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Abstract: Auxiliary clinical diagnosis has been researched to solve unevenly and insufficiently
distributed clinical resources. However, auxiliary diagnosis is still dominated by human physicians,
and how to make intelligent systems more involved in the diagnosis process is gradually becoming
a concern. An interactive automated clinical diagnosis with a question-answering system and a
question generation system can capture a patient’s conditions from multiple perspectives with less
physician involvement by asking different questions to drive and guide the diagnosis. This clinical
diagnosis process requires diverse information to evaluate a patient from different perspectives to
obtain an accurate diagnosis. Recently proposed medical question generation systems have not
considered diversity. Thus, we propose a diversity learning-based visual question generation model
using a multi-latent space to generate informative question sets from medical images. The proposed
method generates various questions by embedding visual and language information in different
latent spaces, whose diversity is trained by our newly proposed loss. We have also added control
over the categories of generated questions, making the generated questions directional. Furthermore,
we use a new metric named similarity to accurately evaluate the proposed model’s performance. The
experimental results on the Slake and VQA-RAD datasets demonstrate that the proposed method
can generate questions with diverse information. Our model works with an answering model for
interactive automated clinical diagnosis and generates datasets to replace the process of annotation
that incurs huge labor costs.

Keywords: visual question generation; medical image analysis; medical informatics; computer vision;
natural language processing

1. Introduction

A question-and-answering (QA) system consists of a visual question-answering (VQA)
model [1] and a visual question-generation (VQG) model [2]. VQA and VQG are inter-
disciplinary tasks incorporating computer vision [3] and natural language processing [4].
The VQA task is expected to answer an image-related question based on the content of the
image, whereas the VQG task generates meaningful questions concerning the input image.
QA systems have been extensively used in many fields, including retrieval systems [5,6]
and medical image analysis [7,8]. In the field of medicine, a medical QA system, unlike
other auxiliary clinical diagnosis systems [9], such as image segmentation [10], image classi-
fication [11], and surgical robots [12], can support the workload of performing radiographic
image interpretation and pathological diagnosis simultaneously without dependence on
expertise. Moreover, such a medical QA system would be helpful for patients to obtain
reliable and accurate information even after treatment.

VQA models can assist in clinical diagnosis by answering questions given by physi-
cians. However, the entire diagnostic process is still dominated by human physicians,
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and an interactive automated clinical diagnosis is required to address the current scarcity
of medical resources. An interactive system consists of a question-and-answer format,
which captures diverse information and adjusts the direction of the diagnosis by generating
different questions. Compared with systems that individually answer questions given by
physicians, automated access to questions can allow for less physician involvement and
a more self-regulated diagnosis. Although the questions can be predefined, the number
and variety of predefined questions will be limited to account for generalizability. Because
patients’ conditions differ significantly, it is necessary to generate different questions from
diverse perspectives for specific patients.

Generally, VQG is considered a more intelligent task than VQA because of the need for
a deeper understanding of the information and for framing it in exact words, which prevents
answers from being misconstrued [13]. Popular VQG frameworks consist of an encoder
and a decoder. Various convolutional neural networks (CNNs), such as VGGNet [14] and
ResNet [15], are generally used as encoders. On the other hand, long short-term memory
(LSTM) [16] and bidirectional encoder representations from transformers (BERT) [17]
are extensively used as decoders. Yang et al. [18] first used a recurrent neural network
(RNN) [19] and a CNN in the VQG model. A template-based VQG method using a fixed
object, attributes, and relations between a pair of objects was proposed by Geman et al. [20].

Medical VQG is a more challenging task than VQG in the general domain because
questions generated from medical images require more information for an accurate di-
agnosis. To solve this problem, Sarrouti et al. [21] proposed a variational auto-encoder
(VAE) [22] model to generate questions from radiology images. Many methods have been
proposed in the “imageCLEF” [23,24], a medical image processing competition. Since
2020, medical VQG has been included in the competition, and many contestants have
proposed methods for improving the accuracy of medical VQG.

Although VQG is a promising technology, there are still two major problems with state-
of-the-art VQG methods. First, little attention is given to the informativeness of generated
questions. Specifically, a single medical image contains a large amount of information, and
to effectively utilize this information, questions with various meanings should be generated.
However, during the question generation process for a single image, previous methods
generated one question at a time and generated multiple questions through repeated
sampling [18]. This approach frequently yielded generated questions with similar meanings.
Although Krishna et al. [25] have proposed a model that maximizes the information in the
image involved in the latent space, the question-generation process has not been improved.
The second problem is the limitations of evaluation metrics. The standard evaluation
metrics for VQG, such as BLEU [26] and METEOR [27], are primitively used in machine
translation. These metrics cannot evaluate the semantic complexity and diversity of the
results. Therefore, it is critical to introduce a more appropriate evaluation metric.

In this study, we propose a novel medical VQG model based on diversity learning
with a multi-latent space. The proposed method also uses category information to control
the category of generated questions. We simultaneously generate various question sets
with low similarity instead of repeated sampling to improve the diversity of generated
questions. Our diversity learning uses a multi-latent space to contain different aspects of
information from the training data, and these latent spaces are used to generate meaningful
question sets. Specifically, to train these latent spaces, we use the maximal information
coefficient (MIC) loss to maximize their information difference. Furthermore, sentences
with more information are thought to have lower semantic similarity than those with less
information. Thus, to solve the second problem, we use a semantic model to calculate
the average semantic similarity between generated questions and introduce similarity as
a metric. Our model outperforms other models in terms of the diversity of generated
questions and semantic similarity.

