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Abstract: Due to the distributed data collection and learning in federated learnings, many clients
conduct local training with non-independent and identically distributed (non-IID) datasets. Accord-
ingly, the training from these datasets results in severe performance degradation. We propose an
efficient algorithm for enhancing the performance of federated learning by overcoming the negative
effects of non-IID datasets. First, the intra-client class imbalance is reduced by rendering the class
distribution of clients close to Uniform distribution. Second, the clients to participate in federated
learning are selected to make their integrated class distribution close to Uniform distribution for
the purpose of mitigating the inter-client class imbalance, which represents the class distribution
difference among clients. In addition, the amount of local training data for the selected clients is
finely adjusted. Finally, in order to increase the efficiency of federated learning, the batch size and the
learning rate of local training for the selected clients are dynamically controlled reflecting the effective
size of the local dataset for each client. In the performance evaluation on CIFAR-10 and MNIST
datasets, the proposed algorithm achieves 20% higher accuracy than existing federated learning
algorithms. Moreover, in achieving this huge accuracy improvement, the proposed algorithm uses
less computation and communication resources compared to existing algorithms in terms of the
amount of data used and the number of clients joined in the training.

Keywords: federated learning; non-IID data; class imbalance mitigation

1. Introduction

As the number of smartphones and Internet of Things (IoT) devices grows rapidly, the
amount of data they are generating is growing explosively [1]. A mainstream in utilizing
this large volume of data distributed over multiple devices is centralized data processing,
i.e., transferring those devices’ data to a server and training a machine learning model
from it. However, transferring this huge amount of data to the processing server causes
network overhead and increases communication costs. Additionally, data processing
servers demand enormous storage and computing power, resulting in high maintenance
costs. Federated learning (FL) has been proposed to solve these problems [2].

FL allows clients to cooperate to generate a global model without sharing the clients’
data with a server. Federated Averaging (FedAVG) [3], a representative algorithm of FL,
sends the local model parameters to a server after each device learns a local model using its
own local dataset. The server configures a global model by aggregating the received local
parameters. However, unlike central data processing, FL uses clients’ resources to learn
models, accordingly, the system heterogeneity (computing power, wireless channel envi-
ronment, size of dataset, etc.) among clients has a significant impact on learning efficiency.

To resolve the problem of system heterogeneity among clients, a lot of research works
were conducted to schedule devices on servers. In [4], the authors proposed a method
of selecting clients based on the available amount of communication and computing
resources with the goal of fast convergence and high accuracy of a global model. The
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methods of effectively utilizing communication resources were proposed in [5,6]. In [5],
a method of controlling the frequency between a global aggregation and a local update
was proposed. In [6], the authors proposed a method of applying hierarchical aggregation.
In [7], the model parameters for servers and local clients were compressed for efficient
use of communication resources. In addition, some research works were conducted to
dynamically allocate batch size for clients based on the available amount of communication
and computing resources [8–10].

One of the most important issues in FL is statistical heterogeneity, i.e., the negative
effect of non-independent and identically distribution (non-IID) of the training dataset.
The distribution of data generated by a client varies depending on the client’s occupation,
lifestyle, residential area, etc. As a result, the local data distribution of a client will be
non-IID with a high probability. Accordingly, the class distribution of the client also has a
class imbalance.

Class imbalance can be categorized into intra-client class imbalance and inter-client
class imbalance. Intra-client class imbalance means that the distribution of data amount
among classes, i.e., class distribution, in a client is different from Uniform distribution. The
larger the distribution gap is, the more severe the imbalance is. Inter-client class imbalance
means that the class distribution of each client is different from other clients’ distribution.
In [11,12], it was confirmed that the accuracy of FL was decreased when these intra- and
inter-client class imbalances were considered.

Although a lot of research works have been conducted to prevent learning efficiency
from decreasing when the class distribution of clients is imbalanced, to the best of our knowl-
edge, an integrated research work incorporating three core components—(1) a method of
reducing the intra-client class imbalance, (2) a method of reducing the inter-client class
imbalance, and (3) a method of dynamic batch size allocation and learning rate control—has
never been conducted.

