
Citation: Paepae, T.; Bokoro, P.N.;

Kyamakya, K. Data Augmentation

for a Virtual-Sensor-Based Nitrogen

and Phosphorus Monitoring. Sensors

2023, 23, 1061. https://doi.org/

10.3390/s23031061

Academic Editor: Annie Lanzolla

Received: 12 December 2022

Revised: 6 January 2023

Accepted: 16 January 2023

Published: 17 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Data Augmentation for a Virtual-Sensor-Based Nitrogen and
Phosphorus Monitoring
Thulane Paepae 1, Pitshou N. Bokoro 1 and Kyandoghere Kyamakya 2,3,*

1 Department of Electrical and Electronic Engineering Technology, University of Johannesburg,
Doornfontein 2028, South Africa

2 Institute for Smart Systems Technologies, Transportation Informatics, Alpen-Adria Universität Klagenfurt,
9020 Klagenfurt, Austria

3 Faculté Polytechnique, Université de Kinshasa, P.O. Box 127, Kinshasa XI, Democratic Republic of the Congo
* Correspondence: kyandoghere.kyamakya@aau.at; Tel.: +43-463-2700-3540

Abstract: To better control eutrophication, reliable and accurate information on phosphorus and ni-
trogen loading is desired. However, the high-frequency monitoring of these variables is economically
impractical. This necessitates using virtual sensing to predict them by utilizing easily measurable
variables as inputs. While the predictive performance of these data-driven, virtual-sensor models
depends on the use of adequate training samples (in quality and quantity), the procurement and
operational cost of nitrogen and phosphorus sensors make it impractical to acquire sufficient samples.
For this reason, the variational autoencoder, which is one of the most prominent methods in genera-
tive models, was utilized in the present work for generating synthetic data. The generation capacity
of the model was verified using water-quality data from two tributaries of the River Thames in the
United Kingdom. Compared to the current state of the art, our novel data augmentation—including
proper experimental settings or hyperparameter optimization—improved the root mean squared
errors by 23–63%, with the most significant improvements observed when up to three predictors were
used. In comparing the predictive algorithms’ performances (in terms of the predictive accuracy and
computational cost), k-nearest neighbors and extremely randomized trees were the best-performing
algorithms on average.

Keywords: water-quality monitoring; eutrophication; synthetic data; soft sensor; surrogate variables;
variational autoencoder; machine learning; deep neural network; parameter optimization

1. Introduction
1.1. Background and Motivation

Water eutrophication, the severity of which is increasing in developing countries,
has become one of the most serious water-quality problems in the world [1]. With “clean
water and sanitation for all” listed among the 17 sustainable development goals, the
deterioration of freshwater resources (such as rivers, lakes, and reservoirs) is of great
international concern since it threatens the reliable (safe and sufficient) water supply for
domestic, recreational, irrigation, or industrial uses due to the potential risk of the resulting
cyanobacterial blooms on the health of end users [2,3]. While eutrophication was principally
thought to result from point sources (e.g., wastewater treatment plants), recent evidence
shows that diffuse phosphorous (P) and nitrogen (N) sources (e.g., urban and agricultural
run-off) are key factors [4]. This is because, while point-source pollutants can be controlled
at the sewage treatment plants, there has not been much progress in reducing nutrient
(mainly P and N) loads from diffuse or non-point sources [4]. Therefore, from the surface-
water-management perspective, reliable information on P and N loading is desired to
control eutrophication.

Currently, much of the information concerning trends and patterns in nutrient loads
and concentrations are based on the traditional grab-sampling approach, in which discrete

Sensors 2023, 23, 1061. https://doi.org/10.3390/s23031061 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031061
https://doi.org/10.3390/s23031061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9178-2700
https://orcid.org/0000-0003-0773-9476
https://doi.org/10.3390/s23031061
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031061?type=check_update&version=2

Sensors 2023, 23, 1061 2 of 20

water samples are manually collected from water bodies at weekly to monthly intervals
before being analyzed in laboratories [5,6]. However, due to the highly dynamic nature
of stream nutrients [7], the accuracy of N and P loading estimates may be inferior due to
this low-frequency monitoring [8]. Therefore, even though this low-temporal-monitoring
approach has yielded important water-quality information, more timely and accurate
quantification of nutrient loads and concentrations could help policy-makers and resource
managers to (i) identify specific pollution sources, (ii) evaluate compliance with regulatory
quality objectives, (iii) develop more effective responses, and (iv) assess the progress on
measures of remedial actions [5].

For this reason, modern water management requires the quick and reliable characteri-
zation of water contaminants to enable a timely response [9]. Real-time monitoring is ideal
for this purpose. Apart from enabling faster response times against natural or intentional
contamination warnings, real-time information can be used to identify emerging issues
and pollutants, assess water-quality changes, identify trends, and achieve rapid water
screening for toxic pathogens and substances. Despite the need and recent advancements
in sensor technologies, the widespread adoption of real-time N and P sensors for long-
term outdoor monitoring remains limited due to significant procurement and operational
costs. For instance, a one-time nitrate sensor measurement costs more than USD 60,000
when considering the purchasing, operation, and data validation costs [5]. This cost is
prohibitive, particularly in developing countries such as South Africa, where the national
eutrophication-monitoring program monitors around 160 rivers, dams, and lakes [10]. In
fact, the cost of sensors has been one of the main barriers to deploying effective monitoring
networks in recent years [11].

To address this central issue, easily measurable water-quality variables, such as pH,
turbidity, temperature, conductivity, etc., can be employed as the inputs (also called predic-
tors, surrogates, or auxiliary variables) of mathematical models known as virtual sensors
for predicting the expensive-to-measure variables such as N and P [9]. Figure 1 illustrates
the basic concept of a virtual sensor.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 21

Currently, much of the information concerning trends and patterns in nutrient loads
and concentrations are based on the traditional grab-sampling approach, in which discrete
water samples are manually collected from water bodies at weekly to monthly intervals
before being analyzed in laboratories [5,6]. However, due to the highly dynamic nature of
stream nutrients [7], the accuracy of N and P loading estimates may be inferior due to this
low-frequency monitoring [8]. Therefore, even though this low-temporal-monitoring
approach has yielded important water-quality information, more timely and accurate
quantification of nutrient loads and concentrations could help policy-makers and resource
managers to (i) identify specific pollution sources, (ii) evaluate compliance with
regulatory quality objectives, (iii) develop more effective responses, and (iv) assess the
progress on measures of remedial actions [5].

For this reason, modern water management requires the quick and reliable
characterization of water contaminants to enable a timely response [9]. Real-time
monitoring is ideal for this purpose. Apart from enabling faster response times against
natural or intentional contamination warnings, real-time information can be used to
identify emerging issues and pollutants, assess water-quality changes, identify trends,
and achieve rapid water screening for toxic pathogens and substances. Despite the need
and recent advancements in sensor technologies, the widespread adoption of real-time N
and P sensors for long-term outdoor monitoring remains limited due to significant
procurement and operational costs. For instance, a one-time nitrate sensor measurement
costs more than USD 60,000 when considering the purchasing, operation, and data
validation costs [5]. This cost is prohibitive, particularly in developing countries such as
South Africa, where the national eutrophication-monitoring program monitors around
160 rivers, dams, and lakes [10]. In fact, the cost of sensors has been one of the main
barriers to deploying effective monitoring networks in recent years [11].

To address this central issue, easily measurable water-quality variables, such as pH,
turbidity, temperature, conductivity, etc., can be employed as the inputs (also called
predictors, surrogates, or auxiliary variables) of mathematical models known as virtual
sensors for predicting the expensive-to-measure variables such as N and P [9]. Figure 1
illustrates the basic concept of a virtual sensor.

Figure 1. The virtual-sensing concept.

Although virtual sensing (i) improves the availability of the measurements, (ii)
increases the measurement accuracy and reliability, and (iii) minimizes the associated
measurement cost and time-related delays, its development presents several practical
difficulties. One such difficulty is the poor quality and quantity of the acquired training
data. For instance, the datasets that Paepae et al. [9] and Castrillo and García [12]
employed when developing their nitrogen and phosphorus virtual sensors had a
phosphorus-missing rate of 40% in one of the catchments, which may be the reason behind
its poor prediction performance of 82% in the same catchment [9]. Further, Ha et al. [13]
used 1047 observations, while Dilmi [14] had only 816 data samples to develop their
nutrient (N and P) and calcium virtual sensors, respectively. This problem, which usually
results in unacceptable virtual-senor performance [15], is known as a small sample
problem [15,16]. With the predictive performance of data-driven virtual sensors strongly
dependent on adequate training data [17–19], the procurement and operational cost of
nitrogen and phosphorus sensors makes it impractical to acquire sufficient data for

Figure 1. The virtual-sensing concept.

Although virtual sensing (i) improves the availability of the measurements, (ii) in-
creases the measurement accuracy and reliability, and (iii) minimizes the associated mea-
surement cost and time-related delays, its development presents several practical difficul-
ties. One such difficulty is the poor quality and quantity of the acquired training data.
For instance, the datasets that Paepae et al. [9] and Castrillo and García [12] employed
when developing their nitrogen and phosphorus virtual sensors had a phosphorus-missing
rate of 40% in one of the catchments, which may be the reason behind its poor prediction
performance of 82% in the same catchment [9]. Further, Ha et al. [13] used 1047 observa-
tions, while Dilmi [14] had only 816 data samples to develop their nutrient (N and P) and
calcium virtual sensors, respectively. This problem, which usually results in unacceptable
virtual-senor performance [15], is known as a small sample problem [15,16]. With the
predictive performance of data-driven virtual sensors strongly dependent on adequate
training data [17–19], the procurement and operational cost of nitrogen and phosphorus
sensors makes it impractical to acquire sufficient data for virtual-sensor modeling. In these
cases, data augmentation or synthetic data generation, which generates new data samples
by leveraging the existing data, may be a viable solution [19,20].

Sensors 2023, 23, 1061 3 of 20

1.2. Literature Review

Although several preprocessing issues (such as data scaling, normalization, outlier
detection, missing values handling, and input variable selection) that affect the predictive
performance of virtual sensors have been studied, only a limited number of works have
looked at synthetic data generation for virtual-sensor modeling. For instance, Table 1
presents the studies where extra data samples were generated for virtual-sensing purposes.

Table 1. A list of studies that augmented data for virtual-sensing purposes.