Finally, we summarize the contributions of this study.
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• We propose a novel medical VQG model based on diversity learning with a multi-
latent space to solve the conventional informativeness problem of the VQG task and
the multi-latent space is trained by the newly introduced MIC loss.

• We introduce semantic similarity as an evaluation metric of the medical VQG model
to address the limitations of previous evaluation metrics.

The rest of the paper is organized as follows. Section 2 gives a brief description of the
related work. Section 3 presents the proposed VQG model based on a multi-latent space.
Section 4 presents the qualitative and quantitative experimental results. Section 5 discusses
these results. Finally, we conclude with a summary in the last section.

2. Related Works

The development of the VQA and VQG tasks has piqued the interest of researchers
because of their broad application prospects in the medical field. Medical VQA and VQG
systems aim to help clinical decision-making and provide patients with a better understand-
ing of their illness to reduce patient anxiety and potential physician misunderstandings.
Unlike other medical artificial intelligence applications, which are typically limited to
predefined diseases or organ types, medical VQA and VQG can understand free-form
questions in natural language and provide reliable and user-friendly answers.

Medical VQA and VQG tasks are technically considered more challenging than general
domain VQA and VQG tasks because of the difficulty of constructing a large-scale medical
dataset, which requires experts’ annotation, and the demand for disease-specific design.

2.1. Medical Visual Question Answering

At present, most of the medical VQA models are based on a general framework, the
joint embedding [2,28], which consists of the following four modules: a visual encoder, a
language encoder, a features joint module, and an answering module adapting to a specific
task. Pre-trained CNNs, such as VGGNet [14] and ResNet [15], are frequently used as visual
encoders that extract image features. Moreover, popular language coding models, such as
LSTM [16], BERT [17], and Transformer [29], are extensively used as language encoders.

However, because architectures used in medical VQA research have fewer categories
than those used in the general domain VQA, there remains a lot of research potential.
Recently, architectures used in the general domain VQA, such as the compositional model
neural module network [30], have not been introduced to the medical field but have
significant potential to be explored in the future.

2.2. Medical Visual Question Generation

Traditional and novel generation models [31,32] are the two main architectures used
for VQG models. Traditional models include rule-based models [33] and template-based
models [20,34]. Rule-based models use the Stanford Parser [35] to generate simple sen-
tences transformed from the description of the target image, which is used to find words
that represent potential objects, relationships, locations, and colors. Furthermore, questions
can be generated using the constituent “wh-” word and verbs to construct interrogative
sentences. Real scenes typically have a high demand for the diversity of generated ques-
tions, whereas questions generated by traditional methods have similar structures and
are very rigid. Novel generation models [21,25,36] are mostly composed of multiple mod-
ules, including an image encoder and a question decoder. The recent pre-trained visual
backbone can extract convolutional features from images. Extracted images and answer
features are then decoded using a language decoder to generate questions. We use the
categories of questions in the medical domain to exert control over the generated results,
an approach inspired by Uppal et al. [36] and Krishna et al. [25]. Furthermore, Krishna et
al. [25] inspired us to construct latent spaces, which simplify the gradient optimization by
replacing discrete vectors.

However, research on VQG in the medical field is still in the exploratory stage. Sarrouti
et al. [21] proposed a novel generation model from radiology images. Although the VAE-
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based model proposed by Sarrouti et al. [21] lacks diversity, it demonstrates the feasibility
of VQG in the medical field, which serves as a guide for our work. The methods [37–39]
proposed in the “imageCLEF” are based on the novel generation model. These models fo-
cus on data processing rather than on their improvement, and there has been an insufficient
investigation into a more effective model.

3. Model Framework

We provide an overview of our method in Figure 1. To more intuitively represent our
model, we demonstrate the model with two latent spaces as an example. Inspired by the
concept of VAE, which consists of an encoder and a decoder, we propose a network for
learning the predicted distribution of the training data to approximate the true distribution.
First, we use a CNN and a multilayer perceptron (MLP) as the encoder to obtain features
from the input data, and question sets can be generated by the decoder LSTM. Our model
comprises an image-category feature processor and a multi-latent space processor. The
image-category feature processor introduces the category into the model, making the
category of the generated question controllable. Furthermore, diversity learning is realized
using the multi-latent space processor, which can obtain diverse information about different
aspects of the training data. Question sets with diverse information can be generated using
the different information aspects obtained in the latent spaces.

𝜎𝜎𝑛𝑛1

Image 𝐼𝐼𝑛𝑛

Category 𝐶𝐶𝑛𝑛

𝒇𝒇𝑛𝑛𝐼𝐼

𝒔𝒔𝑛𝑛1

𝒔𝒔𝑛𝑛2

Output question pair:

Image-category feature processor Multi-latent space processor

“Abnormalilty”

𝒇𝒇𝑛𝑛𝐶𝐶

𝒇𝒇𝑛𝑛
𝐽𝐽

Is the liver healthy ?

Does the picture contain lung?

CNN 𝐸𝐸I(·)

MLP 𝐸𝐸𝐶𝐶(·) MLP1

MLP2

𝜇𝜇𝑛𝑛1 η

𝜎𝜎𝑛𝑛2 𝜇𝜇𝑛𝑛2 η

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2

𝐿𝐿KL

𝐿𝐿G

LSTM𝐿𝐿MIC 𝐿𝐿I

MLP

MLP

Figure 1. An overview of our medical VQG model with two latent spaces (1 and 2). The proposed
model has two novel processors: an image-category feature processor and a multi-latent space
processor. The input consists of a medical image and the category of the output question set. The
image-category feature processor obtains and combines the features of the image and category. The
multi-latent space processor ensures that different spaces contain different information. To make the
overview more intuitive, we demonstrate the 2-latent space case.

