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Abstract: Low-pressure discharge causes air ionization resulting in performance degeneration or
failure for the satellite sensors in outer space. Here, a one-step Crank-Nicolson Direct-Splitting
(CNDS) algorithm is proposed to evaluate the electrical behavior of satellite sensors under the low-
pressure discharge circumstance. To be more specific, the CNDS algorithm is proposed in the Lorentz
medium, which can accurately analyze the ionized air and generated plasma. Higher order perfectly
matched layer (PML) is modified in the Lorentz medium to efficiently terminate the unbounded
lattice. It can be concluded that the proposed algorithm shows entire considerable performance in the
low-pressure discharge evaluation. The proposed PML formulation behaviors enhanced absorbing
performance compared with the existing algorithm. Through the experiments, it can be observed that
the low-pressure discharge phenomenon causes performance variation, which shows a significant
influence on the satellite sensors. Meanwhile, results show considerable agreement between the
simulation and experiment results which indicates the effectiveness of the algorithm.

Keywords: Crank-Nicolson Direct-Splitting (CNDS); Finite-Difference Time-Domain (FDTD); Low-
Pressure Discharge; Perfectly Matched Layer (PML); Satellite Sensors

1. Introduction

For the satellite sensors in outer space, special space characteristics, which include
passive inter-modulation, multipactor, and so on, significantly affect the entire perfor-
mance [1–3]. Among them, low-pressure discharge can be regarded as one of the most
urgent and valuable challenges in the development of satellite sensors [4]. Although the
satellite sensors are designed to work in a vacuum, the gas which is occurred by glue for
connection causes the generation of a low-pressure environment [5]. In such circumstances,
high power, which is employed for excitation, ionizes the gas resulting in the occurrence
of discharge [6]. Most importantly, the low-pressure discharge phenomenon leads to the
occurrence of multipactor phenomenon in most circumstances which leads to performance
degeneration, component failure or even satellite scrapping [7]. Although the multipactor
phenomenon has raised concern, the low-pressure discharge phenomenon still needs to be
further investigated and studied.

When a high power source excites the components, the appearance of the low-pressure
discharge phenomenon results in gas ionization. Such a condition leads to the forming of
plasma which shows a significant influence on electrical behavior. In order to efficiently
analyze the such condition, plasma simulation is regarded as one of the most important
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elements. According to the physics of plasma, it can be expressed by the Lorentz medium
in the finite-difference time-domain (FDTD) algorithm [8]. The Lorentz medium can be
solved by the piecewise linear recursive convolution scheme (PLRC), trapezoidal recursive
convolution scheme (TRC), JE convolution (JEC) scheme and so on [9–12]. Among them, it
has been testified that the PLRC method shows the most considerable accuracy [13].

The FDTD algorithm, proposed by Yee, shows potential in broadband problems with
complex mediums [14]. By applying the FDTD algorithm to simulate sensors with a large
number of fine details, extremely long simulation duration is occurred due to the limitation
of stability conditions. The conventional FDTD algorithm is a time-explicit algorithm whose
stability is limited by the Courant–Friedrichs–Levy (CFL) condition [15]. This means that a
constant relationship is established between the time step and mesh size. If the CFL stability
condition is broken, the conventional explicit algorithm is no longer stable. In order to
alleviate the such condition, unconditionally stable algorithms are proposed to overcome
the stable condition [16–18]. Most unconditionally stable algorithms are based on the
sub-step procedure, which means splitting the entire equation into several steps to obtain
the final results. Such condition limits the entire performance, including the efficiency and
accuracy of the unconditionally stable algorithms. The Crank–Nicolson (CN) scheme solves
Maxwell’s equations through the one-step procedure. The original CN algorithm can merely
solve problems in one dimension [19]. By applying it to multi-dimensions, large sparse
matrices should be calculated, resulting in an expensive calculation. In order to alleviate
such conditions, approximate CN schemes are introduced to accurately solve Maxwell’s
equations [20,21]. It should be noted that two-dimensional approximate CN algorithms
cannot be directly expanded to three dimensions [22]. Thus, three-dimensional approximate
CN algorithms are carried out, including the approximate-factorization-splitting (AFS)
and direct-splitting (DS) schemes [23,24]. However, the CNAFS algorithm must solve nine
matrices in a single update cycle which results in a significant increment in simulation
duration and calculation resources [25]. The CNDS algorithm solves six matrices in a full
update cycle resulting in improvement in terms of effectiveness compared with the CNAFS
algorithm [26].

In the full-wave simulation method, an adequate boundary condition must be em-
ployed to terminate the unbounded lattice. The perfectly matched layer (PML) is regarded
as the most powerful absorbing boundary condition [27]. The original PML formulation is
a split-field scheme that results in the degeneration of efficiency and absorption [28]. In
order to alleviate such a condition, the unsplit-field formulation is introduced into the PML
formulation, including the stretched coordinate (SC) and complex-frequency-shifted (CFS)
schemes [29,30]. It shows advantages in absorbing the late-time reflections and reducing
the low-frequency evanescent waves. However, wave reflections at the low-frequency still
show unacceptable levels in some circumstances. The reason is that the low-frequency
propagation waves cannot be efficiently absorbed [31]. In order to alleviate such drawbacks,
a higher-order formulation is employed, which can be implemented by multiplying the
stretched coordinate terms together into a single term. The original higher-order formula-
tion holds six auxiliary variables which affect the efficiency and absorption [32]. Alternative
higher-order formulation with four auxiliary variables is introduced to improve the entire
performance, which has been extensively employed in massive problems [33–36].

