,
r category prediction results can be obtained. As shown in Equation (5), the label is
determined through voting.

†̃t
i = vote

({
†t

j

∣∣∣j ∈ {pt
i
}r

i=1

})
(5)

†̃t
i means a pseudo-label vector generated through voting and is in the form of a

one-hot vector. The label is created only when the proportion of the results of a specific
category is greater than a threshold λvote ∈ [0, 1] and learning is performed as shown in
Equation (6) through the cross-entropy loss. Self-paced learning will not be used for the
remaining point clouds.

Lt
cls = −

1
nt

nt

∑
i=1

1
r

r

∑
j=1

C

∑
c=1

I
[
c = †̃t

i

]
log pt

i,j,c (6)
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The category classification loss value of the source domainLs
cls introduced in Section 3.3.1

is combined with Lt
cls as in Equation (7) to proceed with the point cloud category classifica-

tion learning.
Lsem = Ls

cls + λtLt
cls (7)

λt ∈ [0, 1] is a penalty parameter for reducing noise at the beginning of the learning.

3.4. Proposed Self-Supervised Learning: Cutting Plane Identification

We present a novel method for the model to learn geometric information and cutting
plane identification (CutCls). As shown in Figure 4, CutCls entails dividing the point
cloud in half on a plane in either the x-z or y-z direction and then forecasting the cut
direction between the two planes. This approach was motivated by the idea that geometric
features could be learned by predicting the cut plane axis of the point cloud. We believe
that this technique could extract and encode overall geometrical characteristics into feature
vectors. The training process involving the classification of the cut direction x-z or y-
z forces the model to learn geometric features from an unfamiliar environment. As a
result, the backbone of the model can extract point cloud features even from samples of
different domains.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 15 
 

 

The category classification loss value of the source domain ℒ  introduced in Section 
3.3.1 is combined with ℒ  as in Equation (7) to proceed with the point cloud category clas-
sification learning. ℒ = ℒ + 𝜆 ℒ  (7) 𝜆 ∈ [0,1] is a penalty parameter for reducing noise at the beginning of the learning. 

 
Figure 3. Pseudo-label voting process utilizing recycling max pooling module. 

3.4. Proposed Self-Supervised Learning: Cutting Plane Identification 
We present a novel method for the model to learn geometric information and cutting 

plane identification (CutCls). As shown in Figure 4, CutCls entails dividing the point 
cloud in half on a plane in either the 𝑥-𝑧 or 𝑦-𝑧 direction and then forecasting the cut 
direction between the two planes. This approach was motivated by the idea that geometric 
features could be learned by predicting the cut plane axis of the point cloud. We believe 
that this technique could extract and encode overall geometrical characteristics into fea-
ture vectors. The training process involving the classification of the cut direction 𝑥-𝑧 or 𝑦-𝑧 forces the model to learn geometric features from an unfamiliar environment. As a 
result, the backbone of the model can extract point cloud features even from samples of 
different domains. 

 

  
(a) (b) (c) 

Figure 4. Illustrative examples of generating a cutting plane identification point cloud. (a) Original
point cloud. (b) Point cloud cut on x-z plane. (c) Point cloud cut on y-z plane.
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Moreover, the CutCls are expected to be more effective in using a cut point cloud,
unlike traditional methods. For instance, it is challenging to find an optimal value in the
case of the LocCls of GAST since it is a problem to predict the answer among k3 classification.
On the other hand, CutCls has the advantage of being able to use self-supervised learning
that performs binary classification to quickly converge desired geometric feature learning.
The binary classification means that the statement is determined between two values. It is
possible to rapidly reach the optimal value because there is less information to learn.

When a set of x-axis or y-axis coordinate values of the plane to be cut in the point
cloud, P is

{
om

i
}m

i=1, cutting coordinate is decided as in Equation (8).

CutCoord =
max

o

{
om

i
}m

i=1 −min
o

{
om

i
}m

i=1

2
(8)

If the point cloud P is cut along the selected plane from the obtained coordinates,
two-point clouds Pl and Pr could be gained. Which of the point cloud should be employed
is decided randomly because if only one of the two point clouds is used as input, self-
supervised learning may not be successfully carried out. The deep model will have learning
biases toward one class, and it will cause class imbalance.