3.1. Image-Category Feature Processor

The image-category feature processor controls the category of the generated question
by introducing the category feature into the model. For n-th training data (n = 1, 2, . . . ,
N; N being the number of training data), there is an input image In, a category word Cn,
and a ground truth Gn. We define an image encoder CNN as EI(·) and a category encoder
MLP as EC(·). The processor can output the image feature f I

n and the category feature f C
n

as follows:
f I
n = EI(In),

f C
n = EC(T(Cn)),

(1)

where T(·) represents an embedding layer to embed Cn to a sentence vector. We concatenate
f I
n and f C

n to obtain the joint vector as f J
n = [ f I

n, f C
n ], and because the information for both

the image and category is contained in f J
n, the model can control the category of the

generated question. The category information can be considered by concatenating the
encoded features of the image and category to obtain the joint vector, which is the input of
the multi-latent space processor.
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3.2. Multi-Latent Space Processor

Because of the need to have both low bias and variance, it is difficult to optimize the
model by estimating gradients between discrete steps. To simplify gradient optimization,
rather than using discrete vectors, we introduce continuous and dense latent spaces. To
obtain more diverse information, we introduce diversity learning based on the set of latent
spaces S = {sk

n} (k = 1, 2, . . . , K; K being the number of latent spaces) and maximize their
discrepancy during training. The spaces are assumed to be different multivariate Gaussian
distributions about the image In and the category Cn with diagonal covariance. We use
reparameterization to generate the means M = {µk

n} and standard deviations Σ = {σk
n} of

the spaces, which are calculated from f J
n using corresponding MLPs with fully connected

layers of each space. Then, these means and standard deviations can be combined with the
sampled unit Gaussian noise η as follows:

sk
n = µk

n + ησk
n. (2)

f J
n can be, respectively, mapped to the latent spaces as the latent matrix set S = {sk

n} to
contain the information from the training data.

We use another MLP to obtain the reconstructed image features f̂ I,k
n from sk

n and then
optimize the model by minimizing the following loss:

LI =
K

∑
k=1
|| f I

n − f̂ I,k
n ||2. (3)

Furthermore, we train the model by minimizing the Kullback–Leibler (KL) divergence,
which is a regularizer in the original latent space that prevents the overfitting of the multi-
latent space and ensures that the spaces generate a specific category of question. The KL
divergence can be calculated using means and standard deviations as follows:

LKL =
K

∑
k=1

KL(µk
n, σk

n)

=
K

∑
k=1

1
2
(−log(σk

n)
2 + µk

n
2
+ σk

n
2 − 1).

(4)

Diversity learning ensures that the latent spaces contain diverse information. To make
the model realize diversity learning, we translate diversity into the information difference
between the latent spaces. When the information difference is significant, we assume
that they contain diverse information. Therefore, we calculate the distribution similarity
between the latent spaces and minimize their similarity during model training. To calculate
the correlation of the distributions of the corresponding latent spaces, we introduce the
MIC loss, which can be calculated as follows:

LMIC =
K

∑
k=1

K

∑
l=1

MIC(sk
n, sl

n)

= max
sk

n×sl
n<λ

I(sk
n, sl

n)

log2 min(sk
n, sl

n)
,

I(sk
n, sl

n) =
∫∫

p(sk
n, sl

n)log2
p(sk

n, sl
n)

p(sk
n)p(sl

n)
dsk

ndsl
n,

(5)

where λ denotes a hyperparameter and I(sk
n, sl

n) denotes an information coefficient. Because
a lower LMIC indicates that the latent spaces are more dissimilar, we train the informa-
tive multi-latent space by minimizing LMIC, and thus, different aspects of information
are obtained.
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The latent space set S is used in the following LSTM to generate the final question set.
By using diversity learning, we contain diverse information from the training data in S,
which is trained by LKL and LMIC. Because the vectors of the multi-latent space contain
abundant information, we can generate diverse questions from the latent spaces, which
solves the informativeness problem.

3.3. Question Set Generation Based on LSTM

The outputs of previous models contain only a single question, and when generating
multiple questions from a single image, these models are run repeatedly, resulting in many
repetitions of the generated questions. To solve this problem, we simultaneously generate
question sets with different meanings using the multi-latent space. The output question set
〈q1

n, . . . , qK
n 〉 is generated by LSTM based on {s1

n, . . . , sK
n } from the latent spaces, which can

be expressed as
〈q1

n, . . . , qK
n 〉 = 〈LSTM(s1

n), . . . , LSTM(sK
n )〉. (6)

The generation loss of LSTM can be calculated as follows:

LG =
K

∑
k=1

CE(qk
n, gk

n), (7)

where CE(·) denotes the cross-entropy loss function. We use the cross-entropy loss to
control the quality of generated questions and to minimize the generation loss LG between
the generated question qn and the ground truth gn during training.

3.4. Total Loss Function

The model’s final loss can be calculated as follows:

L = αLI + βLMIC + γLKL + δLG, (8)

where α, β, γ, and δ represent parameters that control the weights between the four loss
functions. By training our model using the total loss function L, we can generate the
category controllable question set.