Although several schemes are introduced based on the CNDS and CNAFS schemes to
solve open regions problems, medium dependent characteristic of the PML formulation
results in non-general formulation inside different materials [37–40]. Thus, the existing
formulation cannot be applied to the solving of the low-pressure discharge for satellite
sensors with complex frequency-dispersion Lorentz medium. By applying these schemes
directly to such calculation, the unmatched impedance between the domain and boundaries
results in the non-absorption of outgoing waves. Such a condition leads to inaccurate
calculations or even instability. Thus, an alternative method for low-pressure discharge
simulation is becoming increasingly important than ever before with the development
of satellite sensors in outer space. Until now, most references have been focused on the
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simulation of discharge threshold [41–45]. To the best of our knowledge, the influence
of electrical behavior in low-pressure discharge circumstances has not been investigated
and developed. Such influence becomes of vital importance for satellite sensors in outer
space. When such a condition happens, the performance can be recovered and adjusted by
employing the outer components and circuits based on the analysis.

Here, a one-step CNDS algorithm is proposed to efficiently analyze the low-pressure
discharge for satellite sensors in outer space. The ionized gas, which significantly affects
the electrical behavior in the occurrence of low-pressure discharge, can be analyzed ac-
cording to the Lorentz model with the PLRC method. Inside PML regions, higher order
formulation is proposed based on the CNDS scheme inside Lorentz medium. Through
the low-pressure discharge simulation, the proposed algorithm shows considerable accu-
racy and efficiency. At the boundaries of the unbounded lattice, the proposed algorithm
can enhance performance by further absorbing the low-frequency waves and late-time
reflections. By employing the parameters from the experiment, results indicate that the
significant difference is caused by the low-pressure discharge phenomenon. Meanwhile, the
experiment shows considerable agreement with the simulation, which also demonstrates
the effectiveness of the proposed algorithm.

2. Formulation

In a complex medium, Maxwell’s equations inside the PML regions can be given in
the following form as

jωD = ∇s ×H (1a)

jωH = −∇s × E (1b)

where D is the electric displacement of Maxwell’s equation which can be obtained by the
relationship as D(ω) = ε0εr(ω)E(ω). It has been mentioned that ionized gas caused by the
low-pressure discharge is generated due to the excitation of the high power. Such condition
can be expressed by the Lorentz medium, given as

εr(ω) = ε∞ +
(εs − ε∞)ω2

0(
ω2

0 + j2δω−ω2
) (2)

where the parameters can be given as: ε∞ and εs represent the relative permittivity at
infinite frequency and static permittivity, ω0 represents the resonance radian frequency and
δ represents the damping constant. The operator ∇s can be obtained as

∇s = x̂
1

Sx

∂

∂x
+ ŷ

1
Sy

∂

∂y
+ ẑ

1
Sz

∂

∂z
(3)

where Sη , η = x, y, z is the stretched coordinate variables. Inside the higher-order PML
regions, it can be obtained by multiplying the stretched coordinate variables together into a
single term, expressed as

Sη =

(
κη1 +

ση1

αη1 + jωε0

)(
κη2 +

ση2

αη2 + jωε0

)
(4)

where κηn, n = 1, 2 is the positive real and σηn and αηn are real. According to the Z-
transformation relationship, jω ↔

(
1− z−1)/∆t , Maxwell’s equations can be transformed

into Z-domain as
1− z−1

∆t
Dz = S−1

x (z)
∂Hy

∂x
− S−1

y (z)
∂Hx

∂y
(5a)

− µ0
1− z−1

∆t
Hz = S−1

x (z)
∂Ey

∂x
− S−1

y (z)
∂Ex

∂y
(5b)
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Due to the existence of massive components, components along the z-direction are
chosen as examples for demonstration. The other components can be obtained according
to a similar method. Inside Equation (5a,b), S−1

η (z) is the stretched coordinate variables in
the Z-domain, given as

Sη(z) = wη1wη2
1− aη1z−1

1− bη1z−1

1− aη2z−1

1− bη2z−1 (6)

where the coefficients can be given as
wηn = 1

κηn
·( 2

∆t +
αηn
ε0

)/[ 2
∆t+(

αηn
ε0

+
σηn

κηnε0

)
], aηn = ( 2

∆t −
αηn
ε0

)/( 2
∆t +

αηn
ε0

) and

bηn = [ 2
∆t − (

αηn
ε0

+
σηn

κηnε0
)]/[ 2

∆t + (
αηn
ε0

+
σηn

κηnε0
)]. By substituting Equation (6) into Equa-

tion (5a,b), one obtains

1− z−1

∆t
Dz = wx1wx2

1− ax1z−1

1− bx1z−1
1− ax2z−1

1− bx2z−1

∂Hy

∂x
− wy1wy2

1− ay1z−1

1− by1z−1

1− ay2z−1

1− by2z−1
∂Hx

∂y
(7a)