Ref. Year Generative Models Application

[21] 2019 Stacked autoencoder Hydrocracking process

[19] 2020
Metropolis–Hastings algorithm,

Thermal power-plant boilervariational autoencoder (VAE),
generative adversarial network (GAN), VAE-GAN

[20] 2021 GAN, stacked VAE (SVAE), SVAE-GAN Thermal power-plant boiler

[22] 2021
Centroidal Voronoi tessellation sampling, Polyethylene process

conditional GAN (CGAN)

[23] 2021 CGAN High-density polyethylene

[24] 2021
Monte Carlo with particle swarm optimization, Purified terephthalic acid

noise-injection, target-relevant AE, VAE Ethylene production system

[25] 2022 Combined AE data augmentation strategy Industrial debutanizer

[26] 2022 VAE, GAN Industrial reformer

As can be seen in Table 1, deep-learning-based generative models, particularly gen-
erative adversarial networks (GANs) and variational autoencoders (VAEs), are the main
methods utilized for learning generative models. Notably, the field is still emerging, as
the first application of deep generative models for virtual-sensing purposes only appeared
in 2019. In all the studies that compared VAEs and GANs [19,20,26], VAEs performed
better. This may be attributed to the initial GAN version drawbacks, such as the training
difficulty, mode collapse, gradient disappearance, and difficulty in determining when to
stop training [20]. Again, As in Table 1, current applications exist in the chemical-process
industry; there are none in the water-quality domain. However, due to differences in data
dynamics between different problem domains, the success of a method or algorithm in one
field does not guarantee the same success in another [19,27]. In this context, the suitability
of VAE-based data augmentation for water-quality data remains unclear.

1.3. Work Objective

The primary objective of the present work is to assess the efficacy of data augmentation
using a variational autoencoder on the prediction performance of N and P concentrations.
To our best knowledge, this is the first study to assess the impact of a generative model
on supplementing data for virtual-sensor-based nutrient monitoring. The predictive per-
formance of the virtual sensors will then be assessed using a deep neural network (DNN),
k-nearest neighbors (KNN), extreme gradient boosting (XGB), support vector regression
(SVR), and extremely randomized trees (ERT) as predictive models.

The rest of the paper is organized as follows. Section 2 (i) describes the study areas,
water-quality data, and data analysis frameworks, (ii) discusses the process undertaken to
develop the virtual sensors, and (iii) discusses the fundamental principles of a variational
autoencoder and machine-learning-based predictive models. Section 3 presents the results
and discussion.

2. Materials and Methods

Figure 2 presents a general overview of the process, from raw data acquisition to the
development and evaluation of the predictive models.

Sensors 2023, 23, 1061 4 of 20

Sensors 2023, 23, x FOR PEER REVIEW 4 of 21

undertaken to develop the virtual sensors, and (iii) discusses the fundamental principles
of a variational autoencoder and machine-learning-based predictive models. Section
Three presents the results and discussion.

2. Materials and Methods
Figure 2 presents a general overview of the process, from raw data acquisition to the

development and evaluation of the predictive models.

Figure 2. A general overview of the research framework for the present work.

A detailed description of the methods implemented in these procedures is provided
in subsequent relevant sections.

2.1. Study Area and Water-Quality Data
The publicly available datasets utilized in the present work were obtained from [28].

The hourly physical and chemical monitoring data were measured continuously at two
sites with contrasting land uses on tributaries of the River Thames: one (The Cut) draining
an urban, effluent-affected system and the other (the River Enborne) draining a more
rural catchment [29]. For The Cut, the data were collected from May 2010 to February
2012, while data from the River Enborne were collected from November 2009 to February
2012. Additional details, such as catchment maps, sampling locations, satellite-view
photos, instrumentation characteristics, and monitoring methodology, accompany the
datasets and are also provided in [29].

The variables measured in the River Enborne were pH, temperature, turbidity,
conductivity, dissolved oxygen, total chlorophyll, total reactive phosphorus (TRP), and
nitrogen as nitrate (NO3). The same variables were also measured in The Cut, except that
nitrogen was measured as ammonium (NH4) and total phosphorus (TP) was measured
only in The Cut. In both cases, datasets are accompanied by the flow-rate data taken from
the closest gauging station. Regarding monitoring, TRP data in the River Enborne were
measured in situ using a Systea Micromac C auto-analyser, NO3 was measured by UV
absorption using a Hach Lange Nitratax Plus probe, and other variables were measured
using a YSI 6600 multi-parameter sonde. In The Cut, TP and TRP data were also measured
in situ using a Hach Lange Phosphax Sigma auto-analyser. In situ monitoring was not
undertaken for NH4, and the remaining variables were also monitored using a YSI 6600
multi-parameter sonde [29,30]. Weekly grab sampling and laboratory analysis were
undertaken for data ground truthing.

2.2. Data Analysis Frameworks
Due to its popularity in industrial and academic settings [31], Python (3.8.3) was used

as a programming language in the present work. The following open-source software
libraries, with their corresponding version numbers given in brackets, were used for data
preprocessing and modeling:
1. Pandas (1.0.5): used for data manipulation and analysis;

Figure 2. A general overview of the research framework for the present work.

A detailed description of the methods implemented in these procedures is provided
in subsequent relevant sections.

2.1. Study Area and Water-Quality Data

The publicly available datasets utilized in the present work were obtained from [28].
The hourly physical and chemical monitoring data were measured continuously at two
sites with contrasting land uses on tributaries of the River Thames: one (The Cut) draining
an urban, effluent-affected system and the other (the River Enborne) draining a more rural
catchment [29]. For The Cut, the data were collected from May 2010 to February 2012,
while data from the River Enborne were collected from November 2009 to February 2012.
Additional details, such as catchment maps, sampling locations, satellite-view photos,
instrumentation characteristics, and monitoring methodology, accompany the datasets and
are also provided in [29].

The variables measured in the River Enborne were pH, temperature, turbidity, conduc-
tivity, dissolved oxygen, total chlorophyll, total reactive phosphorus (TRP), and nitrogen
as nitrate (NO3). The same variables were also measured in The Cut, except that nitrogen
was measured as ammonium (NH4) and total phosphorus (TP) was measured only in The
Cut. In both cases, datasets are accompanied by the flow-rate data taken from the closest
gauging station. Regarding monitoring, TRP data in the River Enborne were measured in
situ using a Systea Micromac C auto-analyser, NO3 was measured by UV absorption using
a Hach Lange Nitratax Plus probe, and other variables were measured using a YSI 6600
multi-parameter sonde. In The Cut, TP and TRP data were also measured in situ using a
Hach Lange Phosphax Sigma auto-analyser. In situ monitoring was not undertaken for
NH4, and the remaining variables were also monitored using a YSI 6600 multi-parameter
sonde [29,30]. Weekly grab sampling and laboratory analysis were undertaken for data
ground truthing.

2.2. Data Analysis Frameworks

Due to its popularity in industrial and academic settings [31], Python (3.8.3) was used
as a programming language in the present work. The following open-source software
libraries, with their corresponding version numbers given in brackets, were used for data
preprocessing and modeling:

1. Pandas (1.0.5): used for data manipulation and analysis;
2. TensorFlow (2.10.0): used for building a deep neural network (further discussed in

Section 2.5.1);
3. Scikit-learn (1.1.0): used for implementing the k-nearest neighbors, extremely random-

ized trees, and support vector regression models (further discussed in Sections 2.5.2–2.5.4,
respectively);

4. XGBoost (2.0.0): an implementation of a gradient-boosted decision tree algorithm;
5. PyTorch (1.12.1): used for developing the VAE. It was chosen because it has a resilient

backpropagation optimizer, which was the most effective in our case.

Sensors 2023, 23, 1061 5 of 20

2.3. Virtual Sensor Development

The available data had 20,412 records for the River Enborne and 15,636 records for The
Cut. However, due to the high number of missing values (which we handled by listwise
deletion, as was done by Castrillo and Garcia [12]), the resulting datasets had 12,723 and
8934 records, respectively. We then developed the virtual sensors following five main steps:
(i) data preprocessing, (ii) data splitting, (iii) input variable selection, (iv) model selection,
and (v) model evaluation.

2.3.1. Data Preprocessing

To better fit the predictive model, a standard procedure is to preprocess the data
samples first. In the present work, preprocessing included data transformation and scaling.
To stabilize variance and minimize skewness in variables not normally distributed, the
transformations were performed as is shown in Table 2 [9].

Table 2. Variable transformation in each catchment.

Variable
Transformation

The Cut River Enborne

Turbidity Reciprocal Reciprocal
Flow rate Reciprocal Logarithm
Chlorophyll Logarithm Logarithm
Dissolved oxygen Square root Logarithm
Nitrate (as NH4 or NO3) Cube root Cube root
Total Reactive Phosphorus None Cube root
pH None Reciprocal
Temperature None None
Conductivity None None
Total Phosphorus Square root

Additionally, all the features and targets were scaled to be between zero and one
to ensure they had equal importance during training. We used the pipeline module in
Scikit-learn [31] to avoid data leakage.

2.3.2. Data Division

A common practice in any machine-learning experiment is to divide the available
data into training, validation, and test sets. The model is trained on the training set,
followed by evaluation on the validation set, and final testing on the test set when the
experiment seems successful. However, dividing the data into three subsets has the
drawbacks of (i) drastically reducing the number of samples available for learning the
model and (ii) resulting in predictive results that depend on a specific, random choice for
the training and validation sets [31]. Cross-validation solves this problem by dividing
the available data into only train and test sets, where the testing set is still used for final
evaluation. However, the training set is now divided into k subsets or folds, after which the
model is trained using k-1 of the folds, followed by validation using the remaining set. The
resulting model performance is the average computed for all the splits. We used ten-fold
cross-validation and held a 20% test set in all experiments.

2.3.3. Input Variable Selection

In the virtual-sensing context, selecting appropriate input variables is particularly
crucial since it controls the cost of the resulting monitoring program. The chosen subset
determines the predictor sensors that will be utilized for virtual sensing. Therefore, this
subset is required to be optimally minimal to reduce the resulting surrogate sensors’
procurement, installation, and operational costs. We adopted the surrogates proposed
in [9,12] since they are all relatively inexpensive to measure. To assess the contribution

Sensors 2023, 23, 1061 6 of 20

of each surrogate in the prediction of N and P concentrations, we adopted the Shapley
additive explanations method for feature importance rankings, as in [9].