We propose a novel algorithm that supports intra- and inter-client class imbalance
mitigation and dynamic batch size allocation and learning rate control considering the
amount of local dataset. First, the proposed algorithm performs data oversampling to make
the class distribution of each client close to Uniform distribution. This oversampling scheme
for FL, to the best of our knowledge, is the first approach incorporating an exponential
decay factor, and it dynamically reflects the amount of oversampled data in the previous
round. Second, to avoid performance degradation due to inter-client class imbalance, the
clients to join FL are selected to balance the aggregated class distribution for each round,
and the amount of data to be actually used for local learning is also adjusted by considering
the class distributions of the selected clients. The combination of these two features in
client selection is a unique contribution of this paper and shows significant performance
improvement. Finally, the batch size and the learning rate of the selected clients are adjusted
according to the amount of data for the clients. It is also the first approach presenting
the dynamic batch size and learning rate adjustment assuming a common SGD update in
an FL.

The performance of the proposed algorithm is validated over the CIFAR-10 [13] and
MNIST [14] datasets in non-IID scenarios, and it is confirmed that the accuracy of the global
model from the proposed algorithm achieves about 20% better performance than existing
FL algorithms in non-IID situations. Moreover, despite this remarkable improvement in
accuracy, the computing and communication resource usage in terms of the amount of
data used for learning and the number of clients participating in learning are decreased
compared to existing FL algorithms.

The main contributions of this paper are summarized as follows:

• To mitigate intra-client class imbalance, a novel data sampling to local datasets is
introduced, which results in accuracy improvement in non-IID environments.

• An FL server intelligently selects clients and allocates the amount of data to be actually
used in local learning by balancing the class distributions of the selected clients.
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• The batch size and the learning rate of clients are dynamically controlled according to
the amount of local dataset for each client.

• Performance evaluation in various non-IID scenarios confirms that the proposed
algorithm achieves high accuracy and low usage of computing and communication
resources compared to existing algorithms.

The remainder of this paper describes the following. Section 2 introduces the literature
review, and Section 3 describes the overall system structure and defines the class distri-
bution of clients. Section 4 describes the detailed procedure of the proposed algorithm,
Section 5 shows the experimental results, and finally, Section 6 concludes the paper.

2. Related Works

In the literature, various research works were conducted to improve the performance
of a global model under a non-IID dataset. In an intra-client class imbalance situation, in
order to solve the learning efficiency reduction problem, there was an attempt to make the
local class distribution of clients close to IID by sharing data among clients. In [12], a small
IID dataset was created in a server by collecting data from clients to mitigate the negative
effects of intra-client class imbalance. However, this approach does not meet the original
purpose of FL because the clients’ privacy is not protected by transmitting their data to the
server to generate the small IID dataset.

In [15], both the statistical heterogeneity and the system heterogeneity were considered
to prevent local models from deviating from a global model. Specifically, a proximal term
was added to a loss function. Similarly, in [16], the elastic weight consolidation method
was proposed to add a penalty term to a loss function to prevent the models of non-IID
clients from drifting apart from each other.

Another research approach to alleviating inter-client class imbalance is to more intel-
ligently select the clients to participate in an FL. The authors of [17] have improved the
performance of FL by increasing the selection probability for the clients having a large gra-
dient value. In [18], a scheme of group learning for clients with similar class distributions
and merging the trained models into a global model was proposed. In [19], FL models
could converge with fewer rounds through a hierarchical clustering of clients based on the
similarity of local models of clients. In [20], the data augmentation scheme was proposed as
a solution to a global imbalance situation in which the aggregated class data distribution of
clients differs from Uniform distribution. In addition, mediator-based client rescheduling
is introduced to alleviate local imbalance.

The level of IID for the local dataset was evaluated using weight divergence and
multi-arm bandit [21]-based algorithms in [22] and [23], respectively. Moreover, in [23], the
negative effects of local imbalance were reduced by increasing the selection probability of
clients with high IID levels. The authors in [24] showed that, for performance improvement,
the aggregation weights of local models should be finely adjusted considering the quality
and quantity of local data, the number of classes, and the entropy of local data.

In FedNova [25], the performance degradation due to the differences in the number of
local updates was reported, and this difference was from the heterogeneity in non-IID local
datasets and computation resources. To solve this problem, a normalized model aggregation
method was proposed. In [26], the performance degradation of stochastic gradient descent
(SGD) method over non-IID data was mitigated by introducing a deep reinforcement
learning-based client selection and client-specific batch size allocation scheme.

Although various studies have been conducted until now, research considering both
intra- and inter-client class imbalance mitigation and dynamic batch size and learning rate
adjustment considering the size of the dataset has not been conducted.