− µ0
1− z−1

∆t
Hz = wx1wx2

1− ax1z−1

1− bx1z−1
1− ax2z−1

1− bx2z−1

∂Ey

∂x
− wy1wy2

1− ay1z−1

1− by1z−1

1− ay2z−1

1− by2z−1
∂Ex

∂y
(7b)

In order to update the equations inside PML regions, auxiliary variables are introduced
in Equation (7a,b). According to the introduction of auxiliary variables F and G, the original
equations can be given in the following form as

1− z−1

∆t
Dz =

(
Fzx2 − ax1z−1Fzx2

)
−
(

Fzy2 − ay1z−1Fzy2

)
(8a)

− µ0
1− z−1

∆t
Hz =

(
Gzx2 − ax1z−1Gzx2

)
−
(

Gzy2 − ay1z−1Gzy2

)
(8b)

where the coefficients can be given as, for example,

Fzη1 = bη1z−1Fzη1 + wη1
∂Hη̃

∂η
(9a)

Fzη2 = bη2z−1Fzη2 + wη2·(1− aη2z−1)Fzη1 (9b)

Gzη1 = bη1z−1Gzη1 + wη1
∂Eη̃

∂η
(9c)

Gzη2 = bη2z−1Gzη2 + wη2·(1− aη2z−1)Gzη1 (9d)

where η̃ represents the rest component excepting η. For example, when calculating Ez
and Hz components, η = x while η̃ = y. By substituting the auxiliary variables into the
components, results can be given as

1−z−1

∆t Dz =
[
(bx1 − ax2)Fzx1 + (bx2 − ax1)Fzx2 + wx1wx2

∂Hy
∂x

]
−
[(

by1 − ay2
)

Fzy1 +
(
by2 − ay1

)
Fzy2 + wy1wy2

∂Hx
∂y

] (10a)

µ0
1−z−1

∆t Hz =
[(

by1 − ay2
)
Gzy1 +

(
by2 − ay1

)
Gzy2 + wy1wy2

∂Ex
∂y

]
−
[
(bx1 − ax2)Gzx1 + (bx2 − ax1)Gzx2 + wx1wx2

∂Ey
∂x

] (10b)
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In order to update the equations including the electric displacement components, the
PLRC method is introduced to analyze the relationship between the electric displacement
and field components. Through the introduction of the PLRC method and CN scheme,
Equation (10a,b) can be further rearranged and discretized in the FDTD domain as

En+1
z = a1En

z + a2 ϕn
z + p1exFn

zx1 + p2exFn
zx2 + p3exδx

(
Hn+1

y + Hn
y

)
−p1eyFn

zy1 − p2eyFn
zy2 − p3eyδy

(
Hn+1

x + Hn
x
) (11a)

Hn+1
z = Hn+1

z + p1hyGzy1 + p2hyGzy2 + p3hyδy
(
En+1

x + En
x
)

+p1hxGzx1 − p2hxGzx2 − p3hxδx

(
En+1

y + En
y

) (11b)

where the coefficients can be given as

PLRC method : a1 =
8− 2ω2

0∆t2(
4 + 4δ∆t + ω2

0∆t2
) , a2 = −

(
4− 4δ∆t + ω2

0∆t2)(
4 + 4δ∆t + ω2

0∆t2
)

PML regions: p1eη = a2∆t(aη1 − bη2)/ε0,p2eη = a2∆t(aη2 − bη1)/(2ε0),
p3eη = a2∆twη1wη2/ε0, p1hη = ∆t(aη1 − bη2)/µ0, p2hη = ∆t(aη2 − bη1)/µ0 and
p3hη = ∆twη1wη2/(2µ0). It can be observed from Equation (11a,b) that components at
the time step of n + 1 and n exist at both sides of the equations resulting in the formation of
coupled equations. Although it can be solved according to the original CN scheme, large
sparse matrices must be solved at each time step resulting in much more expensive com-
putation. In order to alleviate such conditions, approximate CN algorithms are proposed
to avoid the calculation of sparse matrices. Among approximate CN algorithms in three
dimensions, CNDS algorithm shows considerable accuracy and efficiency. According to
the CNDS algorithm, the entire updated equations can be given in the matrix form as

(I−D1 −D2)Φ
n+1 = (I1 + D1 + D2)Φ

n + An (12)

where I is the identity matrix with the dimensions of 6× 6, Φ =
[
Ex, Ey, Ez, Hx, Hy, Hz

]T

and A is the other components at the right side of Equation (11a,b); matrices of D1 and D2
can be obtained as

D1 =



0 0 0 0 −p3ezδz 0
0 0 0 0 0 −p3exδx
0 0 0 −p3eyδy 0 0
0 0 −p3hyδy 0 0 0

−p3hzδz 0 0 0 0 0
0 −p3hxδx 0 0 0 0



D2 =



0 0 0 0 0 p3eyδy
0 0 0 p3ezδz 0 0
0 0 0 0 p3exδx 0
0 p3hzδz 0 0 0 0
0 0 p3hxδx 0 0 0

p3hyδy 0 0 0 0 0


In order to decouple the coupled equations, D1D2Φn+1 and D1D2Φn are added at both

sides of the equations. According to the factoring factorization method, Equation (12) can
be given as

