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Abstract: Ransomware-related cyber-attacks have been on the rise over the last decade, disturbing
organizations considerably. Developing new and better ways to detect this type of malware is
necessary. This research applies dynamic analysis and machine learning to identify the ever-evolving
ransomware signatures using selected dynamic features. Since most of the attributes are shared
by diverse ransomware-affected samples, our study can be used for detecting current and even
new variants of the threat. This research has the following objectives: (1) Execute experiments with
encryptor and locker ransomware combined with goodware to generate JSON files with dynamic
parameters using a sandbox. (2) Analyze and select the most relevant and non-redundant dynamic
features for identifying encryptor and locker ransomware from goodware. (3) Generate and make
public a dynamic features dataset that includes these selected parameters for samples of different
artifacts. (4) Apply the dynamic feature dataset to obtain models with machine learning algorithms.
Five platforms, 20 ransomware, and 20 goodware artifacts were evaluated. The final feature dataset
is composed of 2000 registers of 50 characteristics each. This dataset allows for a machine learning
detection with a 10-fold cross-evaluation with an average accuracy superior to 0.99 for gradient
boosted regression trees, random forest, and neural networks.

Keywords: classification; dataset; dynamic; analysis; encryptor; features; locker; machine learn-
ing; ransomware

1. Introduction

Because of the amount of sensitive information stored on both devices and the cloud
while transferring over the network, malware detection, especially ransomware, has become
a primary research topic in recent years. A ransomware-like attack uses a set of stages to
infect a system; it starts with the device’s distribution and infection. This malware searches
for files to infect. It encrypts files, requests ransom, and threatens exposure to the affected
victim’s sensitive information in case of non-payment. Ransomware encrypts the files
of its victims’ computers for a short time to hijack the information and ask for a ransom.
Standard methods of discovering the malware’s signature do not work because the virus
has a continuous evolution, making detection of this virus’s action difficult. Due to this
threat’s many signatures, traditional signature-based detection techniques do not work
well with ransomware.

Individuals and companies can prevent ransomware attacks using rules considered
best practices, including using commercial antivirus to protect web applications, disabling
macro scripts, removing unauthorized apps, and creating sub-networks to reduce ran-
somware diffusion. This online source (https://techviral.net/ransomware-encrypted-file-
extensions/, accessed on 14 May 2022) presents a complete list of ransomware virus ex-
tensions that could be useful for static analysis. The most common delivery system for
ransomware is using an email attachment and phishing techniques. Hackers persuade
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individuals to open a malicious link or an attachment that allows ransomware to enter
their computers.

However, it is important to continue researching methods to detect the ever-evolving
ransomware threat. The solutions that should be implemented commercially must have the
flexibility and the ability to detect patterns from previous attacks to predict new variants
using methods such as the ones described in this paper. This type of detection could be the
only solution given this threat’s constant change.

Detecting ransomware is more complex than identifying general malware because of the
ever-increasing number of ransomware with different signatures. Therefore, new protection
mechanisms must focus on dynamic ransomware operations before encrypting files [1].

The authors found that there are no readily available public databases with dynamic
feature information on this type of attack. The few existing data are challenging to use
because they are not described in enough detail or only consider a few dynamic parameters.
In this context, this work proposes to create and publish a feature dataset with all the
information necessary for its use. This paper also details the parameters chosen as dynamic
features and the criteria applied in the selection. Additionally, the attributes were tested to
avoid redundancy due to correlation among the data.

Our research aims to create a feature dataset that associates the ransomware samples
used with the most distinctive dynamic virus attributes to detect them before the attack
does its damage. This work presents this material to make it available to the scientific
community and thus to contribute to advancing the fight against this computer threat. The
dataset is used to generate machine learning models that allow for early virus detection
and achieve a proactive response that minimizes the harm this malware can cause.

The dataset produced in this study has relevant and low-correlated characteristics as-
sociated with ransomware generated during run-time. The parameters involved in creating
the dataset are based on cuckoo reports that generate 326 features; from these attributes,
50 were chosen because they have the most pertinent information about the ransomware
threat. This selection was made after an analysis of the role of each parameter during an
attack. Several datasets were tested using different combinations of the features applying
machine learning algorithms. With the final 50 selected characteristics, a ransomware
feature dataset was created.

The virus’s behavior is analyzed through our dataset using machine learning algo-
rithms, as shown in Figure 1. The dataset is used to create machine learning models. They
are evaluated with a 10-fold cross-evaluation approach to prove their efficacy. For the
protection phase, the models with the best performance were chosen.
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The present research has the following objectives:

1. Execute experiments with goodware, encryptor ransomware, and locker ransomware
to generate JSON files with dynamic parameters that characterize the artifacts. For
this purpose, programs were executed in an isolated environment with tools such as
cuckoo sandbox.

2. Analyze and select the most relevant and not redundant dynamic parameters obtained,
running the artifacts in an isolated environment for identifying encryptor and locker
ransomware from goodware.

3. Generate a dynamic feature dataset that includes the chosen parameters for samples
of different artifacts in several Windows platforms.

4. Apply the dataset to the generation of models obtained with machine learning al-
gorithms to detect encryptor and locker ransomware using different combinations
of features to determine the selection of parameters that gives the best algorithm
performance. These models will detect the ransomware before the information is
encrypted and hijacked.

5. Make this dynamic feature dataset publicly available to be used by the community to
generate machine learning models to be applied in ransomware detection.

6. Our hypotheses are:
7. It is possible to build a feature dataset obtained from running encryptor and locker ran-

somware and goodware corresponding to several artifacts in various Windows platforms.
8. The features will deliver enough information to produce machine learning models to

detect encryptor and locker ransomware, with performance over the state-of-the-art
values. Their deployment will allow for early detection of ransomware to minimize
the possible damage.

The present document consists of six sections. The first one is this introduction.
Section 2 is about related work, describing current research, the most used features, datasets,
and their sources. Section 3 describes the materials and methods used in our work. Section 4
presents the generated feature dataset and the modeling using the selected parameters as in-
put to machine learning algorithms to classify goodware, encryptor, and locker ransomware
and their respective results. This section also presents a structure for the deployment of
the best models. Section 5 offers a discussion of the contributions of the research. Finally,
Section 6 exposes the study’s conclusions.