4. Experiments
4.1. Conditions

Dataset. In our experiments, we used images and QA pairs from the VQA-RAD [40]
and Slake [41] datasets simultaneously, and there are several QA pairs, as shown in Figure 2,
for each image. VQA-RAD is a manually constructed medical-VQA dataset in radiology
in which clinicians naturally create and validate questions and answers about images.
Slake [41] selects healthy and unhealthy cases from open-source datasets [42–44]. Specif-
ically, 179 chest X-Ray images are randomly selected with the original disease labels
from [43], and 463 single-slice images from three-dimensional volume cases are chosen
randomly from [42,44]. Then, experienced physicians label organs and diseases with
ITK-SNAP [45] in as detailed a manner as possible.

In training, we chose six categories of QA pairs in the datasets, including
“Abnormality,” “Modality,” “Organ,” “Plane,” “Position,” and “Others.” We com-
puted the similarity between questions from one image using Google’s universal sentence-
encoder [46] and selected questions with the same category and the lowest similarity as the
ground truth. The details of our final dataset are presented in Table 1.

We randomly selected 100 images as the test set, and the remaining 856 images were
divided into training and validation sets according to 5:1 during the training process; the
training set contains 713 images, and the validation set contains 143 images.

We used the ImageNet pre-trained ResNet-50 [15] and LSTM as the image and lan-
guage encoders, respectively, where LSTM had three layers and hidden layers with a size of
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256. The details of the encoder and decoder are presented in Appendix A. In the experiment,
the MLP we used had three layers and a hidden dimension of 512.

Image location: CHEST

Q2: Are the lungs normal appearing?
A: No Type: Abnormality

Q3: Is there evidence of a pneumothorax?
A: No Type: Presence

Q4: Is this a MRI of the chest?
A: No Type: Modality

Q5: How is the patient oriented?
A: Posterior-Anterior Type: Other

Q6: Is there air under the diaphragm?
A: No Type: Other

Q7: Is there a fracture?
A: No Type: Presence

Q1: Is there airspace consolidation on the left side?
A: No Type: Presence

(a) Samples of VQA-RAD dataset

Q1: What modality is shown in this image?
A: CT Type: Modality

Q2: What scanning plane does this image belong to?
A: Transverse Plane Type: Plane

Image location: ABDOMEN Q3: Do the organs in the image exist in the chest?
A: No Type: Position
Q4: Which place does the colon locate in this image?
A: Upper Right Type: Position
Q5: Which organs appear in pairs in this image?
A: Lung Type: Organ
Q6: What color does the left lung show in the picture?
A: Black Type: Color
Q7: Which is smaller in this image,spleen or colon?
A: Colon Type: Size
Q8: What is the function of the left organ in this picture?
A: Colon Type: Size
Q9: How many organs in this image?
A: 6 Type: Quality

Q10: Which organs/organ in the picture belong to the respiratory system?
A: Colon Type: KG

(b) Samples of Slake dataset

Figure 2. Samples of the datasets used in our experiments. Each image has several different types of
QA pairs.

Table 1. Details of the dataset we use after preprocessing.

Category Question Number

Abnormality 312

Modality 290

Organ 290

Plane 484

Position 742

Others 1772

During training, we resized all images to 224 × 224 pixels and added a random flip.
We set a learning rate of 0.001, which was reduced by one-tenth every five epochs until
reaching 10−7, and the batch size was set to 32. We optimized the hyperparameters such
that α = 0.001, β = 1, γ = 0.001, and δ = 1, and the weights of the loss functions were
determined by selecting the best performance through experiments. All models were
trained for 40 epochs, and the best results were used as the final results.
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4.2. Evaluation Metrics

We used various metrics, including traditional evaluation metrics and our newly
proposed metric, Similarity, to evaluate our model. The traditional metrics consisted of
common language modeling evaluation metrics BLEU-n (n is 1 to 4) [26], METEOR [27],
ROUGE [47], CIDEr [48,49], and Inventiveness. Language modeling metrics evaluate the
accuracy of generated questions by comparing the directness of their words with that of
the ground truth. Since a higher score means that the generated questions are closer to
the ground truth, these quantitative evaluation metrics can directly reflect the accuracy
of the generated sentences. Inventiveness indicates the percentage of generated questions
completely different from the ground truth questions in the training set and is used to
evaluate the diversity of VQG models. This evaluation metric reflects the diversity of
the generated questions and proves that the evaluated model learns the knowledge in
the dataset.

As depicted in Figure 3, because language modeling metrics evaluate generated
sentences at the word level, the results will receive a higher score if they have more words
in common with the ground truth, regardless of whether the meanings are similar or not,
making it difficult to accurately evaluate the quality of the results. For example, “Is there a
liver in this image?” and “Does the picture contain liver?” have the same meaning, but they
obtain low scores (close to zero) for the language modeling metrics. On the other hand,
“Does the picture contain lung?” and “Does the picture contain liver?” have entirely distinct
meanings but have high scores greater than 0.8 for the language modeling metrics.

“Does the picture contain lung?” and “Does the picture contain liver?”

Similarity

0.57

“Is there a liver in this image?”  and “Does the picture contain liver?”

Similarity

0.77

Bleu_1 Bleu_2 Bleu_3 Bleu_4 METEOR ROUGE_L CIDEr

0.99 0.99 0.99 0.99 1 1 10

Bleu_1 Bleu_2 Bleu_3 Bleu_4 METEOR ROUGE_L CIDEr

≈0 ≈0 ≈0 ≈0 0.17 0 0

<<

>>

Figure 3. Example of the failure of traditional evaluation metrics. Although the previous indicators
can evaluate the results to some extent, there are still many failures.