The selected point cloud cut in half needs to be adjusted the number of points. A point
cloud has a variable distribution of points for each point cloud, so cutting in the following
method will produce a different number of points. On the other hand, if a 2D image
were chopped in half, the quantity of information would be exactly halved. Therefore, the
number of points should be sampled as Pcut ∈ Rm

2 ×3 through farthest distance sampling
used in PointNet [1].

The dataset created for domain adaptation could be indicated as {Pcut,i, hi}ns+nt
i=1 . hi

means the direction of the cut plane and has the form of a one-hot vector. Using the
point cloud Pcut as input, the direction of the cut plane is predicted among x-z plane or
y-z plane through Φcut. When the set of predicted results is

{
pi,j,g

}ns+nt
i=1 , the model uses

cross-entropy loss as in Equation (9) to encode geometric features.

Lcut = −
1

ns + nt

ns+nt

∑
i=1

1
r

r

∑
j=1

G

∑
g=1

I[g = hi] log pi,j,g (9)

Domain adaptation is conducted by summing Lcut and Lsem which was gained from
Section 3.3.3 as in Equation (10).

Ltotal = Lsem + λcutLcut (10)

where λcut is trade-off hyper-parameter.

4. Experiments
4.1. Datasets

PointDA–The PointDA [13] is used to check whether domain adaptation is performed.
PointDA is a dataset that collects point cloud data corresponding to 10 categories common
to ModelNet40 [29], ShapeNet [30], and ScanNet [31]. Only objects in the 10 categories are
collected in ModelNet40 and are known as ModelNet-10 (M10). ShapeNet-10 (S10) is from
ShapeNet, and ScanNet-10 (S*10) is from ScanNet. Table 1 shows the number of training
and tests each dataset has and the property of datasets.

Table 1. Characteristics and compositions of the dataset.

Dataset Name Characteristic Num. Train Num. Test

ModelNet-10 Synthetic 4183 856
ShapeNet-10 Synthetic 17,378 2492
ScanNet-10 Real-world 6110 2048
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M10 and S10 are data obtained by uniformly sampling points from a 3D model
artificially created through 3D CAD. However, S*10 has data acquired by separating
corresponding to specific objects from the point cloud collected by a depth camera in
real space. For this reason, ScanNet’s point distribution is not uniform, in contrast to
ModelNet40 and ShapeNet. Additionally, since depth information is not partially gathered,
some point clouds may not accurately depict the object.

Sim-to-Real–The Sim-to-Real [32] is a new benchmark, which shares 11 categories
with ModelNet40 and shares nine categories with ShapeNet from ScanObjectNN [33]. The
dataset is gathered to estimate the effectiveness of meta-learning on point clouds. Our
approach, which applies point cloud domain adaptation, is evaluated with the dataset. The
dataset has four subsets: ModelNet-11 (M11), ScanObjectNN-11(S*O11), ShapeNet-9 (S9),
ScanObjectNN-9 (S*O9).

4.2. Experiment Setup

Comparative Methods–The dataset was tested only when the target domain were
real-world datasets, such as ScanNet-10, ScanObjectNN-11, and ScanObjectNN-9. The
reason is that in order to check if this technology could be used in the real-world, data of
the target domain should be from the real-world. We conduct experiments with four types
of scenarios. PointDA: M10→ S*10, S10→ S*10, Sim-to-Real: M11→ S*O11, S9→ S*O9.

For evaluation, it was examined whether the proposed method improves the accuracy
compared to the case without domain adaptation. In addition, it was also investigated
how the accuracy was improved when combined with the two ways (LocCls and RotCls)
proposed by GAST [14]. The comparison with the GAST method was inspected on our
platform, and the accuracy of the GAST was referred to for supervised learning and
remaining domain adaptation methods.