2. Related Work

The work on situational awareness of ransomware attacks [2] identifies parameters for
detecting and preventing this attack. This paper presents analysis tools used in different
studies, such as mainly cuckoo sandbox [3–9] to create an isolated environment to safely
run the virus, process monitor logs [6] and watchdog module [10].

Similarly, as in [11], an analysis is performed on a set of parameters related to ran-
somware attacks. The most commonly used metrics are convergence region (ROC) against
file encryption, CPU utilization, valid positive rate (TPR), false-positive rate (FPR), accuracy,
and recovery. On the other hand, according to the RWGuard system [12], the parameters
that can influence the detection of ransomware are required input and output packets,
behavior, and CPU processing.

Ransomware detection investigations mention the main features that are used [2]:
inspection of content similarity and entropy; checking C&C communications [13]; exam-
ination of the file system activity that can include changes in the master file table (MTF)
and I/O request packets (IRP) [14]; monitoring registry values; detection of privilege es-
calation requesting for administrative rights [15]; monitoring API and DLL calls; finding
modifications of the master boot record (MBR), monitoring specific file types, file paths, or
directories to see an unusual increase in particular extensions, such as .locky [16], and mon-
itoring network activity. The authors in [17] use ransomware opcodes (machine language
instructions) for machine learning detection of the virus.
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Most authors only use a partial set of these parameters to feed a conventional algorithm
or a machine learning classifier. There is not enough explanation of the parameters and
identifiers’ descriptions, and most of the time, there is no clarification of why they are
considered. Thus, studies that generate dynamic feature datasets provide only an overview
of the characteristics used in the ransomware attack detection process; they do not provide
a detailed description, and most feature datasets are also unavailable. The drawback is
that it is unclear which specific features inside each category are included in the detection;
therefore, their experiments are challenging to replicate.

In [18], a method has been introduced to detect ransomware on virtual servers. Volatile
memory dumps obtained from forensic memory analyses are analyzed to create meta-
characteristics. The experiment was conducted using the volatility foundation and random
forest classifier as a machine learning model [19–21].

As [22] states, the application of intelligent algorithms to detect ransomware is in an
early stage but is growing. New perspectives of future developments are still ahead in this
research area. As shown in Table 1, the following studies use machine learning algorithms
to classify ransomware from goodware: [4,10,12–14,16–18,20,21].

Table 1 shows that only one study works in the Android operating system [3]; one
is applied over a software defined network (SDN) [23], all the others analyze at least one
Windows platform, and one also researches over the Linux server [24,25].

Table 1 shows that only one paper [26] delivers an available dynamic feature dataset.
Still, its features are only a partial subset of all the dynamic features. They are related to
I/O operations, entropy, and large block addressing to hard disks (LBA).

Table 1. Characteristics of dynamic analysis solutions.

Study Features Used in
Dynamic Analysis

Machine Learning
Based/Algorithms

Used

Dataset is
Composed of

Samples of

Feature Dataset
Made Available Platforms Performance

[3]

Filesystem and
registry in Windows.

Permission
monitoring in

Android.

No Ransomware of
25 families No Windows

10/Android Not mentioned

[4]

API calls, Registry
Key Operations,
File/Directory

System.

Yes/NB, and SVM

582 ransomware
of

11 families, and
942 goodware

No Windows ROC: 0.995

[5]
File system, Access
Patterns, and I/O

Data Buffer Entropy.
No 148,223 general

malware No Windows Detection rate
96.3%

[6] File System, I/O
monitoring No 715 ransomware No Windows 7 Detection rate

96.7%

[7] HTTP traffic
characteristics No

750 CryptoWall
4.0 ransomware
traffic–750 Locky

ransomware
traffic

No Windows Detection rate
97–98%

[9] API Calls Yes/SVM

588 logs, 312
goodware

and 276
ransomware logs

No Windows Accuracy 97.48%

[10] Entropy analysis No Not mentioned No Windows Accuracy 92%

[12] IRP Yes/NB, LR, DT, RF
261 benign and

malicious
processes

No Windows

Accuracy:
NB: 80.07%, LR:

81.22%, DT:
89.27%, RF:

96.55%
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Table 1. Cont.

Study Features Used in
Dynamic Analysis

Machine Learning
Based/Algorithms

Used

Dataset is
Composed of

Samples of

Feature Dataset
Made Available Platforms Performance

[13] API Calls Yes/RF, SVM, SL, and
NB 168 ransomware No Windows 7

Maximum
accuracy SL:

98.2%

[14] Command and
control (C&C) server Yes/RF

265 ransomware
related
flows

No Windows
Accuracy with 10

fold cross
validation 87%

[15] Portable Executable
(PE) File No 450 ransomware No Windows Accuracy 70%

[16] Network Traffic Yes/DT (J48 classifier) 210 ransomware,
264 benign

Dataset sample
showed Windows Maximum

F-measure 96.8%

[17]

Ransomware
Opcodes (Machine

Language
Instructions)

Yes/DT, RF, KNN,
NB, GBDT 1787 ransomware No Windows Maximum

accuracy 99.3%

[18] API Calls Yes/SVM, DT, RF,
GBDT

360 ransomware,
532 general

malware, and 460
benign software

No Windows Maximum
Accuracy 96.1%

[19]

API function calls,
counts of the
behavioral

features, and counts
of the memory

features

No
1000 ransomware,

1000 benign
software

No Windows XP Detection rate
90%

[20]

API Calls,
File/Directory

System, Shannon’s
Entropy of File Writes

Yes/LR, SVM, RF,
GBDT, ANN 574 ransomware No Windows 7,

Windows 8.1
Detection rate

98.25%

[21]

Selects key features
using Multi-Objective

Grey Wolf
Optimization

(MOGWO) and
Binary Cuckoo Search

(BCS) algorithms

Yes/NB, RF, and SMO
582 ransomware,

and 942
goodware

No Windows

Accuracy
NB: 79.3%

RF: 82.67, SMO:
82%

[23] C&C communications No Database of
malicious URLs No -

Time to disrupt
the connection:

100 ms

[24]
Master File Table
(MTF) and I/O

Request Packets (IRP)
No

Logs with 2000
user activity and
2000 ransomware

activity

No Not mentioned Accuracy 97.4%

[25] I/O operation, LBA,
and Entropy

Yes/RF, SVM, KNN,
CNN

7 ransomware
families Yes

Windows 7,
Windows Server

2008

F-measure from
0.57 to 0.99

[26] Semantic Information
from Logs Yes/Bi-LSTM Logs No Linux Server,

Windows 7
Accuracy

96.5–99.7%

The performance of the presented studies uses several metrics. It varies from an
accuracy of 70% to a maximum of 99.7%; a maximum F-measure of 0.99; detection rate
with values from 90% to 98.25%; one paper presents a ROC of 0.995; and another shows
a response time of 100 ns to disrupt the connection for C&C communication before the
encryption is made.