(I−D1)Φ
∗ = (I1 + D1 + 2D2)Φ

n + An (13a)

(I−D2)Φ
n+1 = Φ∗ −D2Φn (13b)
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According to the CNDS algorithm, Maxwell’s equations can be updated by referring
to Equation (13a,b). It can be given in the following forms, where one obtains

E∗z = a1En
z + a2 ϕn

z + p1exFn
zx2 + p2exFn

zx1 − p1eyFn
zy2 − p2eyFn

zy1 − p3eyδy(H∗x + Hn
x ) + 2p3exδx Hn

y (14a)

H∗z = Hn
z + p1hyGn

zy1 + p2hyGn
zy2 − p1hxGn

zx1 − p2hxGn
zx2 − p3hx∂x

(
E∗y + En

y

)
+ 2p3hy∂yEn

x (14b)

En+1
z = E∗z + p3ex∂x

(
Hn+1

y + Hn
y

)
(14c)

Hn+1
z = H∗z + p3hy∂y

(
En+1

x + En
x

)
(14d)

In order to eliminate the mid-terms, Equation (14d) is substituted into Equation (14a) as(
1− p3ey p3hyδ2y

)
E∗z =

(
a1 + p3ey p3hyδ2y

)
En

z + a2 ϕn
z

+p1exFn
zx2 + p2exFn

zx1 − p1eyFn
zy2 − p2eyFn

zy1

− p1hz p3eyδyGn
xz2 − p2hz p3eyδyGn

xz1 + p1hy p3eyδyGn
xy2 + p2hy p3eyδyGn

xy1

− 2p3eyδy Hn
x + 2p3exδx Hn

y − 2p3hz p3eyδyzEn
y (15)

To eliminate components at the time step of n+1, Equation (14d) is substituted into
Equation (14a) as

(1− p3ex p3hxδ2x)En+1
z = E∗z − p3ex p3hxδ2x(E∗x + En

x )
+2p3exδx Hn

y + p3ex p3hxδ2xEn
z + p1hx p3exδxGn

yx2

+ p2hx p3exδxGn
yx1 − p1hz p3exδxGn

yz2 − p2hz p3exδxGn
yz1 (16)

According to the PLRC method, one obtains

ϕn+1
z = a1 ϕn

z + a2 ϕn−1
z + a3En+1

z + 2a3En
z + a3En−1

z (17)

where a3 =
∆εω2

0∆t2

(4+4δ∆t+ω2
0∆t2)

It can be observed that tri-diagonal matrices are formed at the left sides of Equa-
tions (15) and (16) which can be directly solved according to the Thomas algorithm. Each
component needs to solve two matrices during the update iteration. Thus, the CNDS
algorithm solves six matrices during a single iteration which results in the improvement of
efficiency compared with the CNAFS algorithm.

3. Numerical Results and Experiments

In order to demonstrate the effectiveness of the proposed algorithm and analyze the
low-pressure discharge phenomenon for the satellite sensors in outer space, a satellite sen-
sors system which is composed of a waveguide, transmission line, connector and circulator
is employed as an example for demonstration. So far, several techniques are developed
based on the Lorentz model which can be extensively employed in the analysis of low-
pressure discharge phenomenon including the conventional explicit FDTD algorithm-based
CFS-PML (FDTD-PML) in [46] and ADI algorithm-based CFS-PML (ADI-PML) in [47]. Due
to the limitation of medium-dependent characteristics of the FDTD algorithm, massive
existing algorithms cannot be directly extended into the simulation of the Lorentz model.
Thus, these algorithms cannot be employed in the low-pressure discharge phenomenon.
Hence, FDTD-PML and ADI-PML algorithms are employed in the comparison and demon-
stration. The proposed scheme is denoted as CNDS-PML to simplify the demonstration.
Figure 1 shows the sketch picture of the satellite sensors system from the top view and
front view.
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Figure 1. The sketch picture of the satellite sensors (a) top view (b) front view.

From Figure 1a, it can be observed that the satellite sensors system is composed of
a circulator, transmission line, waveguide and connector from the left to the right. The
circulator can be regarded as the patched component and is composed of the vertical
magnetized ferrite material with the parameter of εr = 14.9. The substrate of the ferrite
is composed of Teflon dielectric plate with a parameter of εr = 2.02. The patch on the top
surface of the ferrite material is made up of the metal gold. Three ports are included in
the circulator model which can be regarded as a combination of a circle with a radius of
4 mm and a rectangle of 8× 3 mm. The middle of the structure is the transmission line
component with a metal connector. Inside the transmission line model, Rogers RO4003
with the parameter of 3.55 is employed as the substrate material. The bands which are
located just above the substrate are also made up of metallic gold. The right side of the
structure is the coaxial waveguide structure. Inside the waveguide model, Teflon dielectric
bulk and metal center which can be expressed by the perfectly electronic conductor (PEC)
are employed. The detailed parameters of the entire model are listed in Table 1 with the
unit of a millimeter (mm).
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Table 1. The detailed parameters of the satellite sensors model (Unit: mm).