2.3.4. Model Selection

Depending on the problem at hand, a large number of machine- and deep-learning
models with varying predictive capabilities exist. An effective procedure for selecting a
model is to first perform spot-checking to identify a few suitable options. In our case, a
study [9] has already performed spot-checking for both catchments and identified the best-
performing models. Based on their analysis, we adopted k-nearest neighbors, extremely
randomized trees, support vector regression, and extreme gradient boosting models. Addi-
tionally, we included a deep neural network as a predictive model; to our best knowledge,
it not been assessed for virtual-sensor-based nutrient monitoring.

2.3.5. Model Evaluation

We used the coefficient of determination (R2) and root mean squared error (RMSE)
metrics to evaluate the performance of the virtual-sensor models. They were chosen because
they are the two most widely used performance metrics in water-quality research [9,31].
The formulas of the two metrics are shown in Equations (1) and (2):

RMSE (y, ŷ) =

√
1
n

n

∑
i = 1

(yi − ŷi)
2 (1)

R2 (y, ŷ) = 1 − ∑n
i = 1(yi − ŷi)

2

∑n
i = 1(yi − µ)2 (2)

where yi denotes the actual value, ŷi denotes the predicted value, n is the number of
samples, and µ represents the average of the observed values.

2.4. Data Augmentation: A Variational Autoencoder

An autoencoder (AE) is a type of neural network designed to learn (in an unsupervised
way) an identity function that can compress and regenerate original input data. It learns
a more efficient data representation or latent vector by ignoring the insignificant data
during compression. Contrary to traditional autoencoders that map the input data into
fixed latent vector representations, VAEs map the data into the parameters of a probability
distribution, such as the mean µ and standard deviation σ of a Gaussian. This produces a
structured and continuous latent space useful for data generation. Therefore, while there is
an architectural affinity between regular AEs and VAEs, they significantly differ in terms of
the mathematical formulation [32].

2.4.1. Architecture

As is seen in Figure 3, the VAE consists of two main parts: an encoder and a decoder.
The encoder learns to compress the input data by mapping the input x to a latent vector
representation z, and the decoder learns to reconstruct the input by mapping z (sampled
from the latent space) back to x′ such that x and x′ are approximately equal.

2.4.2. Formulation

This section, including Sections 2.4.3 and 2.4.4, presents the mathematical formulation
of a variational autoencoder. Formally, given the input data, x, with unknown probability
distribution P(x), the goal is to estimate the true distribution of the P, using a distribution,
pθ ., parameterized by θ. If z is a latent vector jointly distributed with x, the relationship
between the input data, x, and its latent representation, z, can be defined using the posterior
probability, prior probability, and likelihood ratio as follows:

pθ(z|x) = pθ(z) ×
pθ(x|z)
pθ(x)

(3)

Sensors 2023, 23, 1061 7 of 20

Sensors 2023, 23, x FOR PEER REVIEW 7 of 21

representation 𝑧, and the decoder learns to reconstruct the input by mapping 𝑧 (sampled
from the latent space) back to 𝑥′ such that 𝑥 and 𝑥′ are approximately equal.

Figure 3. The structural framework of a variational autoencoder.

2.4.2. Formulation
This section, including Sections 2.4.3 and 2.4.4, presents the mathematical

formulation of a variational autoencoder. Formally, given the input data, 𝑥 , with
unknown probability distribution 𝑃(𝑥), the goal is to estimate the true distribution of the 𝑃, using a distribution, 𝑝ఏ, parameterized by 𝜃. If 𝑧 is a latent vector jointly distributed
with 𝑥, the relationship between the input data, 𝑥, and its latent representation, 𝑧, can
be defined using the posterior probability, prior probability, and likelihood ratio as
follows: 𝑝ఏ(𝑧|𝑥) = 𝑝ఏ(𝑧) × 𝑝ఏ(𝑥|𝑧)𝑝ఏ(𝑥) (3)

However, computing 𝑝ఏ(𝑥) is very expensive and intractable (i.e., requires
exponential time to compute). Therefore, making the computation more feasible
necessitates the introduction of a new approximation function for the posterior
distribution such that: 𝑞∅(𝑧|𝑥) ≈ 𝑝ఏ(𝑧|𝑥) (4)

where 𝑞∅(𝑧|𝑥) is parameterized by ∅ . This way, the objective becomes finding a
probabilistic autoencoder in which the conditional likelihood distribution, 𝑝ఏ(𝑥|𝑧), also
called a probabilistic decoder, defines a generative model while the approximated
posterior distribution, 𝑞∅(𝑧|𝑥), is the probabilistic encoder.

2.4.3. Loss Function
Since the encoder and decoder are usually neural network models, it is crucial to

utilize a differentiable loss or cost function in order to effectively update the models’
parameters (𝜃 and ∅) through backpropagation. The objective is to jointly optimize 𝜃
(the probabilistic decoder parameters) to reduce the reconstruction error between 𝑥, 𝑥′,
and ∅ to make the estimated posterior, 𝑞∅(𝑧|𝑥), approximately equal to the true
posterior 𝑝ఏ(𝑧|𝑥) . To derive the loss function, we used the reverse Kullback–Leibler
divergence, (DKL), to quantify the distance between 𝑞∅(𝑧|𝑥) and 𝑝ఏ(𝑧|𝑥) as follows: 𝐷௄௅(𝑞∅(𝑧|𝑥) ‖ 𝑝ఏ(𝑧|𝑥)) = ׬ 𝑞∅(𝑧|𝑥) log ௤∅(𝑧|𝑥) ௣ഇ(𝑧|𝑥) 𝑑𝑧 (5)

 = ׬ 𝑞∅(𝑧|𝑥) log ௤∅(𝑧|𝑥) ௣ഇ(௫) ௣ഇ(௭,௫) 𝑑𝑧 since 𝑝(𝑧|𝑥) = ௣(௭,௫)௣(௫) (6)

Figure 3. The structural framework of a variational autoencoder.

However, computing pθ(x) is very expensive and intractable (i.e., requires exponential
time to compute). Therefore, making the computation more feasible necessitates the
introduction of a new approximation function for the posterior distribution such that:

q∅(z|x) ≈ pθ(z|x) (4)

where q∅(z|x) is parameterized by ∅. This way, the objective becomes finding a proba-
bilistic autoencoder in which the conditional likelihood distribution, pθ(x|z), also called
a probabilistic decoder, defines a generative model while the approximated posterior
distribution, q∅(z|x), is the probabilistic encoder.

2.4.3. Loss Function

Since the encoder and decoder are usually neural network models, it is crucial to utilize
a differentiable loss or cost function in order to effectively update the models’ parameters
(θ and ∅) through backpropagation. The objective is to jointly optimize θ (the probabilistic
decoder parameters) to reduce the reconstruction error between x, x′, and ∅ to make the
estimated posterior, q∅(z|x), approximately equal to the true posterior pθ(z|x). To derive
the loss function, we used the reverse Kullback–Leibler divergence, (DKL), to quantify the
distance between q∅(z|x) and pθ(z|x) as follows:

DKL(q∅(z|x) ‖ pθ(z|x)) =
∫

q∅(z|x) log
q∅(z|x)
pθ(z|x)

dz (5)

=
∫

q∅(z|x) log
q∅(z|x) pθ(x)

pθ(z, x)
dz since p(z|x) =

p(z, x)
p(x)

(6)

=
∫

q∅(z|x)
[

log pθ(x) + log
q∅(z|x)
pθ(z, x)

]
dz (7)

= log pθ(x) +
∫

q∅(z|x) log
q∅(z|x)
pθ(z, x)

dz since
∫

q(z|x)dz = 1 (8)

= log pθ(x) +
∫

q∅(z|x) log
q∅(z|x)

pθ(x|z)pθ(z)
dz since p(z, x) = p(x|z)p(z) (9)

= log pθ(x) + Ez∼q∅(z|x)

[
log

q∅(z|x)
pθ(z)

− log pθ(x|z)
]

(10)

= log pθ(x) + DKL(q∅(z|x) ‖ pθ(z)) − Ez∼q∅(z|x)(log pθ(x|z)) (11)

Rearranging Equation (11) yields:

Sensors 2023, 23, 1061 8 of 20

log pθ(x) − DKL(q∅(z|x) ‖ pθ(z|x)) = Ez∼q∅(z|x)(log pθ(x|z)) − DKL(q∅(z|x) ‖ pθ(z)) (12)

The lefthand side of Equation (12) is what we aim to optimize when learning the true
distributions. That is, we want to simultaneously maximize the log-likelihood of generating
real data while minimizing the divergence between the approximate and true posterior
distributions. Negating Equation (12) defines the loss or cost function as follows:

LVAE(θ,∅) = − log pθ(x) + DKL(q∅(z|x) ‖ pθ(z|x))
= − Ez∼q∅(z|x)(log pθ(x|z)) + DKL(q∅(z|x) ‖ pθ(z))

(13)

The first term denotes the reconstruction likelihood, while the second term ensures
that the distributions q∅(z|x) and pθ(z|x) are similar.

2.4.4. Reparameterization Trick

As is seen in Figure 3, z is sampled from q∅(z|x). However, this sampling operation is
stochastic and therefore non-differentiable. Consequently, the model gradients cannot be
backpropagated. To solve this problem, Kingma and Welling [33] proposed a reparame-
terization trick or technique. Firstly, it ensures that q∅(z|x) is chosen to be a continuous
and differentiable multivariate Gaussian so that the epsilon, ε, can be sampled from a
standard normal distribution N(0, 1). Secondly, z is then generated as z = µ + σ� ε,
where µ, σ and ε enable the model gradients to be backpropagated through µ and σ while
simultaneously maintaining the stochasticity through ε.

2.4.5. Implementation

Several parameters need to be optimized for neural-network-based encoder and
decoder networks to function effectively. Following some existing works [34], we optimized
the number of hidden layers, number of neurons per hidden layer, batch size, number of
training epochs, optimization algorithm, learning rate, activation function, regularization,
and weight initialization technique. The optimal settings are provided in Section 3.1.2. We
refer the reader to [35] should they be unfamiliar with these parameters.

2.5. Predictive Models

Following the data augmentation step, the training and extensive testing of candidate
virtual sensor models (also called predictive models) is required. Herby, we implemented
several predictive models: deep neural network (a multilayer perceptron architecture),
k-nearest neighbors, extremely randomized trees, support vector regression, and extreme
gradient boosting.