Only the last two apply artificial neural networks (ANN) such as convolutional neural
networks (CNN) and bi-directional long short-term memory (Bi-LSTM); the others imple-
ment supervised algorithms such as naive Bayes (NB), support vector machine (SVM),
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sequential minimal optimization (SMO), logistic regression (LR), decision tree (DT), ran-
dom forest (RF), simple logistic (SL), decision trees (DT), K-nearest neighbor (KNN), and
gradient boosting decision tree (GBDT) [27–30].

The ransomware sample sources configuring the ransomware–goodware datasets used
in these studies are mainly VirusShare (https://www.impactcybertrust.org/dataset_view?
idDataset=1271, accessed on 18 May 2022), theZoo (https://github.com/ytisf/theZoo,
accessed on 22 June, 2022), VirusTotal (https://www.virustotal.com/gui/home/upload,
accessed on 18 June, 2022), and hybridanalysis.com (https://www.hybrid-analysis.com/,
accessed on 6 April, 2022). They form repositories with different ratios between the number
of benign and ransomware artifacts. Some repositories include general malware artifacts.
Therefore, the datasets are a collection of malware and goodware obtained from previously
mentioned sources. Some authors also use logs collected by users. These datasets are the
sample collections used to apply detection algorithms.

As far as the authors know, there is no accessible dataset with a robust set of dynamic
features obtained from running the virus in an isolated environment. This lack of a
feature dataset makes it challenging to develop detection and prevention solutions for the
constantly evolving signature-changing ransomware [31]. When other authors use dynamic
features, they only apply some attributes, for example, attributes related to the network,
API and DLL calls, or file systems [32–36]. For better classification results that detect
new variants not present in the training dataset, it is necessary to use a more complete
description of the ransomware activities delineated by the presence of all the relevant
dynamic features.

A complete dataset of dynamic features is needed to be used as a basis for intelligent
machine learning detection with the capability to produce models to identify this threat
before it causes damage. For this reason, this research deals with these two issues: the
generation of a relevant feature dataset and its use to produce machine learning models to
differentiate ransomware from goodware.

3. Materials and Methods

This research conducts a dynamic analysis using a sandbox, specifically cuckoo. In this
section, the authors briefly establish a background related to machine learning algorithms
and ransomware analysis (static and dynamic). Additionally, this section reports the
characteristics of the cuckoo sandbox, the feature extraction tool, the test settings, and the
chosen dynamic features that form the input vector for the machine learning algorithms.

3.1. Machine Learning Algorithms

In this study, we tested machine learning algorithms to generate the models to rec-
ognize ransomware. The algorithms used are shown in Table 2; this research chose the
algorithms: Gaussian naive Bayes, random forest, gradient boosted trees, and artificial
neural networks.

Table 2. Machine learning algorithms.

Algorithm References Characteristics

Random Forest [37–41]

This algorithm is an ensembled method combining tree predictors so that each tree
depends on the values of an independently sampled random vector and has the

same distribution for all trees in the forest.
It can improve performance compared to independent decision trees.

The random forest algorithm uses a collection of decision trees to vote and predict
the input data class.

https://www.impactcybertrust.org/dataset_view?idDataset=1271
https://www.impactcybertrust.org/dataset_view?idDataset=1271
https://github.com/ytisf/theZoo
https://www.virustotal.com/gui/home/upload
https://www.hybrid-analysis.com/
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Table 2. Cont.

Algorithm References Characteristics

Gradient Boosted Trees [42–44]

This algorithm is based on an ensemble of decision trees to improve the
performance of each separate tree, considered individually as weak learners. The

algorithm applies gradient augmentation algorithms and generates trees
sequentially in a way that complements the errors of the previous tree, and this

model is not random. Instead, it uses powerful pre-pruning. The trees combined
their output results in better models. In the case of regression, the final result is

generated from the average of all weak learners.

Naive Bayes [38,45]

This algorithm generates probabilistic models on target variables. It assumes that
input features are independent without pairwise correlation, which is not entirely

accurate in most cases. This assumption of uncorrelated attributes makes this
algorithm “naive”. The name Bayes comes from the famous probabilistic theorem

on which this algorithm bases the generation of the probabilistic model.

Neural Networks [46]

Neural networks work similarly to a biological brain to recognize patterns of large
amounts of data. Multi-layer neural network algorithms received raw data and

performed internal processes to extract and select features. For this reason, they had
an embedded feature extraction and selection process. A simple neural network

includes an input layer, an output layer with the classified variables, and a hidden
layer. The layers are connected and form a network of neurons.

3.2. Ransomware Analysis

In general, malware analysis is the study, observation, and dissection of malicious
software to determine its purpose, origin, and functionality [47,48]. The analysis of this
type of software is necessary to develop techniques that facilitate the detection of malware
and tools that allow it to be counteracted [49]. The analysis could be classified as static
or dynamic.

3.2.1. Static Analysis

This analysis focuses on studying a malicious software artifact without running
it [47,48]. Within a basic static analysis process, several activities are carried out, such
as evaluating the software artifact in question within various antiviruses, searching within
a binary file for readable text strings, and examining the artifact’s metadata, among others.

One of the advantages of using this type of analysis is that it allows for an in-depth
view of the content and behavior of an artifact. However, some disadvantages can make
this type of analysis challenging, such as code obfuscation or if the artifact in question uses
self-modifying code techniques [47].