Parameter Value Parameter Value

W1 10 W2 1
W3 2 W4 3
W5 5 W6 6
W7 0.6 W8 6
W9 10 W10 0.5

W11 8 W12 1
H1 9.5 H2 3
H3 6.5 H4 15
H5 5 H6 3
H7 0.01 H8 9
H9 0.8 H10 0.01
T1 45◦ T2 30◦

R1 10 R2 8
R3 6.5 Unit: mm

Figure 2 shows the sketch picture of the computational domain in the FDTD simulation.
The entire rectangle domain has the dimensions of 72× 16× 14 mm in each direction. The
sensor is located in the middle of the domain. Four ports are employed at the positions
of the left, middle, front and right of the domain to evaluate the electrical behavior. Port
1, port 2 and port 3 hold the same dimensions and shapes which can be regarded as a
combination of circle and rectangle models. Port 4 holds the circle model with a radius of
4.25 mm. The excitation source is the plane source that holds the dimensions of the port.
Here, the source is excited in port 1 which can be regarded as the combination of a circle
with a radius of 4 mm and a rectangle of 8× 3 mm of the yOz plane is employed as an
example for demonstration. The Gaussian pulse source with the maximum frequency of
2 GHz is employed to excite the model. The observation point is located at the corner of
port 2 with a distance of 1 cell beside the PML regions. At the boundaries of the domain,
10-cell-PML regions are employed to terminate unbounded lattices and reflect outgoing
waves. The parameters inside PML regions are selected for the best absorbing performance
both in the time domain and frequency domain. The parameters inside the proposed PML
regions are κη1= 11, αη1 = 1.4, mη1 = 4, ση1_max = 0.01ση1_opt, κη2 = 12, αη2 = 3.1, mη2 = 1
and ση2_max = 0.01ση2_opt, where σηn_opt = (mηn + 1)/(150π∆η). The parameters of the
other schemes are chosen as κη= 36, αη1 = 0.68, mη = 2 and ση_max = 0.9ση_opt.
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Figure 3 shows the picture of the manufactured satellite sensors system inside the
metal cavity and the experiment environment. Figure 3a represents the manufactured
satellite sensors system with three outer ports, which correspond to port 1, port 3 and
port 4, as shown in Figure 2. SMA connector is employed at port 1 to excite the entire
component. In the middle of the component, the patched circulator is located under
the extremely thin metal surface. Port 2 is located at the bottom of the circulator. On
the right side of the circulator, the transmission line model is located under the metal
surface. The upper port corresponds to port 3. The coaxial waveguide model is located
at the right side of the transmission line, whose signal can be measured from the right
bottom port, which corresponds to port 4. Figure 3b shows the experiment which can
evaluate the low-pressure discharge phenomenon and analyze the environment in outer
space. Components are located inside the metal cavity. Low-pressure, large-range-variation
temperatures can occur inside the cavity, which can accurately simulate the environment
in outer space. Meanwhile, through the employment of the system, parameters of the
low-pressure discharge can be measured.
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Figure 3. (a) The manufactured filter sensors for satellite (b) low-pressure discharge measurement system.

With the occurrence of a low-pressure discharge phenomenon, the gas inside the
sensors devices is ionized by the high power resulting in the formation of plasma. Through
the experiment, plasma can be expressed by the Lorentz media with the parameters of
ε∞ = 1, εs = 2.25, σ = 0 S/m, ω0 = 4× 1016 rad/s and δ = 0.28× 1016 s−1. Furthermore,
when the sensors system works with non-dischargement circumstances, the computational
domain can be regarded as filling with air.

In the unconditionally stable algorithms, the mesh size of the calculation can be
chosen according to the accuracy rather than the CFL condition. Here, mesh size can be
chosen as ∆x = ∆y = ∆z = ∆ = 0.1 mm. Thus, the entire computational domain can be
discretized as 720∆x× 160∆y× 140∆z according to Yee’s grid. The maximum time step of
the conventional FDTD algorithm ∆tFDTD

max according to the CFL condition can be obtained
as 0.29 ps. The CFL number (CFLN) is defined as CFLN = ∆t/∆tFDTD

max , where ∆t is the
time step in the unconditionally stable algorithm. It has been testified that CFLN = 16 holds
the best compromise between accuracy and efficiency [48]. Thus, such a circumstance is
employed as an example for demonstration. The calculation accuracy in the time domain
can be demonstrated by the time domain waveform. Figure 4 shows the waveform at the
observation point obtained by different algorithms and CFLNs in the time domain.
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Through Figure 4a, it can be observed that these curves are almost overlapped. Such a
condition indicates that these algorithms hold the same calculation accuracy with CFLN = 1.
As shown in Figure 4b, curves show shifting compared with those obtained by CFLN = 1.
The condition indicates the calculation accuracy degenerates with the enlargement of
CFLNs. The reason is that the numerical dispersion increases with the enlargement of the
time step, which results in the degeneration of calculation accuracy. Among unconditionally
stable algorithms, it can be observed that the proposed CNDS-PML algorithm shows less
shifting compared with the implicit ADI-PML scheme. Such a condition indicates the
proposed algorithm behaviors less numerical dispersion and better accuracy compared
with the existing implicit scheme.