To avoid such a case, where inaccurate generation results have a high score, we
introduce Similarity as a new metric. Similarity is the inner product of the semantic similarity
of the features of sentences extracted by Google’s universal sentence-encoder-4 [46], which
can determine whether sufficient information is contained in them. The first question
pair above has a Similarity value of 0.77, showing that the two questions have a similar
meaning, and the second pair’s Similarity value is 0.6, which is significantly lower than
other language modeling metrics, indicating the information difference between the two
questions. Existing evaluation metrics will fail in some special cases. Conversely, Similarity
remains accurate.

In the experiments, we calculated the average Similarity between generated ques-
tions from each image as the Similarity between them and averaged the Similarity of all
images as the final result. Low Similarity indicates that the generated questions contain
more information.

4.3. Evaluation Results

To verify our model’s effectiveness, we compared our model with other state-of-the-art
VQG models based on the VAE model. We first compared our model with the most original
and simplest VQG model that uses a CNN and an RNN as a visual encoder and a language
decoder, respectively. We also evaluated the performance of recently proposed models
using the same VAE structure as ours, including medical VQG models: VQGR [21] and
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two general VQG models, C3VQG [36] and Krishna et al. [25]. These models use the VAE
structure with the same architecture of encoder and decoder, and we also use the same
format for the inputs and outputs. Thus, the improvement of the results can best prove the
effect of the proposed multi-latent space and MIC loss function.

CNN + RNN model.

The most basic generation model is based on the concept of VAE, using a CNN to
extract image features and an RNN to generate sentences.

Visual Question Generation from Radiology Images (VQGR).

An approach to generate visual questions about radiology images, this method uses
the VAE model to encode images into a latent space and decode natural language questions.
In this method, the author also proposed a data augment method; however, to ensure the
consistency of all models, we did not include the data augment part in the experiment.

Information Maximizing Visual Question Generation (Krishna et al.).

Krishna et al. [25] proposed a model based on VAE that attempts to learn a joint con-
tinuous latent space between the image, question, and the expected answer and maximizes
mutual information from them. The method introduces a variational continuous latent
space onto which the expected answers project. The proposed method can also maximize
the evidence lower bound and control what information the generated questions request
by reconstructing the image and expected answer representations.

Category Consistent Cyclic Visual Question Generation (C3VQG).

A method based on Krishna et al. [25] that uses categories to constrain the generated
questions, C3VQG proposed a novel category of consistent cyclic loss to enable the model to
generate consistent predictions with respect to the answer category. Moreover, the proposed
method imposes supplementary constraints on the latent space to provide a structure.

Table 2 shows the results of language modeling and diversity evaluation metrics.
We applied our model using two, three, and four latent spaces, which are represented
as Our model-2, Our model-3, and Our model-4 cases, respectively. Our multi-latent
space-based model outperformed previous models with only one latent space in most
metrics. Specifically, we evaluated the diversity of our model using the new evaluation
metric Similarity, and the results show that our model outperformed the previous methods.
Similarity between the questions generated by our model was significantly lower than
that of the other models, showing that the different latent spaces were considered to
learn different knowledge during training and that the questions generated by our model
contained more abundant information for a single image.

The results show that increasing the number of latent spaces within a certain range
effectively improves the model’s performance, which proves the validity of our idea.
However, due to the fixed amount of training data and the model’s complexity, blindly
increasing the number of latent spaces is not feasible, and thus, the method of increasing the
number of latent spaces has limitations. We believe that the most effective number of latent
spaces will exist for a given model with a fixed amount of training data. According to the
results in Table 2, we observe that accuracy begins to decrease when the number of latent
spaces is four, and the highest accuracy is obtained when there are three latent spaces. Our
model-4 has the second-best results because the questions corresponding to the medical
image contain various information aspects and require more than two latent spaces.

Here, we trained the model using four different loss functions with completely differ-
ent weights. The weight was set by the performance of the verification set in the experiment.
To verify the effectiveness of a single loss, we conducted ablation experiments. Except for
the newly proposed MIC loss, the loss function had been extensively used in deep learning
in the past, and many researchers, including VQGR [21], verified its effectiveness; thus,
we only verified the newly proposed loss function in our experiments. Table 3 compares
the model’s accuracy with and without the MIC loss. The results show that the model
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performed better with our proposed loss than without it, proving the effectiveness of the
proposed loss function.

Table 2. Comparison of our model with other previous state-of-the-art models in terms of language
modeling and diversity. These language modeling metrics represent the accuracy of the word
level, and a high score indicates the model’s good performance. For the diversity metrics, high
Inventiveness and low Similarity represent better performance. Our model variants, i.e., model-2, -3,
and -4, represent models with 2, 3, and 4 latent spaces, respectively. The bolded numbers in the table
are the best results, and the underlined numbers are the second best results.