Some of the methods used in this type of analysis are:
Disassembly: It uses tools that allow reverse engineering to be carried out on the

device in question [48]. With this technique, the intention is to obtain the instructions of the
malware in assembly language from the machine code that contains the malicious software
to analyze the instructions and determine the behavior of the artifact [47].

Information extraction: This strategy involves extracting the information embedded
in the malicious artifact without necessarily performing reverse engineering. This process
includes removing readable text strings within the artifact or searching for information
based on the file extension [47].

Use of antivirus: It simply passes the malicious artifact through several antiviruses
from different providers [47,49]; most antiviruses use fixed signatures of known threats.

3.2.2. Dynamic Analysis

Dynamic analysis focuses on executing the malicious artifact within a controlled
environment. This execution allows the researchers to observe and monitor the behavior of
the malware in the controlled testbed and determine the changes it has made on it [47–49].
Since a malicious artifact is going to be executed in this analysis, it is necessary to have a safe
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environment to be able to guarantee that, after running it, counterproductive results are not
obtained, such as the infection of neighboring networks or the corruption of the computer
that is running the malware. For this purpose, simulators, emulators, or sandboxing are
used [49]. In this way, the dynamic analysis seeks to obtain some information on the
execution of the artifact in question, such as:

• System calls;
• Processes and process trees;
• Modified system registries;
• Files and directories created, modified, or deleted;
• Network connections established;
• Network protocols used.

Our research focuses on the dynamic analysis of ransomware using a sandbox to
obtain information on ransomware behavior and goodware software artifacts to conduct
dynamic analysis using a cuckoo tool. In addition, the authors describe a feature extraction
program developed for this purpose. During execution, the artifacts yielded 326 dynamic
features that describe what the artifact does while running inside an isolated operating
system. Some of these features are related to ransomware activities and are pertinent
for detecting this malware using machine learning techniques. The researchers analyzed
ransomware behavior and chose 50 relevant and not redundant features to feed the learning
algorithms to produce an accurate classification.

3.3. Cuckoo Sandbox

A sandbox is a quarantined environment that enables the malware to be executed by
implementing specific security mechanisms to guarantee the environment’s integrity [50].
A sandbox can store information about the artifact’s behavior run within it. This information
is later sent back to the environment where the sandbox analyzes the recorded behavior [51].
The implementation of a sandbox varies depending on what is monitored [50]. A sandbox
based on virtual machines is commonly used [51].

A virtual machine can be perceived as a computer embedded within another computer.
It has a host operating system that can include one or more guest operating systems so
that the guest system cannot directly affect the integrity of the host system. In addition,
this type of program creates snapshots that are images of a specific virtual machine at a
particular time [48]. With these captures, the state of a virtual machine can be restored
once an artifact’s execution and dynamic analysis process has finished [51]. For dynamic
malware analysis, it is necessary to have a base snapshot to reverse all the adverse effects
that malicious software has caused on a virtual machine. Next, the flow of the analysis of a
software artifact with the use of a sandbox is described [51].

9. The host system searches for a free sandbox in case more than one is available.
10. The host uses the base snapshot to reset the selected sandbox to its initial state and

starts it.
11. The host establishes a communication channel with the sandbox to monitor and

exchange information.
12. The artifact is transferred to the sandbox by the host system and is executed.
13. The host uses multiple tools to monitor and record any activity or change within the

sandbox at the network level, file system, memory, registers, and operating system,
among others.

14. The host proceeds to save all the information collected from the execution of the
artifact in the sandbox into one or multiple files for later review.

For this analysis process to be successful, the sandbox must be as similar as possible
to a standard user’s computer. Otherwise, the virus may detect that it is being analyzed
and may not run [51,52].
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3.4. Feature Extraction Tool

Sampling artifacts (goodware and ransomware) and running tests on the cuckoo
sandbox system allowed for the creation of a folder containing reports of the different
analyses. Figure 2 shows the general structure of the JSON reports generated in the cuckoo
sandbox [52].

A report has a tree-based structure. An application to select features in the different
levels was developed. For example, the attributes marked with yellow were chosen in the
first stage, as seen in Figure 2. The first level contains several categories, such as “Info” or
“procmemory”. To begin the extraction process, the application visualizes the type of data
stored in each category. The JSON cuckoo sandbox reports are recursively loaded since
there were nested directories, and the program looks up every JSON file contained in a
given directory.

Figure 2. General structure of the JSON report.

For instance, the “network” category contains features such as “hosts” and “dns”;
“dns” includes the “request” feature. The program extracts all data collected in these
features and writes the data contained in a list of any primitive data type or a list of
dictionaries to a CSV extension file. This file is the feature vector input in the machine
learning algorithms used to generate models to detect locker ransomware, encryptor
ransomware, or goodware [52].

3.5. Test Settings

A test scenario was considered in an isolated environment, as shown in Figure 3, to
obtain the essential information. Then, our feature extraction tool filtered the attributes
required for the dataset conformation. The deployment was based on a safe environment
using the cuckoo sandbox tool [53].

Figure 3 shows the final test environment network topology. In this configuration,
the experiments use three machines; the first hosts cuckoo, the second CPU processes the
models with machine learning, and the third machine is responsible for storing logs (big
data) and artifacts for testing. Cuckoo communicates with an isolated virtual network for
ransomware processing and analysis composed of CPUs in five platforms: Windows XP
Service Pack3, Windows 7 Ultimate, Windows 7 Professional, Windows 10 Enterprise, and
Windows 10 Professional.
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3.6. Selected Features

To generate the dataset, 2000 experiments were performed with 20 ransomware sam-
ples and 20 goodware samples. Characteristics were selected if they were affected during
the infection process. These characteristics are reflected in Table 3 with the reasons why
they are of interest for ransomware detection. In the dataset, the identifiers are assigned
depending on the number of times that features have been counted, that is, integer values
starting with 0 when there are no records and from 1 onward when there are records.

Figure 4 presents the GUI of the extraction tool used to generate the input vector for
the machine learning algorithms, with the final 50 features.