In order to further evaluate the absorbing performance inside the PML regions, relative
reflection error in the time domain is employed, which can be defined as

RdB(t) = 20 log10
[∣∣Et

z(t)− Er
z(t)

∣∣/|max{Er
z(t)}|

]
(18)

where Et
z(t) is the test solution which can be obtained directly from the observation point,

Er
z(t) is the reference solution which can be obtained with enlarged computational domain

and thicker PML regions. Due to the employment of thicker PML regions with 128 cells and
an enlarged domain with 20 times, the reflection wave can be ignored at the observation
point without changing the relative position between the source and the observation point.
Figure 5 demonstrates the relative reflection error obtained by different PML algorithms
and CFLNs in the time domain.
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As can be observed from Figure 5a that the time-explicit conventional FDTD-PML
holds the best absorbing performance due to the non-calculation of matrices. Such con-
dition results in the best calculation accuracy among these introduced algorithms. The
performance of the implicit algorithms decreases due to the calculation of matrices at
each time step resulting in the degeneration of accuracy and efficiency with smaller time
steps. Compared with the existing implicit ADI-PML algorithm, the proposed algorithm
can receive better absorption due to the improvement of the calculation accuracy. From
Figure 5b, it can be observed that the absorption decreases significantly with the enlarge-
ment of CFLNs due to the enlargement of numerical dispersion. It can still conclude that the
proposed CNDS*PML scheme receives better performance and absorption compared with
the existing implicit ADI-PML scheme. Although the absorption decreases with CFLN = 16,
it still maintains a considerable level, which can be employed in practical engineering (usu-
ally regarded as −40 dB as a standard) [48]. The effectiveness of the calculation can also
be reflected by the memory consumption and simulation duration occupied by different
algorithms and CFLNs, as shown in Table 2.

Table 2. The computational duration, consumption memory, iteration step, memory increment and
time reduction obtained by different PML algorithms and CFLNs.

PML
Algorithm CFLN Steps Memory

(G)
Memory

Increment (%)
Time
(m)

Time
Reduction (%)

FDTD-PML 1 65,536 0.7 - 22.1 -

ADI-PML 1 65,536 2.0 −185.7 107.4 −384.2

CNDS-PML 1 65,536 1.6 −157.1 90.6 −310.0

ADI-PML 16 4096 2.0 −185.7 10.3 53.4

CNDS-PML 16 4096 1.6 −157.1 6.9 68.3

As can be observed from Table 2, the simulation duration and memory consumption of
the implicit algorithm becomes larger compared with the conventional explicit scheme. The
reason is that the implicit algorithms solve six tridiagonal matrices and more coefficients at
each time step. The calculation of matrices consumes much more resources on the simula-
tion duration. The increment of coefficients also results in the degeneration of efficiency
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and enlargement of memory consumption. Compared with memory consumption, the
development of computational electromagnetics mainly focuses on efficiency.

As can be observed, the efficiency can be enhanced by employing larger CFLNs, shown
in the last two columns of Table 2. The enlargement of CFLN results in the increment of
a simulation time step. In such circumstances, the simulation duration can be shortened
according to the decrement of the total simulation iteration step. Thus, in an unconditionally
stable algorithm, a large CFLN which leads to an enlarged time step can receive better
efficiency compared with the smaller one. Compared with the existing ADI-PML scheme,
the proposed CNDS-PML shows considerable efficiency and memory consumption. With
CFLN = 16, the proposed implicit algorithm shows significant improvement in simulation
duration compared with the other algorithms. Most importantly, it can obtain better
memory consumption and efficiency compared with the existing ADI-PML algorithm.
Such a condition indicates the improvement of effectiveness from the aspect of simulation
duration and memory consumption.

The absorption inside the PML regions cannot only be reflected by the relative re-
flection error in the time domain but also be evaluated by the reflection coefficient in the
frequency domain, which can be defined as

RdB( f ) = 20 log10

∣∣FFT
{

Et
z(t)− Er

z(t)
}

/FFT
{

Et
z(t)

}∣∣ (19)

where the manipulation operator FFT denotes the Fourier transformation. Figure 6 shows
the reflection coefficient obtained by different PML algorithms and CFLNs in the fre-
quency domain.
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Through Figure 6a, we can draw the same conclusion that the conventional explicit
FDTD-PML algorithm still holds the best absorption in the entire frequency domain sim-
ulation due to the non-matrices calculation. Due to the solution of matrices at each time
step, absorption degenerates in the implicit algorithms. Among the implicit schemes, the
proposed CNDS-PML algorithm receives a better reflection coefficient compared with
the existing implicit ADI-PML algorithm. From Figure 6b, the absorption decreases with
the enlargement of the time step due to the enlargement of numerical dispersion, which
corresponds to the improvement of the reflection coefficient in the frequency domain.
Compared with the existing implicit ADI-PML algorithm, the proposed scheme still holds
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better absorption in the entire frequency band. Meanwhile, the wave reflection at low
frequency can be decreased by employing the higher-order formulation. Such a condition
proves that the low-frequency propagation waves can be further absorbed. In summary, the
employment of the higher-order formulation enhances the absorption both in the time do-
main and frequency domain. However, such a condition increases the simulation duration
and memory consumption during the whole simulation. Such a condition demonstrates
that the higher-order formulation can be regarded as a compromise between efficiency
and absorption.

