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Abstract: Traditional low earth orbit (LEO) satellite networks are typically independent of terrestrial
networks, which develop relatively slowly due to the on-board capacity limitation. By integrating
emerging mobile edge computing (MEC) with LEO satellite networks to form the business-oriented
“end-edge-cloud” multi-level computing architecture, some computing-sensitive tasks can be of-
floaded by ground terminals to satellites, thereby satisfying more tasks in the network. How to make
computation offloading and resource allocation decisions in LEO satellite edge networks, neverthe-
less, indeed poses challenges in tracking network dynamics and handling sophisticated actions. For
the discrete-continuous hybrid action space and time-varying networks, this work aims to use the
parameterized deep Q-network (P-DQN) for the joint computation offloading and resource allocation.
First, the characteristics of time-varying channels are modeled, and then both communication and
computation models under three different offloading decisions are constructed. Second, the con-
straints on task offloading decisions, on remaining available computing resources, and on the power
control of LEO satellites as well as the cloud server are formulated, followed by the maximization
problem of satisfied task number over the long run. Third, using the parameterized action Markov
decision process (PAMDP) and P-DQN, the joint computing offloading, resource allocation, and
power control are made in real time, to accommodate dynamics in LEO satellite edge networks and
dispose of the discrete-continuous hybrid action space. Simulation results show that the proposed
P-DQN method could approach the optimal control, and outperforms other reinforcement learning
(RL) methods for merely either discrete or continuous action space, in terms of the long-term rate of
satisfied tasks.

Keywords: LEO satellite edge networks; offloading decision; resource allocation; hybrid action space;
P-DQN

1. Introduction

With the growth in global communications demand and the development of space
Internet, connectivity to rural areas has become imperative for future networks. Since the
traditional terrestrial network has limited coverage in remote areas, its infrastructure is
vulnerable to natural disasters, e.g., earthquakes and floods, thus disrupting user com-
munications [1]. Therefore, it is a prerequisite to support lower latency and more reliable
communication in future wireless networks [2].

In the past few decades, satellite and terrestrial networks typically developed indepen-
dently and competed with each other [3]. Although the terrestrial network is advantageous
in terms of high-speed data transmission and low latency, its coverage is limited, cover-
ing only about 6% of the Earth’s surface and about 20% of the land area [4]. In contrast,
satellite networks are not subject to regional restrictions and can cover the globe, meeting
the Internet needs in remote areas, sea and air. Besides, satellite networks have higher
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survival when disasters occur, especially in earthquakes, yet also face the challenge of
long-distance transmission.

Therefore, both industry and academia are promoting the integration of terrestrial and
satellite communications, to achieve seamless coverage and high-quality service anytime
and anywhere. It is apparent that global seamless communication will be an important
component in 6G networks, and thus both academia and industry have begun to discuss
its requirements, application scenarios, and potential solutions [5–8].

The 6G network will form a three-dimensional coverage of global communication
through the interaction of satellite and terrestrial networks, forming a seamless three-
dimensional coverage on a global scale, and is expected to provide heterogeneous services
and seamless network coverage [9,10]. The integrated satellite-terrestrial network archi-
tecture can integrate the information of both networks, thereby ensuring wider network
coverage and higher performance [11,12]. Yet, when providing ubiquitous and reliable
services, the integrated satellite–terrestrial network also faces challenges, especially in
meeting the growing quality of service (QoS) requirement. That is, with the rapid de-
velopment of computing-intensive and -sensitive applications, the network has to offer
a variety of computing services. More especially, users can offload part of or all com-
puting tasks to the data center [13–15]. The data center, nevertheless, is typically built
in remote areas, incurring high transmission cost and service latency, and thus failing in
meeting the QoS requirements, e.g., high data rate, low latency, and low processing energy
consumption [15–18].