The artifacts (ransomware and goodware) used in the experiments were: 7Zip, Task
Manager (taskmgr), API Windows Security Cryptography (cipher), API Windows System
Information Registry (regedit), API Windows Volume Management (diskpart), Bitlocker,
BitPaymer, Cerber, cmd, Cryptolocker, Cryptowall, Crysis, dllhost, Eris, Windows Re-
mote Desk, GandCrab, gpg, IPScan, Locky, Maze, Microsoft SQL Server Compact, Nmap,
Petrwrap, Petya, Phobos, Radamant, RansomX, Ryuk, Satana, services, Sodinokibi, STOP,
svchost, Team Viewer, Teslacrypt, Virtual Network Computing VNC, WannaCry, WhatsAp-
pWeb, Winrar, and Wireshark.
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Table 3. Selected features inside JSON objects.

Object Description Feature Explanation Reason for Choosing the Feature

PROCMEMORY
It allows for the creation of memory dumps for each

analyzed process (before they finish or before the
analysis ends).

file The file was created as a memory dump.

The feature is chosen because this
information allows memory forensics

monitoring file modifications to find an
unusual increase in particular extensions.

URLs URLs generated during the execution of
memory processes.

The feature is chosen because it stores a
list of URLs that can be modeled

as suspicious.

PID Process identifier. The feature is chosen because it identifies
the generated file (file).

name Name of the process in memory. The feature is chosen because it identifies
the name of a possible suspicious process.

types Artifact type. The feature is chosen because it identifies
the type of artifact.

URLs URLs used by the process in memory. The feature is chosen because it identifies
URLs used in memory by the process.

path Memory process storage directory. The feature is chosen because it identifies
the directory.

EXTRACTED It contains information about scripts executed by an
artifact during artifact analysis.

info Information on the script in question.
The feature is chosen because it identifies

information about scripts that could be
used during attacks.

program Type of program executing the script.
The feature is chosen because it identifies

the program that executes possible
malicious scripts.

NETWORK
Includes information on the network infrastructure
used during the analyses. The data could monitor

continuous or unusual communications inside
the network.

dns_servers DNS servers are involved in the analysis.

The feature is chosen due to
communication with external domain

servers. DNS
sub-characteristics (request).

mitm
Network analysis to verify the type of

attacks
man-in-the-middle.

The feature is chosen because it identifies
attacks man-in-the-middle where a

perpetrator is positioned in an exchange
between a user and an application.

dead_hosts Hosts down during data transmission.
The feature is chosen because it identifies

hosts down, which could be one of the
effects of ransomware.

udp Network analysis of the UDP protocol.

The feature is chosen due to the use of
communication via UDP protocol. It

corresponds to the udp port number that
ransomware could open.

tcp Network analysis of the TCP protocol.

The feature is chosen due to the use of
communication via TCP protocol. It

corresponds to the tcp port number that
ransomware could open.

hosts Hosts involved in the analysis. Help
create blacklists.

The feature is chosen to detect
communication with a possible

malicious host.

domain Domains involved in communication
The feature is chosen because

communication with other domains may
be a clue for identifying ransomware.

request Domains to which requests were sent
(queries) DNS.

The feature is chosen because it serves to
monitor possible suspicious requests.
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Table 3. Cont.

Object Description Feature Explanation Reason for Choosing the Feature

SIGNATURES
It contains information about tasks or processes

before, during, and after the analysis and the API
calls executed by the analyzed artifact.

families A list of malware family names. The feature is chosen because it identifies
requests that were sent.

description Signature description.
The feature is chosen because it
supplements information about

possible ransomware.

name Signature name.
The feature is chosen because it
supplements information about

possible ransomware.

category API call category.

The feature is chosen because it
supplements information about possible

ransomware. The category of the API
calls can be used to model the

application behavior.

stacktrace Execution stack related to an
API call.

The feature is chosen because it
supplements information about possible
ransomware. The stacktrace of the API

calls can be used to model the
application behavior.

api API call in question.

The feature is chosen because it
supplements information about possible
ransomware. Some characteristics of the

API calls can be used to model the
application behavior.

arguments Arguments of the API call in question.

The feature is chosen because it
supplements information about possible
ransomware. Arguments of the API call

can be used to model the
application behavior.

STATIC
Contains information about a static analysis

performed by the cuckoo in case the analyzed
artifact is of the type portable executable (PE) that

could propagate malicious code.

imported_dll_count The number of system DLLs
imported by artifact.

The feature is chosen because it contains
artifact information when the artifact is

portable executable.

dll System DLL libraries used by the
artifact during analysis.

The feature is chosen because it contains
artifact information when the artifact is

portable executable.

name Artifact name.
The feature is chosen because it contains
artifact information when the artifact is

portable executable.

filetype Artifact type.
The feature is chosen because it contains
artifact information when the artifact is

portable executable.

entropy Entropy level of the artifact in question.

Encryption changes the content.
Therefore, it has a higher entropy value.
This characteristic could help to detect
encryption and ransomware; thus, it

was selected.

name Sections found within the artifact.
The feature is chosen because it contains
artifact information when the artifact is

portable executable.

BEHAVIOR
It allows for seeing the behavior of the artifact, that
is, to see libraries to which it makes calls, suspicious

processes, and affected registry keys.

processes Processes carried out by the device.

The feature is chosen because processes
modify the infected system. The authors

selected sub-characteristics processes
(process_path, pid, process_name,

command_line, and ppid).

processtree Executed child processes derived from
the process tree.

The feature is chosen because processtree
contains subprocesses that modify the
infected system. The authors selected

sub-characteristics processtree
(process_name, command_line,

and children).

summary
Summary of files, log keys, directories,

and commands involved during the
execution of processes.

The feature is chosen because it contains
parameters that affect infected systems.

The sub-characteristics summary
(regKeys) is chosen because register

values are modified during a ransomware
attack. In addition, the sub-characteristics

(file_created, dll_loaded, wmi_query,
command_line, file_read, and

directory_enumerated) are chosen
because ransomware uses these function
calls to execute malicious operations in

the OS_file system.

DEBUG
It contains information about the analysis

performed on an artifact.

action Actions recorded during the analysis.

This feature is selected because it gives
information about the cuckoo and its

actions during the
experiments’ execution.

errors Errors logged during analysis.
This feature is selected because it gives

information about the cuckoo and errors
during the experiments’ execution.

log Various information about the
analysis executed.

This feature is selected because it gives
information about all the occurrences
inside the cuckoo sandbox during the

experiments’ execution.