2.5.1. Deep Neural Network (DNN)

A neuron (or perceptron), which is shown in Figure 4, is the fundamental building
block of a deep neural network (DNN).

To predict the output ŷ, the perceptron takes the sum of the inputs (x1 to xm) multi-
plied by their corresponding weights (w1 to wm), adds a bias w0, and then passes this sum
through a non-linear activation function g. Mathematically, this is presented as:

ŷ = g

(
w0 +

m

∑
i = 1

wixi

)
(14)

= g
(

w0 + WTX
)

(15)

Sensors 2023, 23, 1061 9 of 20

Sensors 2023, 23, x FOR PEER REVIEW 9 of 21

2.5.1. Deep Neural Network (DNN)
A neuron (or perceptron), which is shown in Figure 4, is the fundamental building

block of a deep neural network (DNN).

Figure 4. A single neuron.

To predict the output 𝑦ො , the perceptron takes the sum of the inputs (𝑥ଵ to 𝑥௠)
multiplied by their corresponding weights (𝑤ଵ to 𝑤௠), adds a bias 𝑤଴, and then passes
this sum through a non-linear activation function 𝑔. Mathematically, this is presented as:

𝑦ො = 𝑔 ൭𝑤଴ + ෍ 𝑤௜𝑥௜௠
௜ୀଵ ൱ (14)

 = 𝑔(𝑤଴ + 𝑊்𝑋) (15)

where 𝑊் represents a row vector of the weights and 𝑋 represents a column vector of
the input features. A DNN is then created by stacking connected layers of these
perceptrons with multiple neurons per layer, as is seen in Figure 5.

Figure 5. The architecture of a DNN.

As is seen in Figure 5, the final architecture (excluding the bias for simplicity)
contains the input layer (for bringing input features into the network for further
processing), the hidden layers (for computing the weights and biases), and the output
layer (for producing the predictions). In the forward pass, the predicted value 𝑦ො is
compared with the true value 𝑦 and the loss function, which is written in terms of the
mean squared error, is then optimized. This optimization process, which aims to find the
network parameters (weights and biases) that lead to the lowest loss, happens through a
gradient descent algorithm. The parameter gradients are then updated through
backpropagation in the backward pass. Similar to VAEs, several parameters must be

Figure 4. A single neuron.

where WT represents a row vector of the weights and X represents a column vector of
the input features. A DNN is then created by stacking connected layers of these perceptrons
with multiple neurons per layer, as is seen in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 21

2.5.1. Deep Neural Network (DNN)
A neuron (or perceptron), which is shown in Figure 4, is the fundamental building

block of a deep neural network (DNN).

Figure 4. A single neuron.

To predict the output 𝑦ො , the perceptron takes the sum of the inputs (𝑥ଵ to 𝑥௠)
multiplied by their corresponding weights (𝑤ଵ to 𝑤௠), adds a bias 𝑤଴, and then passes
this sum through a non-linear activation function 𝑔. Mathematically, this is presented as:

𝑦ො = 𝑔 ൭𝑤଴ + ෍ 𝑤௜𝑥௜௠
௜ୀଵ ൱ (14)

 = 𝑔(𝑤଴ + 𝑊்𝑋) (15)

where 𝑊் represents a row vector of the weights and 𝑋 represents a column vector of
the input features. A DNN is then created by stacking connected layers of these
perceptrons with multiple neurons per layer, as is seen in Figure 5.

Figure 5. The architecture of a DNN.

As is seen in Figure 5, the final architecture (excluding the bias for simplicity)
contains the input layer (for bringing input features into the network for further
processing), the hidden layers (for computing the weights and biases), and the output
layer (for producing the predictions). In the forward pass, the predicted value 𝑦ො is
compared with the true value 𝑦 and the loss function, which is written in terms of the
mean squared error, is then optimized. This optimization process, which aims to find the
network parameters (weights and biases) that lead to the lowest loss, happens through a
gradient descent algorithm. The parameter gradients are then updated through
backpropagation in the backward pass. Similar to VAEs, several parameters must be

Figure 5. The architecture of a DNN.

As is seen in Figure 5, the final architecture (excluding the bias for simplicity) contains
the input layer (for bringing input features into the network for further processing), the
hidden layers (for computing the weights and biases), and the output layer (for producing
the predictions). In the forward pass, the predicted value ŷ is compared with the true
value y and the loss function, which is written in terms of the mean squared error, is then
optimized. This optimization process, which aims to find the network parameters (weights
and biases) that lead to the lowest loss, happens through a gradient descent algorithm.
The parameter gradients are then updated through backpropagation in the backward pass.
Similar to VAEs, several parameters must be optimized for DNNs to work effectively.
Following existing works [34,36], we therefore optimized the same parameters as in the
VAE, except for the regularization and learning rate (which were excluded in the DNN
model. The results are provided in Section 3.1.1.

2.5.2. K-Nearest Neighbors (KNN)

Contrary to DNNs, there is no learning required in the KNN algorithm since it has
no model. Instead, the principle behind the KNN algorithm is that predictions for a new
instance are made using the entire training set by averaging the distance from a new
instance and k closest points (the nearest neighbors) [31]. We optimized (i) the number of
neighbors to use, (ii) the metric to use for computing the distance, and (iii) whether the
contribution of each neighboring point should be uniform or based on distance. The results
are discussed in Section 3.1.3.

Sensors 2023, 23, 1061 10 of 20

2.5.3. Extremely Randomized Trees (ERT)

An ETR regressor is an ensemble algorithm that independently builds several decision-
tree-based estimators and then averages their resulting predictions [31]. It works similarly
to the commonly applied random forest (RF) [12,13,37], but has two subtle differences. For
instance, an RF constructs several decision trees over bootstrapped subsets of the training
data, while an ERT constructs several trees over the entire dataset. Additionally, an RF
considers the best split when splitting the nodes, while an ERT randomizes the splits. We
optimized the number of trees in the forest and the number of features that would result in
the best split. The results of this optimization are discussed in Section 3.1.4.

2.5.4. Support Vector Regression (SVR)

Support vector machines (SVMs) are established methods in supervised machine
learning. Although SMVs were initially developed to solve classification problems, a
formulation for regression problems exists: it is called SVR. The goal of SVR is to find
a hyperplane that holds maximum training data within the margin ε [31]. The created
hyperplane is situated in the middle of an ε-insensitive tube, in which the training samples
outside this tube—which are the only ones considered when computing the error—are
called slack variables (ξi and ξ∗i). To develop the most robust SVR models, the slack
variables and a kernel φ are included in the formulation of the cost function as [14,38]:

min
(w,b,ξi ,ξ∗i)

1
2
‖w2‖ + C

n

∑
i = 1

(ξi + ξ∗i) (16)

subject to: 
yi −

(
wTφ(xi) + bi

)
≤ ε + ξi(

wTφ(xi) + bi
)
− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(17)

where the constant C, which must be strictly positive, acts as a regularization parameter.
Notably, samples whose ŷ is at least ε away from y penalize the cost by ξi or ξ∗i , depending
on whether ŷ lies above or below the ε-sensitive tube [31]. We optimized the kernel, C, and
gamma. The results are discussed in Section 3.1.5.

2.5.5. Extreme Gradient Boosting (XGB)

An XGB is an ensemble learning method that predicts ŷ by combining the predictions
of regression-tree-based weaker learners built in series [39]. It minimizes a regularized cost
function based on the difference between y and ŷ. The iterative training proceeds so that
each subsequent sequential tree reduces the errors or residuals of the prior tree. That is,
the next tree learns from the updated version of the residuals. It uses gradient descent to
minimize the loss, hence the name “gradient boosting.” We optimized only the booster
parameters, and the results are discussed in Section 3.1.6.

3. Results and Discussion
3.1. Model Optimization

In machine learning, a choice of model parameters can significantly influence the
prediction performance. While parameters such as weights and biases are learned during
model training, other parameters that control the learning process must be chosen a priori.
A process of selecting an optimal set of these latter parameters, which is sometimes over-
looked in water-quality research [36], is known as hyperparameter tuning or optimization.
Although various approaches exist for this tuning process, we adopted the common grid
and random-search approaches in the present work. We selected two because no one
approach is consistently superior to others [40].

Sensors 2023, 23, 1061 11 of 20

3.1.1. DNN Optimization

Hyperparameter tuning is a crucial and notably difficult part of training deep neural
networks [36]. This is because these networks have several parameters that need to be
configured and are therefore computationally very expensive. As has already been men-
tioned, we optimized the network structure (the number of hidden layers and neurons
per layer), batch size, number of epochs, optimization algorithm, activation function, and
weight initialization technique. Table 3 presents the values of the resulting search process.

Table 3. Optimal hyperparameters of our deep neural network.

Hyperparameter Value

Hidden layers 4
Hidden neurons 50,75,100,200

Activation function Rectified linear unit
Batch size 300

Number of epochs 500
Weight initialization Normal

Optimization algorithm Root mean square propagation

To ensure that the model was neither under- nor over-fitting, which are two prominent
issues in training DNNs [41], we checked the training and validation losses, shown in
Figure 6, in which MSE denotes the mean squared error. As can be seen in Figure 6, the
developed neural network generalized well to the testing data without any regularization.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21

gradient descent to minimize the loss, hence the name “gradient boosting.” We optimized
only the booster parameters, and the results are discussed in Section 3.1.6.

3. Results and Discussion
3.1. Model Optimization

In machine learning, a choice of model parameters can significantly influence the
prediction performance. While parameters such as weights and biases are learned during
model training, other parameters that control the learning process must be chosen a priori.
A process of selecting an optimal set of these latter parameters, which is sometimes
overlooked in water-quality research [36], is known as hyperparameter tuning or
optimization. Although various approaches exist for this tuning process, we adopted the
common grid and random-search approaches in the present work. We selected two
because no one approach is consistently superior to others [40].

3.1.1. DNN Optimization
Hyperparameter tuning is a crucial and notably difficult part of training deep neural

networks [36]. This is because these networks have several parameters that need to be
configured and are therefore computationally very expensive. As has already been
mentioned, we optimized the network structure (the number of hidden layers and
neurons per layer), batch size, number of epochs, optimization algorithm, activation
function, and weight initialization technique. Table 3 presents the values of the resulting
search process.

Table 3. Optimal hyperparameters of our deep neural network.