3. System Model and Data Distributions
3.1. System Model

An FL system for a multi-class classification task consists of a server to manage the
global model and a set of clients K = {1, 2, . . . , K}. Each client has a local dataset, and
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client k’s local dataset is denoted by Dk. In rth round of the FL, client k, which is selected to
participate in this learning, starts a local learning using its local dataset Dk with the initial
global model vector wr, received from the server. Client k makes up a mini batch set Bk
from the local dataset Dk and proceeds with the local learning using an SGD optimizer.
The update rule for the local learning is expressed as follows:

wk,r+1 ← wk,r − η
1
|Dk| ∑

x∈Bk

∇ fk(wk,r; x), ∀k ∈ K, (1)

where |Dk| denotes the cardinality of Dk, fk(wk,r; x) is a loss function for the local model
vector wk,r and data x, and η is the learning rate. Each selected client trains the local model
until a pre-determined local epoch and transmits the learned local vector to the server. The
server updates the global model vector by aggregating the received local model vectors. In
the aggregation process, a weight for each local model is required, and it is determined to
be the amount of data used in each local training divided by the total amount of data for
the entire clients participating in the learning. The aggregation with the weights is given by

wr+1 ← ∑
k∈S

∣∣D′k∣∣
|D| wk, r+1, (2)

where S denotes the set of clients selected by the server to participate in the learning,
D , ∪k∈SDk. D′k denotes data used by client k for local learning and has a relation of
D′k ⊂ Dk. This process is repeated until a specified round is reached. The main parameters
of the system model are summarized in Table 1.

Table 1. Notation and definitions.

Notation Definition

K Client index set
r Round index

θKLD Kullback–Leibler divergence threshold
h Maximum number of selected clients
L Number of classes
δ Oversampling exponent

bk,r Batch size of client k at round r
ηk,r Learning rate of client k at round r
wr Global model parameter at round r

wk,r Local model parameter of client k at round r
Dk Local dataset of client k
K Number of clients
Bk Mini batch set for client k

fk(· ; ·) Local loss function of client k
α Dirichlet distribution control parameter
nk Class data volume for client k
tk Average amount of class data for client k

sk,r Class training data volume for client k at round r
vr Class training data volume at round r
β Number of SGD updates

ηmax Maximum learning rate

3.2. Data Distributions

As shown in [27], the class distribution of a client is set using Dirichlet distribution.
When a classification task has L classes to classify, it is assumed that all clients’ local learn-
ing data are extracted according to a vector q (q` ≥ 0, ` ∈ [1, L] and ‖ q ‖1= 1), which
corresponds to the class distribution. The class distribution of the clients is determined by
q ∼ Dir(αp) of Dirichlet distribution, where p denotes the prior probability distribution
and α is a parameter that adjusts the uniformity of the class distribution among the clients.
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If α > 0 and α→ ∞ , then the class distribution of all the clients approaches to Uniform
distribution. Conversely, when α is close to 0, all the clients have only a single class of data,
resulting in a non-IID class distribution.

4. Proposed Algorithm
4.1. Alleviating Intra-Client Class Imbalance

When the clients’ class distribution is IID, the performance of the FL is very close to
centralized learning methods. However, when the class distribution of the local dataset
is non-IID, the accuracy of the FL decreases because the local model learned is biased to
some class data. Hence, the performance of the FL model can be improved when the class
distribution of each client is close to Uniform distribution. Consequently, an oversampling
method of making the class distribution close to Uniform distribution without data sharing
is proposed. The purpose of this scheme is to render the non-IID dataset to IID as close
as possible.

Denote nk =
[
n1

k , n2
k , . . . , nL

k
]T as class data distribution vector for client k, where

nj
k is the data amount of j-th class for client k. Then, the average amount of data over

the classes is tk = 1
L ∑L

` n`
k. Client k randomly oversamples data elements in the classes

having a smaller volume than tk. This oversampling is conducted until the volume of each
class reaches the average tk (n`

k ≥ tk, ` ∈ [1, L]). One of the noteworthy features of this
oversampling is that it reduces intra-client class imbalance without losing any of the data
obtained with much effort. Due to this data reserving characteristics of the oversampling,
it outperforms the other method of sampling at the level of an average over classes.