As compared to terrestrial ones, low earth orbit (LEO) satellite networks are typically
deployed in the space area with an orbital altitude of 500 to 2000 km. Different from
high-orbit and medium-orbit satellites, the LEO satellite’s channel fading and service
latency would be greatly reduced. Further, since the LEO satellite network is closer to the
ground, it has lower backhaul latency and smaller channel fading, free from the ground
terrain [19]. The traditional LEO satellite network is usually limited by the finite onboard
capacity. Fortunately, emerging mobile edge computing (MEC) can provide services with
low latency, high reliability, high security, and high flexibility by deploying computing and
storage resources closer to users [20–22]. Assisted by the MEC, LEO satellite edge networks
are expected to deploy MEC servers on satellites and cooperate with cloud computing
data centers to further reduce energy consumption and task response latency, forming
an end-edge-cloud multi-level processing architecture for different business types. That
is, MEC servers on satellites can act as edge nodes to provide computing services for the
ground terminal, typically with limited capacity. It is also likely that ground terminals
offload their tasks to cloud computing data centers [23]. Yet, due to the lack of reliable
connectivity to data centers through terrestrial networks, e.g., in remote areas, some tasks
have to be forwarded to data centers via the visible LEO satellite. In addition to the
cloud-edge-end hierarchical architecture we are investigating, there is a rising trend in
integrated continuum architectures. For instance, Trakadas et al. in [24] introduced the
meta-operating system reference architecture (RAMOS) to tackle the data surge resulting
from IoT proliferation, aiming to establish a dynamic, distributed, and trusted continuum
for future data-intensive applications at the edge. Yet, creating a continuum from IoT to the
edge and cloud still poses an ongoing challenge [25].

Therefore, we aim to propose a joint computing offloading and resource allocation
method in the LEO satellite edge network, based on the parameterized deep Q-network
(P-DQN) reinforcement learning (RL), to capture the dynamics in network conditions. The
main contributions are listed as follows:

• To better simulate the real LEO network, the dynamic and changeable LEO satellite
scenario is defined. The wireless channel with time-varying characteristics is modeled,
the communication and computing models under three different offloading strategies
are constructed, and the service latency model is obtained.

• The joint computing offloading and resource allocation problem in the LEO satel-
lite edge network is built. Constraints on offloading decisions on processed tasks,
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on remaining available computing resources, and on power control on both LEO
satellites and the cloud server are respectively inferred, followed by the optimization
problem formulation.

• For the highly dynamic LEO satellite edge network and the discrete-continuous hybrid
action space, an MDP model with parameterized actions is constructed to capture the
dynamics in computing offloading, resource allocation, and power control, and the
P-DQN RL method is used to maximize the number of accessed tasks.

The rest is organized as follows. In Section 2, a brief summary of existing works on
computation offloading and resource allocation in LEO satellite networks is provided. In
Section 3, the system model is proposed and the optimization problem is established. In
Section 4, the problem is further characterized by the parameterized Markov process and
solved by the P-DQN. In Section 5, simulation experiments are conducted to verify the
algorithm performance. Finally, Section 6 concludes the work and provides an outlook on
future endeavors.

2. Related Work

In ground edge networks, there have been many works on joint computation offload-
ing and resource allocation. Yan et al. in [26] introduced the multi-user edge network
scenario, considered the task dependency among users, and formulated it as a mixed-
integer program, to optimize both task offloading and power control decisions, for the
minimization of a weighted sum of energy consumption and latency. Likely, a multi-user
multi-task network scenario was presented in [27], by formulating it as a mixed integer
program and considering the service caching, computation offloading, and resource allo-
cation, to minimize the weighted sum of latency and energy consumption. Besides, Wu
et al. in [28] introduced a multi-cell MEC-assisted network, developed an analytical model
to decouple power control and computing resource allocation, and proposed heuristics.
Tan et al. in [29] studied the multi-user cooperative MEC network based on orthogonal
frequency division multiple access (OFDMA), and formulated the collaborative decision
making, computation offloading, and resource allocation as a mixed nonlinear program.
In particular, to minimize the total energy consumption of devices, a two-stage alternat-
ing framework is proposed to decompose the collaborative problem into two layers, of
which the first one is the offloading decision generation method based on an ant colony
system, and the second one is the resource allocation method based on deep Q network,
to obtain the optimal power control, subcarrier assignment, and computing resource al-
location, given offloading decisions. Acknowledging the importance of energy efficiency
(EE) optimization, Ruan et al. in [30] focused on the energy-efficient power allocation
in cognitive satellite–terrestrial networks. Besides, optimal power allocation schemes for
both non-real-time and real-time applications were addressed in [31], for optimizing the
EE of cognitive satellite users. Spantideas et al. in [32] introduced a power configura-
tion algorithm based on deep Q-Learning for 5G cells, thereby optimizing both EE and
throughput adequacy. Likewise, the joint power allocation and user association in wireless
heterogeneous networks using the DRL was proposed in both [33,34]. However, due to
technical limitations, EE optimization is not covered in the current work, and would be
encapsulated in future work.