Hyperparameter Value
Hidden layers 4

Hidden neurons 50,75,100,200
Activation function Rectified linear unit

Batch size 300
Number of epochs 500

Weight initialization Normal
Optimization algorithm Root mean square propagation

To ensure that the model was neither under- nor over-fitting, which are two
prominent issues in training DNNs [41], we checked the training and validation losses,
shown in Figure 6, in which MSE denotes the mean squared error. As can be seen in Figure
6, the developed neural network generalized well to the testing data without any
regularization.

Figure 6. DNN learning curves for the River Enborne.

3.1.2. VAE Optimization

Similar to DNNs, VAEs are computationally expensive to train due to a high number
of hyperparameters. However, unlike in DNNs, for which we minimized the MSE, the
loss function given in Equation (13) was minimized in this case. We also included batch
normalization and the learning rate at this time. Table 4 presents the values of the resulting
hyperparameter search process.

A behavior similar to what can be seen in Figure 6 was also observed. Interestingly, the
batch size dropped significantly on the VAE. This is because TensorFlow, which was used
for developing the DNN, is the most efficient when operating on large batches of data [42].
The number of epochs also dropped in the VAE. This occurred due to the computational
cost involved in training the VAE models, particularly at this small batch size. In any case,
the training and validation losses decreased only marginally from the 120th epoch.

3.1.3. KNN Optimization

The number of neighbors to use (k), the weight function used in prediction, and
the metric for computing the distance were the three hyperparameters we optimized

Sensors 2023, 23, 1061 12 of 20

in this work. The weight function can either be uniform or distance-based, in which
uniformity implies that all the neighboring points are weighted equally, while distance
weights the points based on how far they are from a query point, with closer points
having a more significant influence than those further away [31]. Table 5 compares the
performance obtained with default values in Scikit-learn with the performance obtained
through hyperparameter tuning.

Table 4. Optimal hyperparameters of a variational autoencoder.

Hyperparameter Value

Encoder and decoder hidden layers 3
Encoder and decoder neurons 50,15,12

Activation function Rectified linear unit
Latent dimensions 2

Learning rate 0.01
Batch size 4

Number of epochs 200
Weight initialization Normal

Optimization algorithm Resilient backpropagation

Table 5. NO3 prediction performance obtained through the KNN default and the optimized hyperpa-
rameter settings for the River Enborne, using the original data.

Default Settings Performance Optimized Settings Performance

Parameter Value RMSE R2 Parameter Value RMSE R2

k 5
0.0183 0.9656

k 3
0.0146 0.9781Weight Uniform Weight Distance

Metric Minkowski Metric Manhattan

As can be seen in Table 5, hyperparameter optimization improved the RMSE by 20%.
Considering that both datasets had many outliers [9], it makes sense that the optimal
weight function would be distance and not the default (uniform-based). Compared to the
default Minkowski-based metric, it also makes sense that the algorithm performed better
with the Manhattan-based distance metric as its computation is not affected by squares and
square root operations, which emphasize the impact of the already high errors due to the
presence of outliers. Apart from the improved RMSE, this tuning process also proved why
using only one optimization technique is sometimes insufficient. For instance, the most
widely used grid search method proposed the optimal number of nearest neighbors as nine
(instead of three), which leads to a comparatively worse RMSE of 0.0175.

3.1.4. ERT Optimization

The two crucial parameters to optimize when using the ERT method are the number
of trees in the forest (n_estimators) and the number of features that would result in the
best split (max_features) [31]. Table 6 compares the predictive performance obtained with
default settings in Scikit-learn and those obtained by hyperparameter tuning.

Table 6. NO3 prediction performance obtained through the ERT default and the optimized hyperpa-
rameter settings for the River Enborne, using the original data.

Default Settings Performance Optimized Settings Performance

Parameter Value RMSE R2 Parameter Value RMSE R2

n_estimators 100
0.0142 0.9796

n_estimators 700
0.0139 0.9802max_features Auto max_features auto

Sensors 2023, 23, 1061 13 of 20

As can be seen in Table 6, the max_features remained auto after hyperparameter
tuning, while n_estimators increased to 700. Contrary to the KNN algorithm, for which
the resulting performance improved significantly, this increase in n_estimators improved
the performance marginally (i.e., a 2% improvement in RMSE), with the downside of an
increased computational cost. It is also interesting to note that the performance remained
constant from when the number of trees was 200 until the number of trees reached 700.
This suggests that it is ideal to further test the values on either side of the proposed optimal
from the searched parameters.

3.1.5. SVR Optimization

The kernel, gamma, and C are typical hyperparameters to consider when optimizing
SVMs [31]. The kernel introduces flexibility; gamma is the kernel coefficient, and C is a
regularization parameter with a regularization strength inversely proportional to C [31].
Table 7 compares the predictive performance obtained with default settings in Scikit-learn
and those obtained by hyperparameter tuning.

Table 7. NO3 prediction performance obtained by through SVR default and the optimized hyperpa-
rameter settings for the River Enborne using the original data, in which rbf is the radial basis function.

Default Settings Performance Optimized Settings Performance

Parameter Value RMSE R2 Parameter Value RMSE R2

Kernel rbf
0.0369 0.8611

Kernel rbf
0.0342 0.8806Gamma Scale Gamma Scale

C 1 C 200

As in Table 7, the gamma and kernel remained the same after hyperparameter tuning,
while C increased to 200. This increase improved the RMSE by 7%. Understandably, the
kernel and gamma remained the same after optimization as the radial basis function is
generally the most robust kernel [31], while the inclusion of variance in the computation of
the scale-based gamma may be the reason behind its increased flexibility when compared
to the auto-based gamma, which does not factor the variance of features. Additionally,
as a regularization parameter, lower values of C create simpler decision functions by
encouraging larger margins, albeit at the expense of training accuracies [31]. Therefore, it
makes sense that the model performed better at a larger value of C.

3.1.6. XGB Optimization

Based on the official documentation, running an XGB model requires setting three
types of parameters: general, booster, and task parameters [39]. General parameters
relate to the choice of a booster, booster parameters depend on the chosen booster, and
learning task parameters determine the learning scenario. In this work, we only optimized
the booster parameters—max depth, n_estimators, and learning rate—since they alone
significantly improved the predictive performance, as can be seen in Table 8.

Table 8. NO3 prediction performance obtained by the XGB default and the optimized hyperparameter
settings in the River Enborne using the original data.

Default Settings Performance Optimized Settings Performance

Parameter Value RMSE R2 Parameter Value RMSE R2

Max depth 6
0.0209 0.9554

Max depth 10
0.0159 0.9740n_estimators 100 n_estimators 900

Learning rate 0.3 Learning rate 0.05

As can be seen in Table 8, decreasing the learning rate while increasing the maximum
tree depth and n_estimators improved the RMSE by 24%. This phenomenon is understand-
able since increasing the max depth and n_estimators makes the model more complex,

Sensors 2023, 23, 1061 14 of 20

while the step-size shrinkage brought by the learning rate prevents overfitting [39]. Overall,
the optimization results discussed in this section proved the importance of hyperparameter
tuning, which is usually overlooked in related nutrient-predictive studies [9,37].

3.2. Likeness between Real and Generated Samples

Generating synthetic data according to the distribution of the underlying data is
crucial since the uniformity of the generated samples is a significant factor in high-quality
samples [22]. To guarantee this uniformity, it becomes essential to consider the likeness
of real and generated samples. With no clear metric for an appropriate measure for this
likeness [19], we used the distribution plots to check that the generated synthetic data is
sampled from the original data distribution, as is shown in Figure 7.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 21

accuracies [31]. Therefore, it makes sense that the model performed better at a larger value
of C.

3.1.6. XGB Optimization
Based on the official documentation, running an XGB model requires setting three

types of parameters: general, booster, and task parameters [39]. General parameters relate
to the choice of a booster, booster parameters depend on the chosen booster, and learning
task parameters determine the learning scenario. In this work, we only optimized the
booster parameters—max depth, n_estimators, and learning rate—since they alone
significantly improved the predictive performance, as can be seen in Table 8.

Table 8. NO3 prediction performance obtained by the XGB default and the optimized
hyperparameter settings in the River Enborne using the original data.

Default Settings Performance Optimized Settings Performance
Parameter Value RMSE R2 Parameter Value RMSE R2
Max depth 6

0.0209 0.9554
Max depth 10

0.0159 0.9740 n_estimators 100 n_estimators 900
Learning rate 0.3 Learning rate 0.05

As can be seen in Table 8, decreasing the learning rate while increasing the maximum
tree depth and n_estimators improved the RMSE by 24%. This phenomenon is
understandable since increasing the max depth and n_estimators makes the model more
complex, while the step-size shrinkage brought by the learning rate prevents overfitting
[39]. Overall, the optimization results discussed in this section proved the importance of
hyperparameter tuning, which is usually overlooked in related nutrient-predictive
studies [9,37].

3.2. Likeness between Real and Generated Samples
Generating synthetic data according to the distribution of the underlying data is

crucial since the uniformity of the generated samples is a significant factor in high-quality
samples [22]. To guarantee this uniformity, it becomes essential to consider the likeness of
real and generated samples. With no clear metric for an appropriate measure for this
likeness [19], we used the distribution plots to check that the generated synthetic data is
sampled from the original data distribution, as is shown in Figure 7.

(a) (b)

Figure 7. (a) The original data-distribution plot for TRP versus NO3 in the River Enborne and (b)
the synthetic data distribution plot for TRP versus NO3 in the River Enborne.
Figure 7. (a) The original data-distribution plot for TRP versus NO3 in the River Enborne and (b) the
synthetic data distribution plot for TRP versus NO3 in the River Enborne.

Although the distribution shape of Figure 7b looks different from Figure 7a, it is
essential to note that the encoder model compresses the high-dimensional input data into
a lower dimension. Including the Kullback–Leibler divergence term in the loss function
ensures that the learned means and standard deviations are almost identical to those of the
normal distribution. Doing so forces the model to express the training data more compactly
and group similar data around the center of the latent space, creating a continuous space
from which to sample [43]. Thus, comparing the data axes in Figures 7b and 7a, it is
evident that the synthetic data is indeed sampled from the original data distribution. When
compared to Figure 8a, which shows the NO3 kernel distribution estimation (KDE) plot for
real data, the KDE plot in Figure 8b further confirms that the learned means and standard
deviations are close to those of the normal distribution.