However, note that data oversampling can lead to overfitting, which reduces the
generalizability of the model as the amount of local data increases. To avoid overfitting,
the amount of oversampled data per round should be reduced as the round goes on.
Accordingly, the training load on each client due to the oversampling is diminished rapidly.
Specifically, in the proposed method, the amount of oversampling is exponentially reduced
as e−δr, where r is the round index and the exponent δ is increased when the amount of total
oversampled data in the previous round is greater than the threshold θover. This scheme
enables the early termination of the oversampling to prevent the local model from falling
into overfitting. Figure 1 shows the local data sampling of a client, and the detailed process
is represented in Algorithm 1.

Algorithm 1. Sampling. number of data per class is greater than or equal to the average

• client executes:
• Input
nK , r round index, δ oversampling exponent
• Output
nK
1: tk ← 1

L ∑L
` n`

k × e−δr

2: repeat
3: oversampling for Dk
4: until n`

k ≥ tk, ` ∈ [1, L]
5: return nK
• server executes:
• Input
S selected client set
• Output
δ

1: if ∑k
k∈S(∑L

` n`
k−|Dk |)

∑k
k∈S |Dk |

> θover //calculate oversample data rate

2: δ← δ + ∆
3: return δ
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Figure 1. Class data distribution through data oversampling, where the dotted line in (b) is the
average amount of data per class.

4.2. Alleviating Inter-Client Class Imbalance

To alleviate the class imbalance among the clients, the server utilizes the sum of the
class distributions in selecting the clients to participate in the FL. In addition to this client se-
lection, the server determines the amount of data per class to learn for the selected clients. In
each round, the negative effect of inter-client class imbalance can be alleviated by rendering
the aggregated distribution of the total training data close to Uniform distribution.

Specifically, any client who wants to participate in rth round learning conducts data
oversampling for intra-client class imbalance mitigation and transmits class data volume
information nk to the server. The client can transmit the information about the amount
of data to contribute to the learning in this round by reflecting it in nk. This sharing of nk
may reveal the information of the clients to the server; however, note that not the content
of data but only the class distribution information is transmitted. Moreover, nk can be
different from the actual class distribution of client k. The server manages the data amount

information sk,r =
[
s1

k,r, s2
k,r, . . . , sL

k,r

]T
for each client k, where s`k,r, ` = 1, . . . , L is the

amount of `th class data for client k to learn in rth round. Considering all the selected
clients, the server also manages the information of the amount of data per class required in
the learning as vr =

[
v1

r , v2
r , . . . , vL

r
]T , where v`r , ` = 1, . . . , L is the total amount of `th

class data to learn in rth round.
The server sorts the clients willing to participate in the learning in descending order

of the amount of local dataset, i.e., ∑L
` n`

k. Let client k be on the top of the sorted client list.
The server updates vr and sk,r with the data amount information nk. In vr, the server finds
out the class with a maximum amount of data and the class with a minimum amount of
data. Now, assume that the volume of the maximum amount class is denoted as m and the
class index for the minimum amount of data is denoted as f . Through the sorted client list,
the server searches for a client i having data to learn in class f . Similarly, vr and si,r are
updated using ni.

However, in this update process, we regulate the accumulated amount of data in each
class to be equal to or smaller than the maximum value m so that this process does not break
the balance among the classes. When vr is updated, the uniformity of class distribution
vr is tested by calculating the Kullback–Leibler divergence (KLD) [28] between vr and
Uniform distribution. This client selection process terminates if the calculated KLD is below
the threshold θKLD, or if the number of selected clients reaches the maximum number of
clients h. Finally, the server informs the selected clients of the amount of data to learn by
delivering ss,r to client s ∈ S . This process is expressed in Algorithm 2.
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Algorithm 2. Client Selection. The server selects clients and adjusts client’s training data

• Input
K, N = {n1, n2, . . . , nK} client

′
s class information set, θKLD KLD threshold,

h maximum number of selected client, L number of classes
• Output
selected client class information set Sinfo =

{
s1,r, s2,r, . . . , sh,r

}T

1: initialize Sinfo ← ∅, data volume vector vr =
[
v1

r , v2
r , . . . , vL

r
]T

2: Sort N in descending order by the amount of data ∑L
` n`

k, k ∈ N
3: repeat
4: for each nc ∈ N do
5: if Sinfo is empty then
6: for each `, ` = 1, 2, . . . , L do
7: v`r ← v`r + n`

c
8: s`c,r ← n`

c
9: end for
10: m←max(vr) //Maximum value among vr
11: add sc,r in Sinfo
12: else
13: f ← argmin` (vr)