The scattering parameters can be regarded as the important parameters during the
simulation and sensors system. The return loss (S11), transmission coefficient (S21) and
isolation (S12) are employed for demonstration during the simulation. Here, calculation
accuracy and absorption can also be reflected by the scattering parameters in the frequency,
as shown in Figures 7–9. Meanwhile, in order to demonstrate the effectiveness of the
proposed algorithm, experiment results are included. Inside the cavity, the measurement of
the excitation signal and echo wave signal depends on the same probe. Thus, S11 can be
obtained from the experiment, as shown in Figure 7.
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Figure 7. S11 parameter with low-pressure discharge obtained by different PML algorithms and
CFLNs in the frequency domain (a) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 1. (b) FDTD-
PML, ADI-PML and CNDS-PML with CFLN = 16.

As shown in Figure 7a, the curves are almost overlapped with CFLN = 1. This
condition indicates these algorithms hold the same calculation accuracy during the entire
frequency simulation. With the increment of CFLN and time step, curves obtained by
implicit algorithms show shifting compared with these algorithms with CFLN = 1. This
condition indicates a decrement in calculation accuracy due to the increment of numerical
dispersion. Among implicit algorithms, the proposed CNDS-PML algorithm shows better
performance compared with the implicit ADI-PML algorithm, shown in Figure 7b. As can
be demonstrated from the experiment results, it shows considerable agreement with the
simulation method. The condition shows the effectiveness of the proposed algorithm in the
simulation of the low-pressure discharge phenomenon. Figures 8 and 9 show the S12 and
S21 parameters obtained by different PML algorithms and CFLNs in the frequency domain
with low-pressure discharge phenomenon, respectively.
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As shown in Figures 8a and 9a that these curves are almost overlapped with CFLN = 1.
This condition indicates they hold a similar accuracy with lower CFLNs. Through
Figures 8b and 9b, it can be observed that the curves show shifting compared with
those with CFLN = 1 due to the enlargement of numerical dispersion and decrement of
numerical accuracy with larger CFLNs. However, the proposed algorithm can still receive
considerable performance with larger CFLNs. Meanwhile, it still shows considerable per-
formance compared with existed implicit ADI-PML algorithm. Figures 10–12 demonstrate
the electrical behavior without low-pressure discharge, which can be regarded as filled with
a vacuum at the rest of the computational domain. It can be observed that the scattering
parameters show significant variation with the occurrence of the low-pressure discharge
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phenomenon. The occurrence of low-pressure discharge significantly affects the entire
electrical behavior in the entire frequency band. Such a condition results in the failure
of the satellite sensors system in outer space. Meanwhile, experiment results of the S11
parameter without the low-pressure discharge phenomenon are also considered. It can be
observed that the simulation and experiment results show considerable agreement. The
condition demonstrates that the proposed algorithm is efficient in practical engineering.

Sensors 2023, 22, x FOR PEER REVIEW 15 of 19 
 

 

CFLN = 1 due to the enlargement of numerical dispersion and decrement of numerical 
accuracy with larger CFLNs. However, the proposed algorithm can still receive consider-
able performance with larger CFLNs. Meanwhile, it still shows considerable performance 
compared with existed implicit ADI-PML algorithm. Figures 10–12 demonstrate the elec-
trical behavior without low-pressure discharge, which can be regarded as filled with a 
vacuum at the rest of the computational domain. It can be observed that the scattering 
parameters show significant variation with the occurrence of the low-pressure discharge 
phenomenon. The occurrence of low-pressure discharge significantly affects the entire 
electrical behavior in the entire frequency band. Such a condition results in the failure of 
the satellite sensors system in outer space. Meanwhile, experiment results of the S11 pa-
rameter without the low-pressure discharge phenomenon are also considered. It can be 
observed that the simulation and experiment results show considerable agreement. The 
condition demonstrates that the proposed algorithm is efficient in practical engineering. 

  
(a) (b) 

Figure 10. S11 parameter without low-pressure discharge obtained by different PML algorithms 
and CFLNs in the frequency domain (a) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 1. (b) 
FDTD-PML, ADI-PML and CNDS-PML with CFLN = 16. 

  
(a) (b) 

Figure 10. S11 parameter without low-pressure discharge obtained by different PML algorithms
and CFLNs in the frequency domain (a) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 1.
(b) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 16.