Comparing Figure 8b to Figure 8a, the x-axis range of Figure 8b lies within that of
Figure 8a, with a bell-shaped curve confirming its normality distribution. Although we
only used total reactive phosphorus and nitrate to discuss the likeness between the original
and synthetic data, the distribution plots for other variables in both catchments also agree
with the discussed observations.

To assess how combining synthetic and original data affects the variable distributions,
we computed the Jensen–Shannon divergence (JSD) to measure the probability distribution
similarities between the original datasets and the datasets progressively augmented until
we reached a doubling of the original dataset sizes. Table 9 shows the JSD between the
original and progressively augmented datasets for each variable in both catchments. We
excluded pH data from The Cut and chlorophyll data from both catchments as they both
have very low JSD values.

Sensors 2023, 23, 1061 15 of 20

Sensors 2023, 23, x FOR PEER REVIEW 15 of 21

Although the distribution shape of Figure 7b looks different from Figure 7a, it is
essential to note that the encoder model compresses the high-dimensional input data into
a lower dimension. Including the Kullback–Leibler divergence term in the loss function
ensures that the learned means and standard deviations are almost identical to those of
the normal distribution. Doing so forces the model to express the training data more
compactly and group similar data around the center of the latent space, creating a
continuous space from which to sample [43]. Thus, comparing the data axes in Figure 7b
and Figure 7a, it is evident that the synthetic data is indeed sampled from the original data
distribution. When compared to Figure 8a, which shows the NO3 kernel distribution
estimation (KDE) plot for real data, the KDE plot in Figure 8b further confirms that the
learned means and standard deviations are close to those of the normal distribution.

(a) (b)

Figure 8. (a) The NO3 KDE plot for original data and (b) the NO3 KDE plot for synthetic data.

Comparing Figure 8b to Figure 8a, the x-axis range of Figure 8b lies within that of
Figure 8a, with a bell-shaped curve confirming its normality distribution. Although we
only used total reactive phosphorus and nitrate to discuss the likeness between the
original and synthetic data, the distribution plots for other variables in both catchments
also agree with the discussed observations.

To assess how combining synthetic and original data affects the variable
distributions, we computed the Jensen–Shannon divergence (JSD) to measure the
probability distribution similarities between the original datasets and the datasets
progressively augmented until we reached a doubling of the original dataset sizes. Table
9 shows the JSD between the original and progressively augmented datasets for each
variable in both catchments. We excluded pH data from The Cut and chlorophyll data
from both catchments as they both have very low JSD values.

Table 9. The Jensen–Shannon divergence between the original and progressively augmented
datasets for each variable in both catchments.

Variable
The Cut

Original Size
8934

Increased by
2234

Increased by
4468

Increased by
6702

Increased by
8934

TRP 0.0344 0.0312 0.0288 0.0274 0.0260
TP 0.0073 0.0066 0.0061 0.0058 0.0055
EC 0.0028 0.0026 0.0024 0.0023 0.0022

Turb 0.1436 0.1306 0.1226 0.1161 0.1105
DO 0.0044 0.0040 0.0037 0.0035 0.0034

Temp 0.0248 0.0224 0.0207 0.0196 0.0187

Figure 8. (a) The NO3 KDE plot for original data and (b) the NO3 KDE plot for synthetic data.

Table 9. The Jensen–Shannon divergence between the original and progressively augmented datasets
for each variable in both catchments.

Variable
The Cut

Original Size 8934 Increased by 2234 Increased by 4468 Increased by 6702 Increased by 8934

TRP 0.0344 0.0312 0.0288 0.0274 0.0260
TP 0.0073 0.0066 0.0061 0.0058 0.0055
EC 0.0028 0.0026 0.0024 0.0023 0.0022

Turb 0.1436 0.1306 0.1226 0.1161 0.1105
DO 0.0044 0.0040 0.0037 0.0035 0.0034

Temp 0.0248 0.0224 0.0207 0.0196 0.0187
NH4 0.0073 0.0067 0.0061 0.0057 0.0055

Variable
River Enborne

Original Size 12,723 Increased by 3181 Increased by 6362 Increased by 9543 Increased by 12,723

TRP 0.0108 0.0098 0.0090 0.0085 0.0081
EC 0.0069 0.0062 0.0058 0.0055 0.0052

Turb 0.0602 0.0545 0.0507 0.0476 0.0457
DO 0.0003 0.0003 0.0003 0.0003 0.0003
pH 0.0002 0.0002 0.0002 0.0002 0.0002

Temp 0.0501 0.0451 0.0420 0.0395 0.0379
NO3 0.0010 0.0009 0.0008 0.0008 0.0007

As can be seen in Table 9, the progressive increase in dataset sizes marginally drops the
JSD values in both catchments, with the exception of the DO and pH values in the Enborne,
whose values remain constant. Although insignificant, the marginal drop in the similar-
ity between the two probability distributions may be attributed to the decrease in data
variability inherent to the VAE as the JSD is based on the Kullback–Leibler divergence [44].

3.3. Virtual Sensor Performance with Increasing Dataset Size

To assess the efficacy of the VAE-based data augmentation on the prediction perfor-
mance of N and P concentrations, we (i) analyzed the RMSE changes in predictive models as
the size of the datasets increased gradually until the sizes were doubled, and (ii) computed
the percentage improvement by comparing the predictive performances at the original
sizes (8934 samples for The Cut and 12,723 for the River Enborne) and doubled sizes. The
comparative results are shown in Table 10.

Sensors 2023, 23, 1061 16 of 20

Table 10. Performance comparison (in terms of the RMSE) of various virtual-sensor models with
increasing sizes of synthetic data.

Model
NH4 in The Cut Predictive Performance

Improvement8934 Increased by 2234 Increased by 4468 Increased by 6702 Increased by 8934

SVR 0.0704 0.0671 0.0619 0.0584 0.0550 22%
KNN 0.0337 0.0308 0.0290 0.0274 0.0260 23%
XGB 0.0426 0.0409 0.0387 0.0356 0.0332 22%
ERT 0.0379 0.0349 0.0326 0.0306 0.0288 24%

DNN 0.0439 0.0383 0.0332 0.0308 0.0302 31%

TRP in The Cut

SVR 0.1169 0.1074 0.1005 0.0945 0.0895 23%
KNN 0.0781 0.0708 0.0663 0.0612 0.0582 25%
XGB 0.0829 0.0751 0.0690 0.0653 0.0611 26%
ERT 0.0790 0.0713 0.0661 0.0616 0.0583 26%

DNN 0.0905 0.0818 0.0766 0.0682 0.0622 31%

TP in The Cut

SVR 0.0710 0.0645 0.0601 0.0563 0.0532 25%
KNN 0.0477 0.0432 0.0404 0.0374 0.0355 26%
XGB 0.0516 0.0460 0.0425 0.0401 0.0380 26%
ERT 0.0489 0.0440 0.0407 0.0380 0.0359 27%

DNN 0.0585 0.0532 0.0494 0.0424 0.0407 30%

Model
NO3 in the Enborne Predictive Performance

Improvement12,723 Increased by 3181 Increased by 6362 Increased by 9543 Increased by 12,723

SVR 0.0342 0.0317 0.0295 0.0281 0.0270 21%
KNN 0.0146 0.0141 0.0136 0.0133 0.0132 10%
XGB 0.0166 0.0161 0.0152 0.0147 0.0142 14%
ERT 0.0140 0.0134 0.0128 0.0125 0.0121 14%

DNN 0.0365 0.0297 0.0268 0.0256 0.0236 35%

TRP in the Enborne

SVR 0.0395 0.0368 0.0346 0.0332 0.0322 18%
KNN 0.0215 0.0201 0.0191 0.0183 0.0177 18%
XGB 0.0224 0.0208 0.0195 0.0183 0.0175 22%
ERT 0.0203 0.0188 0.0177 0.0169 0.0163 20%

DNN 0.0318 0.0267 0.0264 0.0228 0.0223 30%

As can be seen, the RMSE improvements after data augmentation, which monotonously
increased in direct proportion to increasing datasets size, range from 22% to 31% in The
Cut and 10% to 35% in the River Enborne. On average, the improvements to The Cut are
understandably high compared to those of the River Enborne. This is because The Cut
has a relatively small dataset compared to the River Enborne, and therefore increasing
its size creates sufficient training information for the predictive models to learn from [36].
Notably, the biggest improvement in all the models was observed in the DNNs. This is
also understandable since they, by design, require a large number of samples to effec-
tively find optimal hyperparameters in complex datasets [21]. In comparing the predictive
performances of the individual algorithms, the KNN algorithm performed better in The
Cut, while the ERT model performed better in the River Enborne. This makes sense, as
augmenting the smaller-sized datasets via the VAE supports the distance-based KNN,
which groups similar data around the center of the latent space.

On the other hand, it is worth noting that our developed DNN is not the most robust
since we constrained the network structure and number of epochs due to the inherent
computational cost. That is, increasing the network structure and the number of epochs
gradually increased the predictive performance. However, this came at the expense of very
long training times, resulting in the search space being constrained to the values provided

Sensors 2023, 23, 1061 17 of 20

in Table 3. Thus, although DNNs may eventually outperform KNN and ERT, the high cost
of computing makes them less favorable since the performance of virtual sensors is not
only a function of inexpensive surrogate sensors, reliability, and acceptable accuracy, but
also depends on the complexity of the developed predictive model [6,9,12].

3.4. Performance Based on Predictor Importance: Comparison with the Current Benchmark

Since the procurement and operational cost of virtual sensors depends on the factors
mentioned, we used the best-performing algorithms (KNN for The Cut and ERT for River
Enborne) to assess the impact of each surrogate in predicting N and P concentrations. As
was mentioned in Section 2.3.3, we adopted the Shapley additive explanations method
for feature importance rankings, as was the approach used in [9]. To further highlight the
impact of the VAE-based data augmentation, we also compared the performance of the
current state of the art [9] with that obtained with the doubled dataset sizes, shown in
Table 11.

Table 11. Comparative performance of the present work and benchmark [9] based on the contribution
of each surrogate in predicting P and N concentrations.