14: if n f
c > 0 then

15: for each `, ` = 1, 2, . . . , L do
16: v`r ← v`r + min(m—v`r , n`

c)
17: s`c,r ←min(m—v`r , n`

c)
18: end for
19: add sc,r in Sinfo
20: end if
21: end if
22: end for
23: until |Sinfo| == h or DKL (Pvr |Puniform) < θKLD
24: return Sinfo

4.3. Dynamic Batch Size and Learning Rate Control

In an FL, each client has a different amount of training data. Accordingly, each client
needs to use different hyperparameters, e.g., batch size and learning rate. As shown in [26],
under the non-IID dataset situation, if the batch size for local training is not properly
adjusted, performance degradation is inevitable. Hence, the efficiency of the FL can be
increased by dynamically controlling the batch size and the learning rate for each client
by considering the amount of data ∑L

` s`k,r of the clients. By assuming a common number
of SGD updates for the clients, an efficient batch size can be obtained. Specifically, in rth

round of the proposed scheme, client k uses the value
⌊

∑L
` s`k,r
β

⌋
as its batch size bk, r, where

β is the required number of SGD updates and b·c is the floor operator.
Note that the batch size is proportional to the amount of local dataset for each client,

which leads to the improvement of the accuracy of the global model. As the clients learn
using different batch sizes, it is necessary to control the learning rate for each client for the
purpose of converging the global model. Note that when the batch size is small and the
learning rate is too large, the loss function of the local model may diverge. Conversely, if
the batch size is large and the learning rate is small, the convergence of local learning is
too slow. It coincides with the relationship between the learning rate and the batch size
shown in [29]. Therefore, the learning rate is adjusted to be proportional to the batch size.
In addition, when the learning rate is too large, the model may not converge, accordingly,
the learning rate is regulated with arctan function so that the learning rate does not exceed
the maximum learning rate ηmax. This process is explained in Algorithm 3.
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Algorithm 3. DynamicBL. dynamically allocate batch size and learning rate

• Input
sk,r, ηmax maximum learning rate, β number of SGD update
• Output
Batch size bk,r, learning rate ηk,r

1: bk,r ←
⌊

∑L
` s`k,r
β

⌋
2: ηk,r ← ηmax × arctan

(
bk,r
)

3: return bk,r, ηk,r

4.4. Workflow

The training procedure of the proposed algorithm consists of local data sampling,
client selection and training data allocation, and the control of dynamic batch size and
learning rate. This procedure is followed by local training and local model aggregation.
This overall process is shown in Figure 2.
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• Local data sampling: a client who wants to participate in learning checks the class
distribution of the local dataset and proceeds with oversampling, and then sends the
data distribution information to the server.

• Client selection and allocation of training data: the server selects the clients to make the
class distribution of learning data balanced for each round and delivers the information
about the amount of training data to the selected clients.

• Dynamic batch and learning rate control: each client calculates the batch size and
learning rate of local learning based on the amount of data it learns.

• Local training: Each client learns a local model using the amount of training data
received from the server and the previously calculated batch size and learning rate.
After learning, the client sends the local model parameters to the server.

• Aggregation: When the server receives all the selected clients’ local model parameters,
it updates the global model parameters using Equation (2). Then repeat until the
final round.
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5. Experiment Results
5.1. Experiment Setup

In the performance evaluation of the proposed algorithm, the representative dataset
of CIFAR-10 and MNIST are adopted. The deep learning model for this classification task
is the convolution neural network (CNN) with two 5 × 5 convolution layers for CIFAR-10,
each with 64 and 128 filters. The two convolution layers are followed by a max pool layer,
three fully connected layers, and a softmax layer. Then the classification probabilities are
derived. We also perform experiments with a simple logistic regression classifier, which we
train on the MNIST dataset.

In this evaluation, two baseline algorithms of FedAVG and FedNova [25] are used.
FedAVG is a representative algorithm for FL, and FedNova reduces the negative effect of
non-IID by normalizing the aggregation step of FedAVG with the number of local updates.