Moreover, unmanned aerial vehicle (UAV)-assisted MEC begins to emerge, bringing
more sophisticated computation offloading issues. Li Bin et al. in [35] utilized the double
deep Q-network algorithm to investigate the task offloading problem in UAV-enabled MEC
with the digital twin, by optimizing the mobile terminal user association, UAV trajectory
planning, transmission power distribution, and computing resource allocation, thereby
minimizing the system energy consumption. Likewise, the UAV-assisted MEC was also
proposed to support resource-intensive applications in [36]. More precisely, by introducing
the digital twin-empowered MEC network with multiple UAVs and one ground base
station, the multi-agent proximal policy optimization is used to save energy.
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As compared to ground edge networks and UAV-assisted MEC, the research on
computation offloading and resource allocation in LEO satellite edge networks is still in the
preliminary stage. Considering the high dynamics in the LEO satellite environment, how
to offload tasks to nodes with abundant resources, and how to allocate resources to those
offloaded tasks have become the challenges. Qiu et al. in [37] proposed a software-defined
space-ground integrated network framework for the management and orchestration of
caching and computing resources, using deep Q-learning methods. Xu et al. in [38]
proposed a satellite-assisted maritime network architecture on edge computing, using deep
Q learning to minimize the total service latency. In aforementioned both works, although
cloud servers with substantial computing resources are mentioned, both network models
only include the LEO satellite layer and base station layer, and the explicit incorporation
of cloud servers into the model is missing. In contrast, we aim to propose the multi-tier
cloud-edge-end architecture, encompassing computing-capable end users, MEC-assisted
LEO satellites, and the cloud server with rich resources, thereby providing users with a
wider range of offloading options and access opportunities.

Furthermore, Cheng et al. in [39] used the deep reinforcement learning (DRL) method
to learn the optimal offloading decision dynamically in an air-ground integrated edge
network, meanwhile proposing heuristics to solve the mixed integer program of joint
computing resource allocation and task scheduling. Cui et al. in [40] respectively used
the Lagrange multiplier and DRL methods to optimize the service latency, provided the
resource allocation is given. Wang et al. in [41] likely decomposed the joint problem into two
sub-problems, using the Lagrange multiplier method for communication and computing
resource allocation provided the computation offloading is preserved. The cooperative
offloading problem in LEO satellite Internet of Things (IoTs) was studied in [42], where
LEO satellites forward tasks to ground MEC servers, and the weighted latency and energy
minimization problem is designed as a partially observable MDP (POMDP), followed by
the multi-agent DRL framework.

In brief, existing works have extensively explored the challenges of computation
offloading and resource allocation in either ground-edge networks [26–29] or UAV-assisted
MEC [35,36]. Yet, unlike previous studies on satellite edge networks [39–42], we consider
the more precise description of dynamic characteristics of the network, including the
relative position variation between LEO satellites and ground terminals, together with time-
varying channel fading. Further, in existing RL works addressing computation offloading
in LEO satellite edge networks, it is common to decompose the original problem into
two sub-problems [37–42]. In contrast, we resort to the P-DQN method, thereby handling
the hybrid action space and offering a more integrated solution, without the intricate
problem decomposition.