Sensors 2023, 22, x FOR PEER REVIEW 15 of 19 
 

 

CFLN = 1 due to the enlargement of numerical dispersion and decrement of numerical 
accuracy with larger CFLNs. However, the proposed algorithm can still receive consider-
able performance with larger CFLNs. Meanwhile, it still shows considerable performance 
compared with existed implicit ADI-PML algorithm. Figures 10–12 demonstrate the elec-
trical behavior without low-pressure discharge, which can be regarded as filled with a 
vacuum at the rest of the computational domain. It can be observed that the scattering 
parameters show significant variation with the occurrence of the low-pressure discharge 
phenomenon. The occurrence of low-pressure discharge significantly affects the entire 
electrical behavior in the entire frequency band. Such a condition results in the failure of 
the satellite sensors system in outer space. Meanwhile, experiment results of the S11 pa-
rameter without the low-pressure discharge phenomenon are also considered. It can be 
observed that the simulation and experiment results show considerable agreement. The 
condition demonstrates that the proposed algorithm is efficient in practical engineering. 

  
(a) (b) 

Figure 10. S11 parameter without low-pressure discharge obtained by different PML algorithms 
and CFLNs in the frequency domain (a) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 1. (b) 
FDTD-PML, ADI-PML and CNDS-PML with CFLN = 16. 

  
(a) (b) 

Figure 11. S12 parameter without low-pressure discharge obtained by different PML algorithms
and CFLNs in the frequency domain (a) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 1.
(b) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 16.



Sensors 2023, 23, 1085 16 of 18

Sensors 2023, 22, x FOR PEER REVIEW 16 of 19 
 

 

Figure 11. S12 parameter without low-pressure discharge obtained by different PML algorithms 
and CFLNs in the frequency domain (a) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 1. (b) 
FDTD-PML, ADI-PML and CNDS-PML with CFLN = 16. 

  
(a) (b) 

Figure 12. S21 parameter without low-pressure discharge obtained by different PML algorithms 
and CFLNs in the frequency domain (a) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 1. (b) 
FDTD-PML, ADI-PML and CNDS-PML with CFLN = 16. 

4. Conclusions 
Here, an alternative algorithm is proposed to evaluate the low-pressure discharge 

phenomenon for the satellite sensors in outer space. For the simulation of the low-pressure 
discharge phenomenon, Lorentz medium is employed to accurately evaluate the electrical 
behavior. To be more specific, the CNDS algorithm is modified based on the higher-order 
formulation in the PML regions and the PLRC method in the Lorentz medium. Parameters 
of the Lorentz model with the occurrence of the low-pressure discharge phenomenon can 
be measured through the experiment. Through these parameters, electrical behavior can 
be evaluated by employing the proposed algorithm. It can be observed from the results 
that the proposed algorithm shows considerable accuracy and efficiency in the low-pres-
sure discharge evaluation compared with the other algorithms. The higher-order formu-
lation shows enhanced absorption at the boundaries of the domains. As can be compared 
between the simulation and experiment, the occurrence of low-pressure discharge phe-
nomenon significantly affects the behavior of the sensors system. In future work, several 
aspects can be further investigated: (1) the proposed algorithm can be developed into the 
simulation of the other phenomenon, including the multipactor and so on. (2) The confor-
mal technique can be developed according to the unconditionally stable algorithm to effi-
ciently solve the curve structures. (3) Multi-physics problems can be considered to analyze 
the multi-field coupled circumstances. 

Author Contributions: Conceptualization, H.J.; Data curation, Y.W. and P.W.; Formal analysis, Y.X. 
and P.S.; Funding acquisition, Y.X. and P.W.; Investigation, H.J. and P.W.; Methodology, P.S., H.J. 
and P.W.; Project administration, Y.X. and P.W.; Resources, Y.X.; Software, Y.X.; Validation, Y.W., 
P.S. and P.W.; Visualization, Y.W. and H.J.; Writing—original draft, Y.W. and P.S.; Writing—review 
& editing, Y.X., H.J. and P.W. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This work is supported by the Key Laboratory of Science and Technology on Space Mi-
crowave under Grant 6142411032201, National Key Research and Development Program of China 

Figure 12. S21 parameter without low-pressure discharge obtained by different PML algorithms
and CFLNs in the frequency domain (a) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 1.
(b) FDTD-PML, ADI-PML and CNDS-PML with CFLN = 16.

4. Conclusions

Here, an alternative algorithm is proposed to evaluate the low-pressure discharge
phenomenon for the satellite sensors in outer space. For the simulation of the low-pressure
discharge phenomenon, Lorentz medium is employed to accurately evaluate the electrical
behavior. To be more specific, the CNDS algorithm is modified based on the higher-order
formulation in the PML regions and the PLRC method in the Lorentz medium. Parameters
of the Lorentz model with the occurrence of the low-pressure discharge phenomenon can
be measured through the experiment. Through these parameters, electrical behavior can be
evaluated by employing the proposed algorithm. It can be observed from the results that
the proposed algorithm shows considerable accuracy and efficiency in the low-pressure
discharge evaluation compared with the other algorithms. The higher-order formulation
shows enhanced absorption at the boundaries of the domains. As can be compared between
the simulation and experiment, the occurrence of low-pressure discharge phenomenon
significantly affects the behavior of the sensors system. In future work, several aspects can
be further investigated: (1) the proposed algorithm can be developed into the simulation of
the other phenomenon, including the multipactor and so on. (2) The conformal technique
can be developed according to the unconditionally stable algorithm to efficiently solve the
curve structures. (3) Multi-physics problems can be considered to analyze the multi-field
coupled circumstances.
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