For the CIFAR-10 dataset, the range of the Dirichlet parameter which determines the
data distribution of the clients is α ∈ [0, 0.2], and three test cases are considered according
to the setting of Dirichlet distribution. In the case of the MNIST dataset, α = 0 and all the
clients have only a single class. The maximum number of clients participating in each round,
h, is set to 10, and FedAVG and FedNova randomly select 10 clients in each round and
conduct global aggregation. The initial oversampling decay exponent δ is set to 0.01, the
oversampling decay exponent increment ∆ is set to 0.1, and the KLD threshold θKLD is set to
0.1 which checks the similarity between the data distribution vr and Uniform distribution.

In the setting for the local model training on CIFAR-10, FedAVG and FedNova set the
local epoch, batch size, and learning rate to 5, 64, and 0.1, respectively. The local epoch is
set as the same value in FedAVG [3]. For MNIST, local epoch, batch size, and learning rate
are 5, 10, and 0.03, respectively. In the proposed algorithm, the number of SGD updates β
is set to 3, 25, and 25 for Test Cases 1–3, respectively. The maximum learning rate ηmax is
set to 0.1. It is assumed that the computation capabilities of the clients are equal.

5.2. Results on Different Non-IID Data Distribution

As mentioned above, the three different non-IID scenarios of CIFAR-10 Cases 1–3 are
considered. In Case 1, α = 0 for all the 200 clients, where these clients have only a single
class of data. In Case 2, α = 0 for 180 out of 200 clients who have only a single class data,
and α = 0.2 for the remaining 20 clients. On average, a client with α = 0.2 has 6 classes of
data, where approximately 4 out of the 6 classes have 26–28% less amount of data than the
average amount of data for each class. In Case 3, α = 0.2 for all 100 clients, and it is the most
balanced class distribution compared to other test cases. In Case 4, α = 0 for 200 clients
who have only a single class MNIST data. Table 2 shows the data distribution parameters
and experimental parameters for all the test cases. Hyperparameter values are derived
experimentally to obtain optimal results.

Table 2. Distribution setup and experiment parameters.

Distribution Setup Experiment Parameter

Datasets Case K α
Sampling Client Selection Dynamic Batch Local Training

θover θKLD ηmax β h epoch

CIFAR-10
1 200 0 0.1 0.1 0.1 3 10 5
2 200 0 or 0.2 0.1 0.1 0.1 25 10 5
3 100 0.2 0.1 0.1 0.1 25 10 5

MNIST 4 200 0 0.1 0.1 0.1 25 10 5

In Figure 3, the average accuracy of the proposed global model is depicted for all
the test cases. In obtaining the average accuracy, each algorithm is executed 10 times
and averaged. As shown in (a)–(c) of this figure, the achieved accuracy of the proposed
algorithm is highest when tested on Case 3 but lowest when tested on Case 1. Note that
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Case 1 has both severe intra- and inter-client class imbalances. The proposed algorithm
achieves 10.4% higher accuracy in Case 2 than in Case 1. As a result, the accuracy of
FL decreases when intra-client class imbalance and inter-client class imbalance are very
high; however, the accuracy can be improved even when the number of clients having a
balanced intra-client class distribution is low. Since Case 3 has the lowest class imbalance,
the proposed algorithm achieves the highest accuracy. Figure 3d shows the results of the
MNIST dataset, where the proposed algorithm achieves higher accuracy than Case 1, but it
has more fluctuation.
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the results of the CIFAR-10 dataset, and Case 4 is the result of the MNIST dataset.