4. Dataset, Modeling, and Deployment

The dataset and its final features were applied to machine learning algorithms to
detect locker ransomware and encryptor ransomware to differentiate them from goodware.
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The combination of characteristics used was the one that used the criteria related to the
effects of ransomware presented in Table 3 with features that have low correlation pairwise.

The final combination of 50 selected characteristics yielded the best algorithm perfor-
mances. This section will describe the results using two versions of the ransomware features
dataset (Step 1 and Step 2), the evaluation of the machine learning models generated, and
the deployment using the best models.

4.1. Dataset Obtained in Step 1

In the first step, the information of the dataset is taken from the JSON files generated
in the sandbox. Our extraction tool can extract any number of features from each JSON
generated by an artifact. For instance, if the authors need to obtain information for one
specific characteristic such as “UDP” that corresponds to the connections established
through UDP during dynamic analysis; this feature is contained within an object called
“network”. It can be observed that this feature does not have one register but multiple rows
of information. It is a list of objects. The extraction tool accedes to this list’s content and
saves each record in a row within the dataset, as shown in Figure 5.
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Figure 5. Dataset rows corresponding to a “UDP” feature of an artifact.

The same process is applied to extract the rest of the features from the artifact’s JSON
file, which is saved in a CSV file. This process is carried out in this stage for different
combinations of characteristics. Each corresponding dataset is evaluated with machine
learning algorithms to obtain the optimal number of combination of attributes to generate
high-performance models.

This research generated datasets with several combinations of characteristics to choose
the best option. All the considered features were selected after analyzing whether they relate
to ransomware consequences. Selecting relevant attributes from the total of 326 obtained in
the cuckoo, the best results were attained for 50 features linked to ransomware’s effects.
Table 3 presents a description of these chosen dynamic features. Another criterion to be
taken into account is that the attributes have a low correlation ratio pairwise to avoid
redundant information. Therefore, these 50 features were chosen, shown in Figure 4 and
Table 3, for the dataset obtained in step 1.

4.2. Modeling Results with the Dataset Obtained in Step 1

The authors have chosen 50 attributes using the mentioned selection criteria. These
characteristics were extracted from 40 artifacts applying ten executions for each artifact in
five victim’s devices, giving a total of 2000 JSON files. Because each JSON file has several
rows, this first dataset generated in step 1 has 1′424.344 registers after a cleaning procedure
to eliminate redundant rows.

In the experiments, the researchers established that the algorithms that produce the
best performances are random forest, artificial neural networks, and gradient boosted
regression trees. In addition, Gaussian naive Bayes was included in these reports because
although the yields are lower with this algorithm, the processing time is shorter. The
modeling results for this dataset are presented in Table 4 and Figure 6, which contain the
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logs for the generation of the models for dataset 1 obtained in step 1, using supervised
algorithms. Figure 7 corresponds to some features for a single artifact from the dataset
obtained in step 1; it shows an example of the information extracted.

The best configuration results for neural networks were found for three layers with
200 neurons, sigmoid activation, and softmax output function. Neural networks are
configured to recognize only between ransomware and goodware; therefore, they only
present one value for precision, recall, and F1. These results are also shown in Table 4. For
random forest and gradient boosted regression trees, the best results, without overfitting,
are obtained for 100 estimators, i.e., trees in the forest. G, E, and L mean goodware,
encryptor, and locker. Gradient boosted regression trees is the algorithm with the best
performance. Still, its processing takes around four hours, making it challenging to update
new data for modeling.

Table 4. Performance results for the dataset obtained in step 1.

Algorithm Average Ten-Fold
Cross-Validation Accuracy

Precision (%) Recall (%) F1 (%) Processing
Time (Segs.)G E L G E L G E L

Random Forest 99.0 87.40 99.40 96.98 91.11 99.28 93.43 89.25 99.34 85.15 5193.67

Gradient Boosted
Regression Trees 98.00 83.00 98.85 98.98 85.19 99.07 90.37 84.08 98.96 94.48 14,755.79

Gaussian Naive
Bayes 89.00 46.08 92.98 16.47 40.38 96.16 07.19 43.04 94.54 10.00 76.50

Neural Networks 91.92 92.31 90.55 92.12 2804.61
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Figure 6. Ten-fold cross-validation accuracy results obtained in step 1.

The metrics used to evaluate the performance of the machine learning algorithms are
accuracy (1), precision (2), recall (3), and F1 (4).

Accuracy is the number of correctly classified data divided by the total number of
data samples:

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

where TP = true positive; the number of instances where the ransomware was correctly
identified. TN = true negative; the number of instances where goodware (negative for
ransomware) was correctly identified. FP = false positive; the number of instances where
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goodware was classified as ransomware. FN = false negative; the number of cases where
the model failed to classify the ransomware.

Precision is the positive predictive value, i.e., how many of the positive predictions
are correct:

Precision =
TP

TP + FP
(2)

Recall is the true positive rate, i.e., a measure of how many of the positive cases the
classifier correctly predicted over all the real positive cases in the data:

Recall =
TP

TP + FN
(3)

F1 is the harmonic mean of precision and recall; it helps to balance the two metrics:

F1 = 2∗ Precision ∗ Recall
Precision + Recall

(4)

The results with the dataset shown in the previous section are satisfactory. However,
the file size of this dataset produces longer processing times. Hence, it is neither portable
nor efficient to be implemented in the deployment stage. For this reason, the previous
dataset was processed to obtain a summary of one row for each JSON file corresponding
to an artifact. The study starts with extracting the previously described JSON content to
construct this new dataset for the generation of machine learning models.

A more concise matrix is created where the columns correspond to each characteristic
extracted from the analyzed artifact. This way, all the information collected throughout
the analysis is grouped, and the number of records by columns is counted. A cell with
the value “N/A” is not counted. If it has a value other than “N/A”, it is calculated. For
example, in Figure 7, all the rows produce a unique row corresponding to one execution.
Figure 7 only shows 7 of the 50 selected features. The number of registers for each column
in the considered categories is found in each cell.