Implementation Details–Backbone network Φ f ea for extracting the point, cloud fea-
tures are based on DGCNN [8] proposed in 2019. The DGCNN is an improved deep
model for point cloud than PointNet [1] or PointNet++ [2], and its benchmark is higher.
In addition, The DGCNN is most recently used for comparison in the field of point cloud
domain adaptation research. The category classifier Φcls has three FC layers of MLP, each
having 512, 256, and 10 nodes, respectively. The model predicts 10 categories of point
clouds. A classifier for cutting plane prediction self-supervised learning uses one FC layer.
The dimension of our point cloud dataset is all set to 1024.

As in GAST, z-axis direction random rotation data augmentation was applied, the
Adam [34] optimizer was utilized, the initial learning rate was 0.001, the weight decay was
0.00005, and a cosine annealing learning rate scheduler was employed. All experiments
were performed for 200 epochs with a batch size of 16. The hyperparameter of λcut is set to
1. The r is set to 5. The experiment was carried out after the most credible label had been
produced with λvote being set to 1. The test was performed by measuring the classification
accuracy without data augmentation on the test set of each data set. In total, we train all
the methods with the same random seeds on an NVIDIA Geforce RTX 3070 GPU.

4.3. Results

The experiments were conducted by classifying them into three purposes. First, the
ablation study signifies that each of the proposed methods is effective. Second, the compar-
ison studies show how much performance improvement was achieved when compared to
the domain adaptation methods that were previously applied. Finally, in additional studies,
we analyze how changing different hyperparameters affects accuracy.

4.3.1. Ablation Studies

The ablation studies were performed to see if the proposed self-paced learning tech-
nique and self-supervised learning method are effective for domain adaptation. For the
two scenarios M10→ S*10 and S10→ S*10, the accuracy without applying the domain
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adaptation methods was calculated, and the effectiveness of each method was proved. The
accuracies of the experiments are shown in Table 2.

Table 2. Accuracy (%) of ablation study on M10→S*10 and S10→S*10 scenario.

Adaptation Method
M10→S*10 S10→S*10

Voting SPL CutCls

46.8 47.5
X 53.9 55.1

X 49.6 46.4
X X 56.3 56.4

In the M10→S*10 scenario, both self-paced learning and cutting plane identification
show improved accuracy than when there is no domain adaptation. In addition, when
learning by combining the two methods, better accuracy was recorded than when each was
applied, with a 9.5%-point increase. When self-paced learning was used in the S10→S*10
scenario, the accuracy was improved. However, the accuracy decreased when the CutCls
were used alone.

We had held the opinion that the ShapeNet-10′s data imbalance was to blame for the
result because it has a disproportionate amount of data in some categories. For example,
chair and table point clouds accounted for 60.4% of the dataset. Therefore, we evenly
adjusted the number of samples in each category and executed the experiment in same
scenario. The results are different from our expectations; the accuracy does not improve at
all. It even drops. It means the class imbalance was not the cause of the dropped accuracy.

To investigate the reason from another perspective other than the class imbalance, we
analyzed the classification accuracy for each category as shown in Table 3. As a result,
we find that 3 out of 10 categories are responsible for lowered accuracy (18% points drop
in average); they are bathtub, sofa, and table, while the accuracy of other four categories
improves, and the remaining categories do not change. The common characteristic of the
three categories is that they are all relatively simple and big objects, while the improved
four categories are bookshelf, lamp, monitor, and plant, which are small and have a
complex shapes.

Table 3. Category-wise classification accuracy (%) on the S10→ S*10 scenario.

Bathtub Bed Bookshelf Cabinet Chair Lamp Monitor Plant Sofa Table

w/o
Adapt 61.5 0 0.1 0.1 63.9 41.5 44.3 0 38.1 65.8

Only
CutCls

42.3
(−19.2)

0
(0)

23.3
(+23.2)

0
(−0.1)

65.8
(+1.9)

58.5
(+17.0)

60.7
(+16.4)

64.0
(+64.0)

26.1
(−12.0)

45.5
(−20.3)

Furthermore, when the two methods were put on learning at the same time, the
accuracy increased by 8.9%-points. This finding demonstrates that each suggested strategy
for domain adaptation affects classification in the target domain.