Comparing the proposed algorithm with other baseline algorithms, as shown in
Figure 3a, in Case 1, the accuracy of the proposed algorithm is improved by 21.8% and
34% compared to FedAVG and FedNova, respectively. Moreover, in this case, the baseline
algorithms have a large fluctuation in accuracy from round to round, leading to poor
training stability. In addition, when comparing the convergence of the three algorithms, the
proposed algorithm converges at a faster rate than the baseline algorithms. In Case 1, since
all the clients have only a single class of data, the intra-client class imbalance alleviation
method in the proposed algorithm is skipped because this method generates duplicate
data elements in non-empty classes. It is noteworthy that the proposed algorithm success-
fully improves the accuracy of the global model and reduces the variability of the global
model without the intra-client class imbalance alleviation method. The baseline algorithms
randomly select clients, hence, the sum of the class distributions of the selected clients
is imbalanced. As a result, in the baseline algorithms, the accuracy decrement and the
high fluctuation are inevitable. On the contrary, the proposed algorithm can improve the
accuracy and stability of the global model by applying the inter-client class imbalance
method and the dynamic batch size and learning rate control method. In Figure 3b, for
Case 2 (α = 0 or 0.2), the proposed algorithm achieves 12.2% and 23.8% accuracy improve-
ments over FedAVG and FedNova, respectively. Moreover, this higher accuracy is achieved
within fewer communication rounds and with less fluctuation than FedAVG and FedNova.
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In the early rounds in Figure 3b, a surge in the accuracy of the proposed algorithm is
observed. This rapid accuracy increment in the early rounds is induced by the data over-
sampling method to mitigate intra-client class imbalance, which enables the learning with
more data in the early stage of the learning. As shown in Figure 3c, for Case 3 (α = 0.2), the
proposed algorithm does not improve accuracy significantly compared to FedAVG. Unlike
Case 1 and Case 2, Case 3 has a balanced class distribution, accordingly, the performance of
the proposed algorithm is similar to FedAVG. However, it still achieves about a 4% accuracy
improvement over FedNova. In Figure 3d for Case 4, the proposed algorithm shows 21.1%
and 11.4% improved accuracy over FedAVG and FedNova, respectively. FedNova performs
better than FedAVG on MNIST, and vice versa on CIFAR-10.

5.3. Results on Class Imbalance Mitigation

Experiments are conducted to validate the effectiveness of the three core methods
which constitute the proposed algorithm. For Cases 1–3 of the CIFAR-10 dataset, which
showed the highest performance improvement, we compare it with the baseline algorithms.
In the following experiments, the local data oversampling method to alleviate intra-client
class imbalance is denoted as ‘data sampling’, the client selection and training data alloca-
tion method to alleviate inter-client class imbalance is denoted as ‘client selection’, and the
dynamic batch size and learning rate control technique is expressed as ‘dynamic batch’.

In Figure 4, the accuracy of ‘client selection’ method is compared with the proposed
algorithm and two baseline algorithms on Case 1–3. As shown in Figure 4a, for Case 1,
the ‘client selection’ method achieves a similar accuracy with the proposed algorithm, and
the accuracy improvements of ‘client selection’ over FedAVG and FedNova are 22.5% and
34.6%, respectively. In Figure 4b of Case 2, ‘client selection’ lowers the fluctuation and
achieves higher accuracy than FedAVG and FedNova by about 13% and 24.7%, respectively,
but it is less accurate than the proposed algorithm. In Case 3, ‘client selection’ achieves a
similar accuracy (about 73%) with FedAVG and a 4% higher accuracy than FedNova.
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In Figure 5, the accuracy of ‘data sampling’ is compared with the proposed algorithm
and two baseline algorithms in Cases 1–3. In Case 1, ‘data sampling’ is not applied
because all the clients have only a single class of data. However, it shows an accuracy
improvement of 10.7% compared to FedNova. In Case 2, ‘data sampling’ achieves 4% and
16.4% improvement compared to FedAVG and FedNova, respectively. At the beginning of
training, the training accuracy can be improved by increasing the amount of training data
through ‘data sampling’. In the latter part of training, the amount of oversampled data
is reduced to avoid overfitting, hence, the improvement in accuracy gradually decreases
compared to the early part of training. In Case 3, when only ‘data sampling’ is applied, the
accuracy improvement is not noticeable because the effect of ‘data sampling’ is evident in
scenarios having strong non-IID. Nevertheless, it shows an accuracy improvement of about
2% compared to FedNova.
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algorithms on different non-IID situations.

In Figure 6, the accuracy of the ‘dynamic batch’ is compared with the proposed
algorithm and two baseline algorithms on Case 1–3. In Cases 1–3, the model fluctuations
are similar to the baseline algorithms. In Case 1 and 3, the accuracy is similar to that
of FedAVG; however, compared to FedNova, the proposed algorithm shows 11.2% and
4% improvement in Case 1 and Case 3, respectively. In Case 2, the accuracy is improved
by about 4% and 16% compared to FedAVG and FedNova, respectively. Compared to
Case 1, in Case 2, the clients have various class distributions, hence, if the batch size and
the learning rate for each client are not properly adjusted, it is difficult to extract high
performance, and it makes the effect of ‘dynamic batch’ conspicuous. In Case 3, the clients
have more classes than in Case 2, accordingly, the contribution of the ‘dynamic batch’ in
improving accuracy is relatively small.
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5.4. Amount of Training Data

Since the proposed algorithm determines the amount of local training data for the
clients on each round, the clients can learn using only a subset of their local dataset. In
Case 1–4, the total amount of data used for the proposed algorithm is compared to FedAVG
and FedNova, and the results are shown in Figure 7.