The researchers proceed to do this with the two thousand experiments with available
reports. Using this procedure, a matrix was obtained where each row had information about an
artifact. Each row cell corresponds to a feature of that artifact. This process produces a matrix of
2000 rows and 50 columns. This final dataset is included in Supplementary Materials.
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4.3. Modeling Results with the Dataset, Step 2

For the machine learning algorithms, this study used the parameters specified in the
previous section, which are the ones that produce the best performances. For random forest
and gradient boosted trees, the performances for 100 estimators or trees is shown. For
neural networks, all the models have high performances. The authors chose one similar to
the parameters used for neural networks for the dataset obtained in step 1, i.e., with three
layers, 100 neurons in each. However, the authors selected SELU as an activation function
because, in this case, it runs faster. Table 5 and Figure 8 present the performance results.

Table 5. Performance of the classifiers using the dataset obtained in step 2.

Algorithm Average Ten-Fold
Cross-Validation Accuracy

Precision (%) Recall (%) F1 (%) Processing
Time (Segs.)G E L G E L G E L

Random Forest 100 99.86 100 100 100 99.831 100 99.93 99.91 100 3.9

Gradient Boosted
Regression Trees 100 99.74 100 100 100 99.66 100 99.86 99.98 100 25.47

Gaussian Naive
Bayes 74.00 71.11 88.86 52.43 93.62 58.03 38.29 80.83 70.21 4.26 0.15

Neural Networks 99.8 99.8 99.8 99.8 6.99
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Figure 8. Ten-fold cross-validation accuracy using the dataset obtained in step 2.

The best results are obtained with this second dataset except for Gaussian naive Bayes,
which has lower accuracy. Processing times for the model obtention are significantly lower
than with the previous dataset. Again, the best performance algorithms are random forest
and gradient boosted regression trees, and slightly lesser values were obtained using
neural networks with three layers with 100 neurons each. Bayes reduces performance
values from 89 obtained in step 1 to 74 obtained with the summarized dataset for 10-fold
cross-validation accuracy.

Table 6 summarizes the steps and the CSV dataset’s generated registers.

Table 6. Dataset obtained in each step and the number of registers.

Step Number of Registers of the CSV Dataset File

1 1.424.344

2 2.000
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4.4. Deployment

The prediction of new artifacts requires generating a CSV file with the previously
described tool for extracting features of a new artifact. Any generated model can be used
to make predictions. The content of these files is concise enough to change the directories
of CSV files and models to execute the deployment.

Our architecture allows for analyzing the behavior of an artifact since it is created in a
file system. It considers the sandbox environment for the dynamic analysis of an artifact, the
information extraction tool obtained from the analysis, and the machine learning models to
be used to classify the analyzed artifact, as shown in Figure 9.
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The process of analyzing an artifact by deploying the models is detailed below:

1. A file is introduced into the computer, for example, through a network.
2. Using a Powershell script, the introduction (creation) of the file to the file system of

the operating system is detected.
3. The client uses the Powershell script to open a WebSocket-type connection with the

server and to send the file in question.
4. Once it has received the entire file, the server starts the dynamic analysis process

using the cuckoo sandbox tool.
5. After completing the dynamic analysis process, cuckoo sandbox collects all the infor-

mation. It saves it in a file in JSON format.
6. Once the creation of this file is detected, a variation of the information extraction tool

is used to extract the relevant information that will serve as input for the machine
learning models.

7. Once the information has been extracted, the feature vector is built and sent to one of
the previously trained machine learning models to obtain the classification (prediction)
of the analyzed file.

8. The classification (prediction) provided by the model is sent through the WebSocket
connection to the client to take action, depending on whether it is ransomware or not.
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5. Discussion
5.1. Contributions of This Work

From Tables 1 and 2, comparing the characteristics of other research with the present
work, it can be inferred that our experiment has several advantages:

— Unlike all the other studies analyzed in the Related Work section, which only use
around three types of features, our research uses the full range of related attributes to
study artifacts. This full use of different characteristics allows for the recognition of
behavior patterns common to ransomware. Therefore, even new variants not initially
present in the training set can be detected.

The attributes used by this research are:

• PROCMEMORY: memory management information;
• EXTRACTED: information on executed scripts;
• NETWORK: network data;
• SIGNATURES: predefined patterns that might represent malicious behavior;
• STATIC: static analysis data, including entropy level obtained by the cuckoo sand-

box software;
• BEHAVIOR: libraries to which the artifact makes calls, suspicious processes, and

affected registry keys;
• DEBUG: actions, errors, and log information recorded during the dynamic analysis.

Table 1 shows that most researchers use only a fraction of all possible types of features
available in dynamic analysis, for example, attributes related to the network or API calls
that are part of the behavior parameters. For better classification results, it is necessary to
use a more complete description of the ransomware activities delineated by the presence of
all the related types of dynamic features. For this reason, we chose 50 attributes related to
the before-mentioned group of dynamic parameters related to ransomware effects.

— The 10-fold cross-validation accuracy, precision, recall, and F1 values obtained with the
final dataset, using random forest and gradient boosted regression trees, are practically
perfect, ensuring the threat’s detection with a processing time in the range of seconds.
Other studies have detection results comparable to or lower than the ones obtained in
our research.

— The dataset that our study delivers is a feature dataset; that is, it is information that is
already ready to be used as input to a machine learning classifier to obtain models that can
be tested on new data to be categorized. Most studies only mention the ransomware sample
sources, e.g., VirusTotal, and the number of ransomware and goodware used in their
datasets; they do not deliver their samples dataset nor the features dataset generated with
their work. Unlike other studies, we present in the paper the information we produced in
a GitHub repository for community use (https://github.com/Juan-Herrera-Silva/Paper-
SENSORS, accessed on 2 December 2022).

— The fact that we apply machine learning gives flexibility to our research because this
technique allows for the discovery of hidden patterns in the ransomware behavior.
Because this study uses the full range of relevant dynamic features without redundant
information (with low correlation pairwise), it generates models that recognize pat-
terns corresponding to the locker and crypto-ransomware variants not present in the
training set.

— The time it takes for our classifiers to process the samples is in the order of seconds,
making it possible to detect the threat and stop it before any damage is achieved.

— The range of platforms used for our study is more complete than the ones used in other
studies. The sandbox implementation is executed in Windows XP, Windows 7 Ultimate,
Windows 7 Professional, Windows 10 Enterprise, and Windows 10 Professional.