4.3.2. Comparison Studies

The accuracy of the four scenarios introduced in Section 4.2 is assessed to see if the
proposed self-paced learning and cutting-plane self-supervised learning approaches are
successful. The accuracy results are compared with the accuracy of the existing method.
Furthermore, we observed the outcomes of integrating our method with the existing self-
supervised learning approach. LocCls and RotCls of GAST were merged with the CutCls,
respectively, and an experiment combining all three was also conducted. Table 4 shows the
results of the comparison studies.
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Table 4. Accuracy (%) on the PointDA and Sim-to-Real datasets. The accuracy for models marked
with † is tested on our platform.

M10→S*10 S10→S*10 M11→S*O11 S9→S*O9

Supervised 78.4 78.4 - -
w/o Adaptation† 46.8 47.5 58.8 46.1

DANN [35] 42.1 50.9 - -
PointDAN [13] 44.8 45.7 - -

RS [36] 46.7 51.4 - -
DefRec+PCM [17] 51.8 54.5 - -

GAST† [14] 55.3 54.1 57.1 41.9
Ours† 56.3 56.4 63.8 48.5

Ours + LocCls† 55.2 54.7 61.2 48.1
Ours + RotCls† 57.3 55.8 61.3 47.9

Ours + LocCls + RotCls† 56.5 55.2 58.9 48.6

In the M10 → S*10 and S10 → S*10 scenarios, using the existing GAST method
increased by 8.5%-points and 6.6%-points, respectively. When the proposed method was
exploited, the accuracy separately rose by 9.5%-points and 8.9%-points. Even in the M11
→ S*O11 and S9 → S*O9 scenarios, the accuracy rather decreased when learning with
existing domain adaptation. Conversely, when we employed our strategy, the accuracy
was enhanced by 5.0%-points and 2.4%-points, respectively.

It is presumed that the cause of the diminished accuracy with the existing method in
the M11→ S*O11 and S9→ S*O9 scenarios is the problem with the self-paced learning
method. When generating a pseudo label in the self-paced learning of the GAST, the
category with the highest score in the predicted value is created as a label to learn. If
an object’s label is produced wrongly at the start of learning, there’s a chance that the
inaccurate label will continue to be learned later.

On the one hand, the characteristics of ScanNet-10 are markedly different for each
category. On the other hand, in ScanObjectNN-11, there are categories with overlapping
features. For instance, in bed and desk or cabinet and door, the shape of these objects looks
similar when visualized in 3D. Studies would suffer in the long term if a model confused
these objects to produce pseudo labels. An example of the objects, each having similarities,
is shown in Figure 5.
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The proposed voting-based pseudo-label generation method could reduce confusion
among similar objects. This is because the pseudo label is not used for learning if the voting
rate falls short of the threshold. Since learning proceeds only when the deep model is
confident in the category, it can be expected that the accuracy is improved by generating
steady pseudo labels. Table 5 shows that the accuracies of some categories increased
when our proposed method was utilized. For the two categories of desk and bed, the
accuracy improved by 20% points on average, proving that our voting scheme is effective,
while the results of the door were similar. However, in the cabinet category, the accuracy
dropped from 8.5% to 0%. We carefully investigated the cabinet samples from two datasets,
ModelNet and ScanObjectNN. Surprisingly, we found that the cabinets are quite different
in the two datasets, as shown in Figure 6. For example, the cabinets of ModelNet look
similar to desks, while those of ScanObjeectNN look similar to wardrobes. Such a difference
is likely to be the main cause of the low accuracy.

Table 5. Part of category-wise classification accuracy (%) on the M11→S*O11 scenario.

Desk Bed Door Cabinet

GAST [14] 39.0 33.3 99.5 8.3
Ours 76.6 45.2 97.6 0
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Figure 6. The example of a cabinet point cloud of ModelNet and ScanObjectNN. (a) ModelNet.
(b) ScanObjectNN.