Language Modeling Diversity

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr Inventiveness (↑) Similarity (↓)

CNN+RNN 38.3 22.2 14.6 10.4 15.4 37.8 55.4 0.10 0.61

VQGR [21] 40.3 23.8 15.7 11.3 15.9 39.7 64.1 31.1 0.65

C3VQG [36] 24.2 9.4 3.8 2.2 8.0 30.7 14.6 20.1 0.41

Krishna [25] 42.1 25.9 18.3 13.7 17.7 41.2 83.1 17.0 0.48

Our model-2 46.2 29.9 20.0 13.8 18.1 45.6 61.8 32.5 0.37
Our model-3 48.7 33.0 23.2 16.0 19.6 50.0 78.6 33.0 0.43
Our model-4 46.5 31.6 23.2 16.8 18.3 46.7 73.0 33.9 0.35

Table 3. Verification of the effectiveness of the newly proposed loss. “w M” denotes the model with
the MIC loss, and the “w/o M” denotes the model without the MIC loss. The results show that the
model’s accuracy is significantly improved with the addition of the new loss. The bolded numbers in
the table are the best results.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Our model-2 w M 46.2 29.9 20.0 13.8 18.1 45.6 61.8

Our model-2 w/o M 42.6 26.4 16.3 11.2 16.5 43.1 44.2

The results of tSNE [50] visualization of the embedding of the latent space vector
set S are depicted in Figure 4. After the training process, our latent space vectors are
mapped to different regions, which represent different knowledge obtained from the
dataset. According to the visualization results of the embedding, the proposed methods can
effectively learn different knowledge from different latent spaces and ensure the differences
between them. The spatial differences demonstrated by the results also prove that our
proposed MIC loss can effectively maximize the differences between different spaces.
However, when there are four latent spaces, the gap between different latent spaces cannot
be effectively controlled. We believe that this is because the questions in the datasets do
not contain very different and diverse information, resulting in invalidation when the
number of latent spaces is too large. Moreover, these results prove the limitations of the
above-mentioned method. Since the number of latent spaces is adjustable, the results also
indicate that there is an optimal number for different datasets. Our model can obtain good
performance on different datasets by modifying the number of latent spaces.

We also evaluated the performance of our model qualitatively. In addition, to evaluate
the Similarity between generated questions, we constructed a Similarity heatmap of the
generated questions and the corresponding ground truth in Figure 5 as a sample. The
generated questions with high Similarity with the ground truth demonstrate that our model
has well contained the information in the training data. Furthermore, some questions
have low similarity with the ground truth, showing that the generated questions contain
many aspects of information about the target image. These informative questions will help
solve the medical resource problems by reducing the involvement of human physicians in
auxiliary clinical diagnosis. The questions similar to ground truth prove that our questions
are meaningful. Compared with previous models that simply generate questions, the
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proposed method can generate questions with low similarity, allowing for more precise
diagnoses by containing much information.

3-Latent Spaces2-Latent Spaces 4-Latent Spaces

Latent Space 2
Latent Space 1

Latent Space 2
Latent Space 1

Latent Space 3
Latent Space 4

Latent Space 2
Latent Space 1

Latent Space 3

(a) 2-latent space before training
3-Latent Spaces2-Latent Spaces 4-Latent Spaces

Latent Space 2
Latent Space 1

Latent Space 2
Latent Space 1

Latent Space 3
Latent Space 4

Latent Space 2
Latent Space 1

Latent Space 3

(b) 2-latent space after training
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Latent Space 1
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Latent Space 1

Latent Space 3
Latent Space 4

Latent Space 2
Latent Space 1
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(d) 3-latent space after training

3-Latent Spaces2-Latent Spaces 4-Latent Spaces

Latent Space 2
Latent Space 1

Latent Space 2
Latent Space 1

Latent Space 3
Latent Space 4

Latent Space 2
Latent Space 1

Latent Space 3

(e) 4-latent space before training
3-Latent Spaces2-Latent Spaces 4-Latent Spaces

Latent Space 2
Latent Space 1

Latent Space 2
Latent Space 1

Latent Space 3
Latent Space 4

Latent Space 2
Latent Space 1

Latent Space 3

(f) 4-latent space after training

Figure 4. tSNE [50] visualization of the latent encodings of S. Different colors represent generated
questions in different latent spaces, and we show the 2-, 3- and 4-latent space cases before and after
training. We effectively separate the latent spaces through training. The encodings in different spaces
are effectively separated in the 2- and 3-latent space cases.

As another qualitative evaluation, Figure 6 also shows that our model can generate
diverse question sets with low similarity under different latent spaces. During training,
different latent spaces are considered to learn different knowledge, and by using these
spaces, diverse questions can be generated during the generation process. From the gener-
ated results in Figure 6, for a single image, our model can simultaneously generate diverse
questions with lower Similarity than the previous models. The diversity of the generated
results can be reflected in two ways: the generation of different category questions for
one image and the generation of questions with low similarity and containing various
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information for one category simultaneously. The experimental results quantitatively and
qualitatively prove the diversity of the generated questions using our model. Furthermore,
it shows that the informativeness problem can be solved.

Generated questions

Ground truth

1. What is the disease of the organ in this image? 
2. Which is the organs in this image?
3. What part of the lung of the lung in this image?

1. What is the function of the main organ in this picture?
2. How many organs are there in this image?
3. What kind of symptoms will the disease on the left 
of lung bring to the patient?

Similarity with Ground Truth

1. Which is bigger in this image , liver or lung?
2. What is the shape of the organ in this image?
3. Which is part of the respiratory system in this image?
4. What is the effect of the main organ in this picture?

1. Which is the biggest in this image, lung, liver or heart?
2. What is the main organ in the image?
3. Which part of the body does this image belong to?
4. What modality is used to take this image?

Similarity with Ground Truth

1. How many existing lungs in this image?
2. How many organs are the right show in the picture?

1. How many existing heart in this image?
2. Which organs/organ in the picture belong to the 
circulatory system?

Similarity with Ground Truth

1. Is the gallbladder in the size?
2. Is the stomach lesion in this image?
3. Is the stomach thickening on the left of the patient?
4. Is the stomach thickening or the surrounding?