Predictors
Benchmark This Work Improvements of This Work

Compared to a Benchmark

RMSE R2 RMSE R2 RMSE R2

NH4 in The Cut

Temp 0.1312 0.1620 0.0882 0.1022 33% −59%
Temp, Chl 0.1342 0.1220 0.0681 0.4634 49% 74%

Temp, Chl, Turb 0.0907 0.5986 0.0493 0.7190 46% 17%
Temp, Chl, Turb, EC 0.0655 0.7895 0.0376 0.8362 43% 6%

Temp, Chl, Turb, EC, DO 0.0526 0.8647 0.0310 0.8887 41% 3%
Temp, Chl, Turb, EC, DO, pH 0.0429 0.9101 0.0260 0.9216 39% 1%

TP in The Cut

EC 0.1213 0.1697 0.0924 0.0513 24% −231%
EC, DO 0.1291 0.0593 0.0737 0.3961 43% 85%

EC, DO, Turb 0.0956 0.4853 0.0585 0.6196 39% 22%
EC, DO, Turb, Temp 0.0680 0.7382 0.0434 0.7900 36% 7%

EC, DO, Turb, Temp, Chl 0.0610 0.7880 0.0390 0.8308 36% 5%
EC, DO, Turb, Temp, Chl, pH 0.0556 0.8253 0.0355 0.8593 36% 4%

TRP in The Cut

EC 0.1952 0.1820 0.1506 0.0399 23% −356%
EC, Turb 0.2037 0.1072 0.1127 0.4609 45% 77%

EC, Turb, DO 0.1554 0.4813 0.0955 0.6136 39% 22%
EC, Turb, DO, Temp 0.1101 0.7401 0.0704 0.7897 36% 6%

EC, Turb, DO, Temp, Chl 0.0999 0.7864 0.0639 0.8265 36% 5%
EC, Turb, DO, Temp, Chl, pH 0.0907 0.8219 0.0581 0.8566 36% 4%

TRP in River Enborne

EC 0.0666 0.5637 0.0396 0.7371 41% 24%
EC, DO 0.0608 0.6355 0.0258 0.8882 58% 28%

EC, DO, Temp 0.0343 0.8848 0.0178 0.9466 48% 7%
EC, DO, Temp, Turb 0.0257 0.9345 0.0161 0.9567 37% 2%

EC, DO, Temp, Turb, pH 0.0213 0.9559 0.0157 0.9587 26% 0%
EC, DO, Temp, Turb, pH, Chl 0.0212 0.9558 0.0162 0.9556 24% 0%

Sensors 2023, 23, 1061 18 of 20

Table 11. Cont.

Predictors
Benchmark This Work Improvements of This Work

Compared to a Benchmark

RMSE R2 RMSE R2 RMSE R2

NO3 in River Enborne

EC 0.0617 0.6107 0.0378 0.7113 39% 14%
EC, Temp 0.0559 0.6818 0.0206 0.9137 63% 25%

EC, Temp, pH 0.0274 0.9223 0.0138 0.9617 50% 4%
EC, Temp, pH, DO 0.0205 0.9566 0.0125 0.9684 39% 1%

EC, Temp, pH, DO, Turb 0.0172 0.9695 0.0119 0.9714 31% 0%
EC, Temp, pH, DO, Turb, Chl 0.0177 0.9681 0.0122 0.9704 31% 0%

From Table 11, it can be seen that, when compared to the benchmark, the RMSEs in both
catchments improved significantly. These improvements are notable since the predictive
accuracy in urban catchments such as The Cut is usually inferior [9,12]. Interestingly, the
most significant improvements were observed when up to three predictors were used.
Bearing in mind that funding has not necessarily increased amid the need or calls for
accurate and inexpensive monitoring systems [11], using only three surrogates at increased
prediction accuracies is encouraging for water-resource managers, as only a minimal subset
of surrogate sensors would provide the desired level of monitoring accuracy.

Contrary to RMSEs, which decreased gradually as the number of predictors increased,
the decrease in R2 values was very rapid. This contrasting behavior is due to the way that
VAEs generate synthetic data. Generally, the chemistry of flowing rivers is highly dynamic
and exhibits periodic or seasonal variability [37]. By grouping similar data around the
center of the latent space, the VAE ignores this variability; this is reflected by the rapid drop
in R2 since its computation, as can be seen in Equation (2), represents the proportion of the
y variance explained by the features in the model [31]. It measures how well the model will
likely predict the unseen samples through the proportion of explained variance.

4. Conclusions

The present work used the prominent VAE model to supplement virtual-sensing data.
The significant improvement in the predictive results (when compared to the baseline)
and a marginal drop in the probability distribution between the real and generated data
proved the effectiveness of the model. This work also demonstrated the importance of a
procedure (parameter tuning) usually overlooked in N- and P-predictive studies. Based
on the results, proper experimental settings improved the performances by as much as
24%. Furthermore, the performance improvement for all the algorithms monotonously
increased as the datasets were augmented progressively until a doubling of the original
datasets was reached.

Generally, the KNN algorithm performed better in The Cut, while the ERT algorithm
was the most accurate model in the River Enborne. However, while the common belief
in planning and management is that the most appropriate methods are usually simpler,
the most complex models may be the only solution in urban catchments. For instance, the
highest R2 value for TP and TRP of The Cut is only 86%. Therefore, utilizing an optimally
trained DNN may improve this performance, albeit at a higher computational cost.

Although the impact of the developed VAE model is positive, when considering
limitations it must be noted that there is still scope for some improvement, particularly
in The Cut. For instance, contrary to relatively lower training and validation losses in the
Enborne, the loss functions in The Cut did not optimally converge (the minimum training
and validation losses were 1.013 and 1.007, respectively).

Additionally, considering how dynamic stream nutrients are, the VAE-generated data
may not be representative, especially when the sample sizes are very small. This is because
VAEs cluster data at the center of the latent space, thereby undermining data variability.
This variability is important since water-quality data varies at interannual time scales.

Sensors 2023, 23, 1061 19 of 20

Therefore, future works will assess the efficacy of (i) an ensemble of a VAE and a GAN as a
generative model and (ii) an optimally trained DNN, including deep belief networks and
deep echo state networks as predictive models, especially for The Cut.

Author Contributions: Conceptualization, T.P.; methodology, T.P.; software, T.P.; validation, T.P.,
P.N.B. and K.K.; formal analysis, T.P.; investigation, T.P.; data curation, T.P.; writing—original draft
preparation, T.P.; writing—review and editing, P.N.B. and K.K.; supervision, P.N.B. and K.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found here: https://catalogue.ceh.ac.uk/documents/db695881-eabe-416c-b128-76691b2104d8,
accessed on 12 December 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, X.E.; Wu, X.; Hao, H.L.; He, Z.L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9,

197–209. [CrossRef] [PubMed]
2. Xia, R.; Zhang, Y.; Critto, A.; Wu, J.; Fan, J.; Zheng, Z.; Zhang, Y. The Potential Impacts of Climate Change Factors on Freshwater

Eutrophication: Implications for Research and Countermeasures of Water Management in China. Sustainability 2016, 8, 229.
[CrossRef]

3. Van Ginkel, C. Eutrophication: Present reality and future challenges for South Africa. Water SA 2011, 37, 693–702. [CrossRef]
4. Kakade, A.; Salama, E.-S.; Han, H.; Zheng, Y.; Kulshrestha, S.; Jalalah, M.; Harraz, F.A.; Alsareii, S.A.; Li, X. World eutrophic

pollution of lake and river: Biotreatment potential and future perspectives. Environ. Technol. Innov. 2021, 23, 101604. [CrossRef]
5. Pellerin, B.A.; Stauffer, B.A.; Young, D.A.; Sullivan, D.J.; Bricker, S.B.; Walbridge, M.R.; Clyde, G.A., Jr.; Shaw, D.M. Emerging

Tools for Continuous Nutrient Monitoring Networks: Sensors Advancing Science and Water Resources Protection. J. Am. Water
Resour. Assoc. 2016, 52, 993–1008. [CrossRef]

6. Paepae, T.; Bokoro, P.N.; Kyamakya, K. From Fully Physical to Virtual Sensing for Water Quality Assessment: A Comprehensive
Review of the Relevant State-of-the-Art. Sensors 2021, 21, 6971. [CrossRef]

7. Blaen, P.J.; Khamis, K.; Lloyd, C.E.; Bradley, C.; Hannah, D.; Krause, S. Real-time monitoring of nutrients and dissolved organic
matter in rivers: Capturing event dynamics, technological opportunities and future directions. Sci. Total Environ. 2016, 569–570,
647–660. [CrossRef]

8. Cassidy, R.; Jordan, P. Limitations of instantaneous water quality sampling in surface-water catchments: Comparison with
near-continuous phosphorus time-series data. J. Hydrol. 2011, 405, 182–193. [CrossRef]

9. Paepae, T.; Bokoro, P.N.; Kyamakya, K. A Virtual Sensing Concept for Nitrogen and Phosphorus Monitoring Using Machine
Learning Techniques. Sensors 2022, 22, 7338. [CrossRef]

10. Matthews, M.W.; Bernard, S. Eutrophication and cyanobacteria in South Africa’s standing water bodies: A view from space.
S. Afr. J. Sci. 2015, 111, 7. [CrossRef]

11. Murphy, K.; Heery, B.; Sullivan, T.; Zhang, D.; Paludetti, L.; Lau, K.T.; Diamond, D.; Costa, E.; O’connor, N.; Regan, F. A low-cost
autonomous optical sensor for water quality monitoring. Talanta 2015, 132, 520–527. [CrossRef] [PubMed]

12. Castrillo, M.; García, L. Estimation of high frequency nutrient concentrations from water quality surrogates using machine
learning methods. Water Res. 2020, 172, 115490. [CrossRef] [PubMed]

13. Ha, N.-T.; Nguyen, H.Q.; Truong, N.C.Q.; Le, T.L.; Thai, V.N.; Pham, T.L. Estimation of nitrogen and phosphorus concentrations
from water quality surrogates using machine learning in the Tri An Reservoir, Vietnam. Environ. Monit. Assess. 2020, 192, 789.
[CrossRef] [PubMed]

14. Dilmi, S. Calcium Soft Sensor Based on the Combination of Support Vector Regression and 1-D Digital Filter for Water Quality
Monitoring. Arab. J. Sci. Eng. 2022, 1–26. [CrossRef]

15. Zhu, Q.-X.; Zhang, X.-H.; He, Y.-L. Novel Virtual Sample Generation Based on Locally Linear Embedding for Optimizing the
Small Sample Problem: Case of Soft Sensor Applications. Ind. Eng. Chem. Res. 2020, 59, 17977–17986. [CrossRef]