3. System Model and Problem Description
3.1. LEO Satellite Edge Network Model

The LEO satellite edge network model is shown below in Figure 1.
As shown in Figure 1, the network includes multiple ground terminals, several LEO

satellites equipped with edge servers, and one cloud server. Let L = {1, 2, . . . , L} be the
satellite set, with L as the total number of satellites. Designate that LEO satellites use
Ka-band (27–40 GHz) to provide access for ground terminals, and each satellite only takes
charge of terminals within its coverage. Moreover, let K = {1, 2, . . . , K} be the division of
K regions, and then let Ik = {1, 2, . . . , Ik} be the set of terminals in region k. Assume that
all terminals within one coverage access the same satellite (each terminal, yet, can only
access one satellite at one time), while each satellite can serve multiple terminals simultane-
ously. Since terminals within the same coverage have similar distances, the channel states
(between terminals and LEO satellites) are almost identical, and the time division multiple
access (TDMA) can work to avoid multi-user interference within the region. Next, let M
be the cloud server. Due to the long distance and sophisticated geographical conditions, a
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direct connection between M and terminals cannot be established. Thus, the service flow
from terminals must be forwarded through LEO satellites to M.

LEO satellite

MEC server

Cloud server

Ground terminal 

device

Satellite uplink

Satellite downlink

Figure 1. LEO satellite edge networks.

To better depict dynamics in the network due to the random arrival of tasks, the system
time can be discretized into successive time slots with equal length, i.e., T = {1, 2, . . . , T}.
Let Rt̄

k,i be the new arrival task of terminal i in region k during time slot t̄ ∈ T , and lk ∈ L
be the satellite covering region k. Further, all tasks are latency sensitive, and denote tmax
as the maximum tolerance latency per task and ct̄

k,i as the size per packet to be processed
by the task, respectively. Besides, only consider tasks surviving for several time slots, the
duration of which is far less than the continuous coverage duration of LEO satellites for
one region (which is set as about 9 min in [43]). As such, almost all tasks considered can be
terminated (accessed or failed) within the LEO satellite covering the duration, and thus the
handover and its associated unstable connections are reasonably ignored. Note that, due to
the insufficient computing capability and limited resources in ground terminals, a larger
processing latency would be incurred locally. In contrast, when offloading tasks to LEO
satellites, a relatively larger propagation latency is preferred.

Thus, there are three options for the terminal to process task Rt̄
k,i, and the latency de-

pends on the computation offloading mode. Let X t̄,t
k,i = {x

t̄,t,1
k,i , xt̄,t,2

k,i , xt̄,t,3
k,i } be the offloading

set of task Rt̄
k,i at slot t (originating at t̄ and not yet completely terminating until t), where

xt̄,t,1
k,i , xt̄,t,2

k,i , x,t̄,t,3
k,i ∈ {0, 1} and xt̄,t,1

k,i + xt̄,t,2
k,i + xt̄,t,3

k,i = 1 , i.e., each task Rt̄
k,i can only choose

one processing method. In particular, xt̄,t,1
k,i = 1, xt̄,t,2

k,i = 1 and xt̄,t,3
k,i = 1 denote that the task

is processed locally, offloaded to the satellite, and offload to the cloud server, respectively.

3.2. Channel Model

Due to the high mobility of LEO satellites, the relative position between satellites and
ground terminals changes rapidly, and so do the free space loss, atmospheric fading, and
many other factors involved in the satellite–terrestrial link [44]. As shown in Figure 1, the
link from terminals to the LEO satellite is named as satellite uplink, and that from the LEO
satellite to the cloud server is named as the satellite downlink. Note that when returning
processing results to terminals, the transmission latency (and thus the link) is ignored due
to the small-sized result. Thus, when offloading task Rt̄

k,i to satellites, the data transmission
only goes through the satellite uplink; when offloading it to the cloud server through the
LEO satellite, the data transmission must go through the satellite uplink first and then
through the satellite downlink.
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As stated in Section 3.1, the channel state of all terminals in the same satellite coverage
is almost identical, so the satellite uplink channel state gt,L

k in region k at slot t can be
defined as

gt,L
k = GE

s · Gt,L
k · G

L
r , (1)

where GE
s denotes the transmit antenna gain of terminals, Gt,L

k is the channel fading between
region k and the associated satellite at slot t, and GL

r represents the receiving antenna gain
of satellites. In particular, the channel fading between terminals and satellites generally
includes free space path loss, atmospheric fading, and small-scale fading (obeying the
Rician distribution) [45], i.e.,