1. Is the abdominal aorta large in size?
2. Is there enlargement of the abdominal aorta on this image?
3. Is there oral contrast in the patient's small bowel?
4. Does the gi contrast hi-light the small bowel?

Similarity with Ground Truth

Generated questions

Ground truth

1. How many lungs are in this image?
2. What color does the right in the picture?

1. How many existing lungs in this image?
2. What color is the lung in the picture?

Similarity with Ground Truth

1. What is the effect of the organ on the top of this image? 
2. What is the shape of the organ in the picture?
3. Does the picture contain the organ which has the effect 
of this image?

1. What organ is the on the top of the image ?
2. Are/Is there kidneys in the picture ?
3. Does the temporal lobe appear in this image ?

Similarity with Ground Truth

Figure 5. Similarity heatmap between the generated questions and the ground truth question sets.

1. What does the picture show ?
2. How many lungs in this image ?
3. What is the organ in the image ?

1. What is seen in the image ?
2. Is there abnormalities in the image ?
3. What is the left of the picture ?

1. Which part of the organs in this image ?

2. Which is the brain edema ?

1. What tissue of the patient 's is the right in the image ?
2. What is the hyperattenuating round mass ?
3. What is the bright organ on the patient ?
4. What tissue of the patient on the right ?

1. Are the abnormalities in this image ?
2. Are the soft of the patient ?
3. Are the skull shift ?
4. Are there mass in the picture ?

1. Term for the enhancement of the luminal surface seen in the image ?
2. Are the walls of the colon thickened ?
3. Are the colon walls thickened ?
4. Is there pericolic fat stranding ?

Generated Questions Ground Truth Questions

1. What is the most important abnormality found in this image ?
2. Does the width of the heart exceed more than half of the thorax ?
3. How wide is the cardiac shadow ?
4. Is there evidence of a mass lesion at the right hilum ?

1. Where does the picture show ?
2. Which lobe is normal in this image ?
3. Where is the pneumonia ?

1. What is the color of brain enhancing tumor in this image ?
2. How many kinds of abnormalities are there in this image ?
3. How to prevent the occurrence of the disease on the lower left lobe 

of brain in this image ?

1. What type of mri is shown in this image ?

2. Is this a ct ?

1. What is the effect of the organ on the center of 
the image ?

2. Does the picture contain colon ?

1. What is the function of the organ on the bottom of this image ?

2. Which is bigger in this image , small bowel or colon ?

Generated Questions Ground Truth Questions

Generated Questions Ground Truth Questions

(a) Samples of 2-Latent Spaces (Similarity = 0.36)

1. What does the picture show ?
2. How many lungs in this image ?
3. What is the organ in the image ?

1. What is seen in the image ?
2. Is there abnormalities in the image ?
3. What is the left of the picture ?

1. Which part of the organs in this image ?

2. Which is the brain edema ?

1. What tissue of the patient 's is the right in the image ?
2. What is the hyperattenuating round mass ?
3. What is the bright organ on the patient ?
4. What tissue of the patient on the right ?

1. Are the abnormalities in this image ?
2. Are the soft of the patient ?
3. Are the skull shift ?
4. Are there mass in the picture ?

1. Term for the enhancement of the luminal surface seen in the image ?
2. Are the walls of the colon thickened ?
3. Are the colon walls thickened ?
4. Is there pericolic fat stranding ?

Generated Questions Ground Truth Questions

1. What is the most important abnormality found in this image ?
2. Does the width of the heart exceed more than half of the thorax ?
3. How wide is the cardiac shadow ?
4. Is there evidence of a mass lesion at the right hilum ?

1. Where does the picture show ?
2. Which lobe is normal in this image ?
3. Where is the pneumonia ?

1. What is the color of brain enhancing tumor in this image ?
2. How many kinds of abnormalities are there in this image ?
3. How to prevent the occurrence of the disease on the lower left lobe 

of brain in this image ?

1. What type of mri is shown in this image ?

2. Is this a ct ?

1. What is the effect of the organ on the center of 
the image ?

2. Does the picture contain colon ?

1. What is the function of the organ on the bottom of this image ?

2. Which is bigger in this image , small bowel or colon ?

Generated Questions Ground Truth Questions

Generated Questions Ground Truth Questions(b) Samples of 3-Latent Spaces (Similarity = 0.42)

Figure 6. Cont.
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1. What does the picture show ?
2. How many lungs in this image ?
3. What is the organ in the image ?

1. What is seen in the image ?
2. Is there abnormalities in the image ?
3. What is the left of the picture ?

1. Which part of the organs in this image ?

2. Which is the brain edema ?

1. What tissue of the patient 's is the right in the image ?
2. What is the hyperattenuating round mass ?
3. What is the bright organ on the patient ?
4. What tissue of the patient on the right ?

1. Are the abnormalities in this image ?
2. Are the soft of the patient ?
3. Are the skull shift ?
4. Are there mass in the picture ?

1. Term for the enhancement of the luminal surface seen in the image ?
2. Are the walls of the colon thickened ?
3. Are the colon walls thickened ?
4. Is there pericolic fat stranding ?

Generated Questions Ground Truth Questions

1. What is the most important abnormality found in this image ?
2. Does the width of the heart exceed more than half of the thorax ?
3. How wide is the cardiac shadow ?
4. Is there evidence of a mass lesion at the right hilum ?