16. Zhang, X.-H.; Xu, Y.; He, Y.-L.; Zhu, Q.-X. Novel manifold learning based virtual sample generation for optimizing soft sensor
with small data. ISA Trans. 2020, 109, 229–241. [CrossRef]

17. He, Y.-L.; Hua, Q.; Zhu, Q.-X.; Lu, S. Enhanced virtual sample generation based on manifold features: Applications to developing
soft sensor using small data. ISA Trans. 2022, 126, 398–406. [CrossRef]

18. Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven Soft Sensors in the process industry. Comput. Chem. Eng. 2009, 33, 795–814.
[CrossRef]

https://catalogue.ceh.ac.uk/documents/db695881-eabe-416c-b128-76691b2104d8
http://doi.org/10.1631/jzus.B0710626
http://www.ncbi.nlm.nih.gov/pubmed/18357622
http://doi.org/10.3390/su8030229
http://doi.org/10.4314/wsa.v37i5.6
http://doi.org/10.1016/j.eti.2021.101604
http://doi.org/10.1111/1752-1688.12386
http://doi.org/10.3390/s21216971
http://doi.org/10.1016/j.scitotenv.2016.06.116
http://doi.org/10.1016/j.jhydrol.2011.05.020
http://doi.org/10.3390/s22197338
http://doi.org/10.17159/sajs.2015/20140193
http://doi.org/10.1016/j.talanta.2014.09.045
http://www.ncbi.nlm.nih.gov/pubmed/25476339
http://doi.org/10.1016/j.watres.2020.115490
http://www.ncbi.nlm.nih.gov/pubmed/31972414
http://doi.org/10.1007/s10661-020-08731-2
http://www.ncbi.nlm.nih.gov/pubmed/33241485
http://doi.org/10.1007/s13369-022-07263-w
http://doi.org/10.1021/acs.iecr.0c01942
http://doi.org/10.1016/j.isatra.2020.10.006
http://doi.org/10.1016/j.isatra.2021.07.033
http://doi.org/10.1016/j.compchemeng.2008.12.012

Sensors 2023, 23, 1061 20 of 20

19. Wang, X.; Liu, H. Data supplement for a soft sensor using a new generative model based on a variational autoencoder and
Wasserstein GAN. J. Process Control 2020, 85, 91–99. [CrossRef]

20. Gao, S.; Qiu, S.; Ma, Z.; Tian, R.; Liu, Y. SVAE-WGAN-Based Soft Sensor Data Supplement Method for Process Industry. IEEE
Sens. J. 2022, 22, 601–610. [CrossRef]

21. Yuan, X.; Ou, C.; Wang, Y.; Yang, C.; Gui, W. A Layer-Wise Data Augmentation Strategy for Deep Learning Networks and Its Soft
Sensor Application in an Industrial Hydrocracking Process. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3296–3305. [CrossRef]

22. Chen, Z.-S.; Hou, K.-R.; Zhu, M.-Y.; Xu, Y.; Zhu, Q.-X. A virtual sample generation approach based on a modified conditional
GAN and centroidal Voronoi tessellation sampling to cope with small sample size problems: Application to soft sensing for
chemical process. Appl. Soft Comput. 2021, 101, 107070. [CrossRef]

23. Zhu, Q.-X.; Hou, K.-R.; Chen, Z.-S.; Gao, Z.-S.; Xu, Y.; He, Y.-L. Novel virtual sample generation using conditional GAN for
developing soft sensor with small data. Eng. Appl. Artif. Intell. 2021, 106, 104497. [CrossRef]

24. Tian, Y.; Xu, Y.; Zhu, Q.-X.; He, Y.-L. Novel Virtual Sample Generation Using Target-Relevant Autoencoder for Small Data-Based
Soft Sensor. IEEE Trans. Instrum. Meas. 2021, 70, 2515910. [CrossRef]

25. Gao, S.; Zhang, Q.; Tian, R.; Ma, Z.; Dang, X. Horizontal Data Augmentation Strategy for Industrial Quality Prediction. ACS
Omega 2022, 7, 30782–30793. [CrossRef]

26. Jiang, X.; Ge, Z. Improving the Performance of Just-In-Time Learning-Based Soft Sensor Through Data Augmentation. IEEE Trans.
Ind. Electron. 2022, 69, 13716–13726. [CrossRef]

27. Foschi, J.; Turolla, A.; Antonelli, M. Soft sensor predictor of E. coli concentration based on conventional monitoring parameters
for wastewater disinfection control. Water Res. 2021, 191, 116806. [CrossRef]

28. Bowes, M.J.; Gozzard, E.; Newman, J.; Loewenthal, M.; Halliday, S.; Skeffington, R.; Jarvie, H.; Wade, A.; Palmer-Felgate, E.
Hourly physical and nutrient monitoring data for The Cut, Berkshire (2009–2012). In Environmental Information Platform; NERC
Environmental Information Data Centre: Lancaster, UK, 2015. [CrossRef]

29. Wade, A.J.; Palmer-Felgate, E.J.; Halliday, S.J.; Skeffington, R.A.; Loewenthal, M.; Jarvie, H.P.; Bowes, M.J.; Greenway, G.M.;
Haswell, S.J.; Bell, I.M.; et al. Hydrochemical processes in lowland rivers: Insights from in situ, high-resolution monitoring.
Hydrol. Earth Syst. Sci. 2012, 16, 4323–4342. [CrossRef]

30. Halliday, S.J.; Skeffington, R.A.; Wade, A.J.; Bowes, M.J.; Gozzard, E.; Newman, J.R.; Loewenthal, M.; Palmer-Felgate, E.J.;
Jarvie, H.P. High-frequency water quality monitoring in an urban catchment: Hydrochemical dynamics, primary production and
implications for the Water Framework Directive. Hydrol. Process. 2015, 29, 3388–3407. [CrossRef]

31. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online:
http://scikit-learn.sourceforge.net (accessed on 19 November 2022).

32. Kingma, D.P.; Welling, M. An Introduction to Variational Autoencoders. Found. Trends®Mach. Learn. 2019, 12, 307–392. [CrossRef]
33. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
34. Wei, S.; Chen, Z.; Arumugasamy, S.K.; Chew, I.M.L. Data augmentation and machine learning techniques for control strategy

development in bio-polymerization process. Environ. Sci. Ecotechnol. 2022, 11, 100172. [CrossRef] [PubMed]
35. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: London, UK, 2016.
36. Ma, J.; Ding, Y.; Cheng, J.C.; Jiang, F.; Xu, Z. Soft detection of 5-day BOD with sparse matrix in city harbor water using deep

learning techniques. Water Res. 2019, 170, 115350. [CrossRef]
37. Harrison, J.W.; Lucius, M.A.; Farrell, J.L.; Eichler, L.W.; Relyea, R.A. Prediction of stream nitrogen and phosphorus concentrations

from high-frequency sensors using Random Forests Regression. Sci. Total Environ. 2021, 763, 143005. [CrossRef] [PubMed]
38. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
39. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
40. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
41. Zhang, H.; Zhang, L.; Jiang, Y. Overfitting and Underfitting Analysis for Deep Learning Based End-to-end Communication

Systems. In Proceedings of the 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP),
Xi’an, China, 23–25 October 2019; pp. 1–6. [CrossRef]

42. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [CrossRef]

43. MathWorks. Train Variational Autoencoder (VAE) to Generate Images. 2019. Available online: https://www.mathworks.
com/help/deeplearning/ug/train-a-variational-autoencoder-vae-to-generate-images.html#responsive_offcanvas (accessed
on 4 December 2022).

44. Osán, T.; Bussandri, D.; Lamberti, P. Quantum metrics based upon classical Jensen–Shannon divergence. Phys. A Stat. Mech. Its
Appl. 2022, 594, 127001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jprocont.2019.11.004
http://doi.org/10.1109/JSEN.2021.3128562
http://doi.org/10.1109/TNNLS.2019.2951708
http://doi.org/10.1016/j.asoc.2020.107070
http://doi.org/10.1016/j.engappai.2021.104497
http://doi.org/10.1109/TIM.2021.3120135
http://doi.org/10.1021/acsomega.2c01747
http://doi.org/10.1109/TIE.2021.3139194
http://doi.org/10.1016/j.watres.2021.116806
http://doi.org/10.5285/ABE4DD7C-A340-4595-A57F-8C1446FF7656
http://doi.org/10.5194/hess-16-4323-2012
http://doi.org/10.1002/hyp.10453
http://scikit-learn.sourceforge.net
http://doi.org/10.1561/2200000056
http://doi.org/10.1016/j.ese.2022.100172
http://www.ncbi.nlm.nih.gov/pubmed/36158757
http://doi.org/10.1016/j.watres.2019.115350
http://doi.org/10.1016/j.scitotenv.2020.143005
http://www.ncbi.nlm.nih.gov/pubmed/33158521
http://doi.org/10.1023/B:STCO.0000035301.49549.88
http://doi.org/10.1109/WCSP.2019.8927876
http://doi.org/10.48550/arxiv.1603.04467
https://www.mathworks.com/help/deeplearning/ug/train-a-variational-autoencoder-vae-to-generate-images.html#responsive_offcanvas
https://www.mathworks.com/help/deeplearning/ug/train-a-variational-autoencoder-vae-to-generate-images.html#responsive_offcanvas
http://doi.org/10.1016/j.physa.2022.127001

	Introduction
	Background and Motivation
	Literature Review
	Work Objective

	Materials and Methods
	Study Area and Water-Quality Data
	Data Analysis Frameworks
	Virtual Sensor Development
	Data Preprocessing
	Data Division
	Input Variable Selection
	Model Selection
	Model Evaluation

	Data Augmentation: A Variational Autoencoder
	Architecture
	Formulation
	Loss Function
	Reparameterization Trick
	Implementation

	Predictive Models
	Deep Neural Network (DNN)
	K-Nearest Neighbors (KNN)
	Extremely Randomized Trees (ERT)
	Support Vector Regression (SVR)
	Extreme Gradient Boosting (XGB)

	Results and Discussion
	Model Optimization
	DNN Optimization
	VAE Optimization
	KNN Optimization
	ERT Optimization
	SVR Optimization
	XGB Optimization

	Likeness between Real and Generated Samples
	Virtual Sensor Performance with Increasing Dataset Size
	Performance Based on Predictor Importance: Comparison with the Current Benchmark

	Conclusions
	References