As shown in Figure 7a, the amount of data samples used for the proposed algorithm
is about 1,263,000, and it is roughly 1% more than the amount of data for FedAVG. In
Case 1, since all the clients have only a single class, ‘data sampling’ is not applied, hence,
the amount of training data does not increase. However, compared to FedAVG which
randomly selects clients, the proposed algorithm is prone to select clients with more data
to train. Thus, as shown in Figure 7a, the proposed uses 1% more data. In addition, in
Case 1, most of the local datasets are used in training. For this reason, in Case 1, the number
of training data is similar to FedAVG and FedNova, which uses all of the client’s local
data in training. However, it should be noted that even though the proposed algorithm
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uses a small amount of more data (about 1% more) than the baseline algorithms, the
accuracy improvement is remarkably high by 21.8% and 34.4% compared to FedAVG and
FedNova, respectively.
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In Figure 7b for Case 2, the proposed algorithm uses about 1,005,000 data samples,
and the efficiency of the proposed algorithm is clearly shown in this figure. Specifically, the
proposed algorithm uses 19% less data than the baseline algorithms, while the achieved
accuracy is higher by 12.2% and 23.8% compared to FedAVG and FedNova, respectively. In
Case 2, ‘data sampling’ is applied; however, the amount of oversampled data is quickly
reduced to avoid overfitting. This mechanism also minimizes the potential burden of
increasing the amount of data to train.

In Figure 7c for Case 3, the accuracy difference between the proposed algorithm and
FedAVG is negligible at 0.6%, and between the proposed algorithm and FedNova, it is not
high at 3.9%. However, the proposed algorithm uses 24% less amount of data than FedAVG
and FedNova, and it is a huge gap.

In Figure 7d for Case 4, all three algorithms learn using a similar number of training
data about 1,500,000. However, when comparing the test accuracy of the proposed algo-
rithm with FedAVG and FedNova, it shows 21.1% and 11.4% improved results, respectively.

Figure 7 shows the adaptability of the proposed in improving accuracy and reducing
the amount of training data. More specifically, in a severe non-IID situation like Case 1,
the proposed algorithm mainly focuses on increasing the accuracy rather than reducing
the used training data volume as shown in Figure 7a. When the level of non-IID is low
like in Case 3, the proposed algorithm focuses on reducing the training data volume rather
than increasing the accuracy as shown in Figure 7c. When the level of non-IID is medium
like in Case 2, both the accuracy and the amount of training data are improved as shown
in Figure 7b. Through the amount of training data used in Case 1–3, it is confirmed that,
on average, the proposed algorithm achieves higher accuracy by using lower computing
resources than FedAVG and FedNova.
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5.5. Average Number of Clients

The average number of clients participating in the learning on each round is depicted
in Figure 8. FedAVG and FedNova randomly select a fixed number of clients on every
round, while the proposed algorithm can terminate the client selection process before the
number of the selected client reaches the maximum h if the data information vr for training
becomes close enough to Uniform distribution. In Case 1 and Case 4, since all the clients
have only a single class, the maximum number of clients must be selected to make vr similar
to Uniform distribution. In Cases 2 and 3, higher test accuracy is achieved even though
fewer clients participate in the learning than FedAVG and FedNova. In FL, the reduced
number of clients results in the reduced usage of communication resources. Therefore, it
is confirmed that the proposed algorithm uses lower communication resources than the
baseline algorithms.
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6. Conclusions

In FL, if the clients’ local data distribution is non-IID, the accuracy and learning
efficiency of the global model decreases. To solve this problem, the intra-client class
imbalance is alleviated through local data sampling, and inter-client class imbalance is
alleviated by selecting the clients and determining the amount of data to be used for training,
which makes the aggregate of the training data class distributions balanced on every
round. In addition, more efficient local learning is possible by dynamically determining
the batch size and learning rate reflecting the amount of training data. The proposed
algorithm achieves faster convergence speed and higher accuracy with lower computing
and communication resource usage than existing algorithms in non-IID environments.
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