1. Where does the picture show ?
2. Which lobe is normal in this image ?
3. Where is the pneumonia ?

1. What is the color of brain enhancing tumor in this image ?
2. How many kinds of abnormalities are there in this image ?
3. How to prevent the occurrence of the disease on the lower left lobe 

of brain in this image ?

1. What type of mri is shown in this image ?

2. Is this a ct ?

1. What is the effect of the organ on the center of 
the image ?

2. Does the picture contain colon ?

1. What is the function of the organ on the bottom of this image ?

2. Which is bigger in this image , small bowel or colon ?

Generated Questions Ground Truth Questions

Generated Questions Ground Truth Questions

(c) Samples of 4-Latent Spaces (Similarity = 0.37)

Figure 6. (a–c) are samples of the generated questions from a single image of our model with a
different number of latent spaces. Questions generated from different spaces have lower Similarity
than that of questions generated by the previous models shown in Table 2. Different spaces can be
assumed to learn different knowledge, allowing for various questions to be generated.

5. Discussion

The proposed medical VQG model enhances the diversity of generated questions. In
this section, we will discuss the limitations of the current model and future work.

5.1. Limitations

Although our results are more diverse and accurate than those of the previous model,
there are still problems. The first is that the accuracy needs to be higher than that of other
generation tasks and question generation using real-scene datasets. There are still many
duplicates in the generated questions. The reason for this is that medical image processing
requires a higher level of image understanding by the model, and the vocabulary in the
medical domain is specialized. However, the number of medical datasets is significantly
smaller than the real-scene datasets, making model training difficult. Furthermore, it is
more challenging to control the categories of the medical questions than the real-scene data.
This is because the medical questions are difficult to classify simply as the real scene, and
the classification in the current dataset is not precisely parallel. There are many crossover
cases, and a question could belong to more than one class simultaneously. This also makes
model training difficult and leads to unsatisfactory results.

5.2. Future Work

In future work, we will improve the diversity and accuracy of the generated questions.
In addition to expanding the dataset, there are two directions for improvement at the tech-
nical level: fine-tuning the pre-trained large-scale models and introducing new modalities.
First, large-scale transformer-based image and language models [17,51] have performed
better than traditional CNNs and RNNs on various tasks this year. Valanarasu et al. [52] and
Gu et al. [53] have proposed transformer-based large-scale models for image and language
modeling in the medical domains, respectively, with good performance, demonstrating the
effectiveness of this concept. Thus, we will improve the performance of the models by using
large-scale models. As human physicians typically refer to information outside the image
when making a diagnosis, such as prior knowledge, Marino et al. [54] and Zheng et al. [55]
have introduced outside knowledge to the VQA model, which also applies to VQG. By
introducing outside knowledge, the accuracy of generated questions can be improved, and
personalized question generation can be realized by introducing different knowledge, and
this has good research prospects. Researchers have enhanced the visual reasoning ability
by introducing semantic features [56], and improving the understanding of images can like-
wise generate more accurate questions. The question-and-answer-based interactive system
can also be deployed on robots [57,58] to respond to complex and changing environments
by increasing the flexibility of decision-making.
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6. Conclusions

We have proposed a novel diversity learning-based VQG model with a multi-latent
space for generating informative question sets from medical images. We introduce the
MIC loss to train the multi-latent space and improve the question-generation process by
simultaneously generating question sets. Furthermore, we introduce a new evaluation
metric, namely, Similarity, to overcome the limitation of existing evaluation metrics. Al-
though there are some problems with generating duplicate questions, our results are more
accurate and diverse than those of previous models that used only a single latent space. We
experimented with different latent spaces and proved that there was an optimal number of
latent spaces for each dataset. Because the number of latent spaces varies, it can be adjusted
to improve adaptability to different datasets. However, the proposed method has some
limitations, and more studies are required to enhance diversity.
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Appendix A

To better describe the details of our model, we present the architecture of the encoder
and the decoder of the proposed method in Tables A1 and A2, respectively.

Table A1. We show the architecture of the image encoder ImageNet pretrained ResNet-50 [15] in our
method. The used ResNet-50 [15] has five stages, which are represented in the table as S0, 1, 2, 3, and
4, respectively.

Architecture Depth Output Size

S0 Conv (7 × 7, 64), stride 2 1 112 × 112

S1

Max pooling (3 × 3), stride 2 1

56 × 56
Conv (1 × 1, 64), BN, ReLU
Conv(3 × 3, 64), BN, ReLU

Conv (1 × 1, 256), BN
shortcut, ReLU

3

Encoder

S2

Conv (1 × 1, 128), BN, ReLU
Conv(3 × 3, 128), BN, ReLU

Conv (1 × 1, 512), BN
shortcut, ReLU

4 28 × 28

S3

Conv (1 × 1, 256), BN, ReLU
Conv (3 × 3, 256), BN, ReLU

Conv (1 × 1, 1024), BN
shortcut, ReLU

6 14 × 14

S4

Conv (1 × 1, 512), BN, ReLU
Conv (3 × 3, 512), BN, ReLU

Conv (1 × 1, 2048), BN
shortcut, ReLU

3 7 × 7
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Table A2. Parameters details of the decoder LSTM of the proposed method. The parameters are
adjusted according to the experiment, and the best parameter set is selected.

Parameters Value

Number of features in hidden state 256

Number of recurrent layers 3

Dropout probability applied to the model 0.3

Dropout probability applied to the inputs of the model 0.3

Maximum sequence length for outputs 20

Maximum sequence length for inputs 20
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