When learning in blend with GAST’s self-supervised learning method, the highest
accuracy was recorded if RotCls was merged in the M10 → S*10 scenario. In addition,
in the S9→ S*O9 scenario, the highest accuracy is accounted for when all methods are
combined. On the other hand, when LocCls was mingled, the accuracy was higher than the
state without adaptation, but it did not record the highest accuracy. This shows that the
performance improvement of the LocCls is insignificant compared to the other methods.
The reason for this phenomenon is that the learning process of LocCls is more complicated
than others.

4.3.3. Additional Studies

In order to examine the impact of the pseudo label generation threshold value on
learning, an experiment was run while varying the value of λvote. In the M10 → S*10
scenario, when the λvote value was 1.0, 0.8, and 0.6, respectively. The proposed method was
used, and the accuracies were compared. As shown in Table 6, the learning results show
that the accuracy is highest when the λvote value is 1.0. In addition to that, the lower λvote
value, the greater drop in accuracy. It is speculated that this is because the false label occurs
more frequently as the threshold value decreases.
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Table 6. Accuracy (%) of pseudo label generation threshold change experiment on M10→ S*10.

λvote=1.0 λvote=0.8 λvote=0.6

56.3 50.7 50.2

Moreover, an experiment was conducted to investigate how the accuracy change
with the r value or recycling max pooling number. In the M10→ S*10 scenario, when the
value was sequentially increased to 3, 5, 15, and 20, the change in accuracy was checked.
The learning results are shown in Table 7. The findings indicate that when the r value
rises, accuracy may also rise. Since there are fewer recycling max pooling and the voting
dependability is worst, the accuracy is lowest when r = 3. The accuracy is maximum when
the r value is 15, but it is lower than 15 when the value is 20. This suggests that overfitting
occurred because there were too many recycled vectors employed for learning. Although
the accuracy is the highest when the value is 15, the inference time of the deep model will
increase because of the rise of r value. Therefore, it is important to choose a value that takes
operational time into account.

Table 7. Accuracy (%) of the number of recycling max pooling change experiments on M10→ S*10.

r=3 r=5 r=15 r=20

49.8 56.3 56.4 53.4

For the purpose of researching the effect of the angle of the cutting plane, an experi-
ment was handled by adjusting the cutting plane. The cutting plane was rotated by {10◦,
30◦, 45◦} in y-axis direction, respectively, and then cut to generate Pcut. The result of the
experiment is shown in Table 8. It can be seen that the highest accuracy is achieved when
the cutting plane was without rotation in the M10→ S*10 scenario. Since the input point’s
angle is not rotated in the y-axis when we test it, we anticipate that this is the reason. This
implies that the optimal domain adaptation strategy is cutting the plane vertically.

Table 8. Accuracy (%) of cutting plane angle rotation experiment on M10→ S*10.

0◦ 10◦ 30◦ 45◦

56.3 52.2 52.5 52.8

5. Conclusions

In this paper, we proposed a novel unsupervised domain adaptation method applica-
ble to point cloud classification. The novel voting-based procedure based on the recycling
max pooling module was presented. In addition, we introduced the self-supervised learn-
ing method and raised the possibility of expanding the self-supervised learning in point
cloud classification.

According to the experiments, the proposed methods were helpful for the domain
adaptation of point clouds. Each strategy improved accuracy, it was found through an
ablation study. Furthermore, the most appropriate mechanism for domain adaptation
was discovered by investigations combined with the existing approaches. Finally, the
optimal conditions were known via additional studies adjusting the hyperparameters of
the proposed method.

The suggested point cloud domain adaptation method does, however, have certain
limitations. When generating pseudo labels with voting on multiple vectors, the problem
will occur when the voting rate does not exceed the threshold. Our self-paced learning
process was abandoned if the rate failed to surpass the threshold. In other words, the
dataset’s information was not being utilized to its full potential. If adversarial learning or
other pseudo-label generation methods can be used for the data in this situation, higher
accuracy can be expected. We will investigate this approach in future work.
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