5.2. Comparison with Previous Research

The experiments carried out by other authors cannot be reproduced because we do
not have enough description of the environment, the datasets, or the specific dynamic

https://github.com/Juan-Herrera-Silva/Paper-SENSORS
https://github.com/Juan-Herrera-Silva/Paper-SENSORS
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parameters with which they work. Other papers only state the number of ransomware
and goodware samples used, their sources, such as VirusTotal or VirusShare, and a not
enough detailed description of the dynamic parameters applied. Therefore, the information
in Table 1 helps compare the methods and results of other studies with the ones in our
research. Our results are comparable to or better than those reported in other studies
with an almost perfect 10-fold cross-validation accuracy using random forest and gradient
boosted trees.

It is important to state that the authors of the present paper initially conducted experi-
ments with partial sets of relevant features in the initial stages of the work. For instance, the
researchers used a partial set of relevant features over the training dataset. They obtained
results similar to the ones obtained with the complete set of 50 attributes, as seen in Table 7.
The characteristics used correspond to procmemory: file_created; behavior (processes and
apistarts): regkey_read, dll_loaded; and network: udp, command_line, domain, tcp. With
these parameters, the accuracy results for training are good and go from 63.39% to 99.68%.
However, using this partial set of parameters, these algorithms have a significantly lower
performance in testing with variants not present in the training set, with a higher accuracy
at a value of 54% for gradient boosted trees algorithms.

Therefore, the conclusion is that it is necessary to use the 50 chosen attributes that
the researchers include in the feature dataset to ensure excellent performance in detecting
ransomware variants not present in the training set. This is an essential differentiation of
our work, the ability to distinguish new variants due to the combination of the generation
of an input vector composed of a complete set of relevant features and the use of machine
learning algorithms fed with these attributes.

Table 7. Performance of the classifiers using a partial set of relevant features over the training dataset.

Model Accuracy Precision Recall Classification Error

Naive Bayes 63.39% 68.15% 57.86% 16.61%

Neural Networks 98.06% 98.78% 94.71% 1.94%

Random Forest 92.88% 96.39% 65.28% 7.12%

Gradient Boosted Trees 99.68% 99.81% 98.11% 0.32%
(Features: regkey_read, udp, file_created), dll_loaded, command_line, domain, tcp)

6. Conclusions

The fact that ransomware attacks continue to produce millions in losses worldwide
shows that there is much room for improvement in ransomware detection. The present
work contributes to some of the still open issues. One of these issues is the necessity of a
dataset containing features corresponding to all the ransomware attack patterns that could
be used to train supervised algorithms and neural network models. This feature dataset
should include all the relevant attributes related to the threat’s behavior and should be
open for the development of new machine learning ransomware detection solutions. Our
work aims in that direction.

In this article, the authors have developed a dataset composed of the dynamic features
of locker and encryptor ransomware and characteristics extracted from goodware. The
features were selected with the criteria that they are related to the effects of ransomware.
In the literature, it was found that a ransomware dataset with these characteristics was
needed because the ones that are publicly accessible do not have dynamic features of the
artifacts but only fixed signatures, or their results are challenging to replicate or use for lack
of enough descriptive information.

Dynamic analysis is essential for ransomware detection because the run-time attributes
have enough information for machine learning early detection of these threats. In our
study, since most of these features are shared by diverse ransomware samples, our dynamic
analysis can be used even for detecting new variants. For dynamic analysis, the experimen-
tation must be conducted in an isolated environment to protect the network from using a
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sandbox for artifact execution. For this purpose, cuckoo sandbox was used to create JSON
files with nested information of the dynamic features. The features were selected using
criteria related to the role of each attribute in the ransomware attacks and the results of
experimentation with machine learning algorithms aiming to obtain the best performances.
The JSON file’s total number of features was 326, and the chosen characteristics were 50.

On the other hand, when other authors use dynamic features, they only use some
attributes, for example, attributes related to the network, API and DLL calls, or file systems.
For better classification results that even detect variants not included in the training set, it
is necessary to use a more complete description of the ransomware activities delineated by
the presence of all the relevant dynamic features.

In developing the final feature dataset, this research has gone through two steps to
categorize three classes: locker ransomware, encryptor ransomware, and goodware. This
study created two datasets in two phases. Using our dynamic feature extraction tool, the
features were tested, and 50 characteristics were selected because they comply with criteria
related to ransomware attacks. They were also tested to have a low pairwise correlation to
avoid redundant information. In the trials, the study found that high performances for the
machine learning algorithms were obtained for these 50 characteristics and the machine
learning algorithms mentioned in Section 4. The researchers used 20 ransomware artifacts
and 20 goodware families tested with ten experiments, each over five platforms, to produce
a dataset with 1′424.344 rows. For this dataset, there were several rows corresponding to
one JSON. The best performance results were obtained with gradient boosted regression
trees with values of 0.98 for 10-fold cross-evaluation accuracy. However, processing times
for machine learning model generation were high because it took in the range of 4 h to
obtain the models.

To generate a more portable, efficient, and concise dataset without losing relevant
information, the research developed a process for synthesizing all the rows corresponding
to one JSON into one row. This way, using the information provided for the previous
repository, the study obtained a second dataset with 2000 records corresponding to forty
families and ten experiments for each artifact over five platforms. Using this dataset,
performance results for our models improved even more for gradient boosted regression
trees, random forest, and neural networks because they reached values close to perfect
detection for ransomware. The reported accuracy presented in the literature for ransomware
detection gives 0.997 as a maximum value; thus, our models have comparable or better
performance. Additionally, processing times were reduced from hours (using the first
dataset) to seconds using the summary dataset obtained in step 2.

In the deployment, predicting new artifacts requires applying the generated models,
whether in the repository or not. The programs allow for changing the directories of CSV
JSON files and models to readily execute them in the production stage.

This dataset is available for public access along with the present article and in the
GitHub repository (https://github.com/Juan-Herrera-Silva/Paper-SENSORS, accessed on
2 December 2022). This information can be a starting point for generating new methods of
detecting ransomware. As the final feature dataset is public access, the authors hope that
the scientific community can use, improve, modify, and share this knowledge.
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