Gt,L
k =

(
c

4πdt,L
k fe

)2

·Φ
(

αt,L
)
· ψ, (2)

where c represents the light speed, dt,L
k is the distance between region k and its access

satellite at slot t, fe denotes the carrier frequency, Φ
(
αt,L) specifies the atmospheric fading,

and ψ is the Rician distributed small-scale fading. More precisely, atmospheric fading
Φ
(
αt,L) is expressed as

Φ
(

αt,L
)
= 10

(
3δ

10 sin αt,L

)
, (3)

where sin αt,L = H/dt,L
k , H is the orbital altitude of LEO satellites, and δ is the attenuation

through rain and clouds, separately. The Rayleigh fading channel models (e.g., in [46,47])
is not used throughout.

Further, the channel state of satellite downlink between LEO satellites and the cloud
server M for region k at slot t is represented as gt,M

k as

gt,M
k = GL

s · Gt,M
k · GM

r , (4)

where GL
s is the transmit antenna gain of LEO satellites, Gt,M

k is the channel fading be-
tween LEO satellites and the cloud server for region k at slot t , and GM

r is the receiving
antenna gain of cloud server. Likewise, the channel fading of satellite downlink also in-
cludes free space path loss, atmospheric fading and Rician distributed small-scale fading,
respectively, i.e.,

Gt,M
k =

(
c

4πdt,M
k fl

)2

·Φ
(

αt,M
)
· ψ, (5)

where dt,M
k is the distance between M and satellite lk, fl is the carrier frequency of LEO

satellites, and Φ
(
αt,M) is the atmospheric fading, i.e.,

Φ
(

αt,M
)
= 10

(
3δ

10 sin αt,M

)
, (6)

with sin αt,M = H/dt,M
k .

3.3. Latency and Satisfied Task Model

First, when locally processing task Rt̄
k,i on terminals, the total service latency includes

only the processing latency, i.e., T t̄,tol
k,i = ct̄

k,i/Ct̄,E
k,i , where ct̄

k,i represents the packet size

of Rt̄
k,i, and Ct̄,E

k,i E is the remaining constant computing resource always allocated to Rt̄
k,i,

respectively. If T t̄,tol
k,i ≤ tmax, then Rt̄

k,iis satisfied; otherwise, it fails.

Second, when offloading Rt̄
k,i to satellite lk, the total service latency consists of process-

ing, transmission, and propagation ones. The processing latency is ct̄
k,i/Ct̄,L

k,i , where Ct̄,L
k,i
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is the computing resource always allocated to Rt̄
k,i by lk, and the propagation latency is

2dt̄,L
k /c. Further, the transmission rate in the satellite uplink becomes

st̄,t,L
k,i = WL

k log2

1 +
Pt̄,L

k,i gt,L
k

K
∑

m=1,m 6=k

I
∑

j=1
Pt̄,L

m,jg
t,L
m + σ2

, (7)

where WL
k represents the link bandwidth allocated to region k, st̄,t,L

k,i is the transmission rate

of Rt̄
k,i (originating at slot t̄ and not yet transmitted completely until slot t) at t, Pt̄,L

k,i is the

transmit power allocated to Rt̄
k,i and we assume that Pt̄,L

k,i does not vary across slots for

simplicity,
K
∑

m=1,m 6=k

I
∑

j=1
Pt̄,L

m,jg
t,L
m is the interference power caused by other regions except k at

slot t, and σ2 is the noise power, respectively. Since the channel state varies across slots, the
transmission rate also changes. Besides, the remaining data (not yet transmitted) of Rt̄

k,i
becomes

zt̄,t
k,i =

{
ct̄

k,i − st̄,t,L
k,i · τ, t = t̄

zt̄,t−1
k,i − st̄,t,L

k,i · τ, t > t̄
, (8)

where τ is the size per slot. At the beginning of each slot t, judgments are made depending
on the state of Rt̄

k,i. Define variables η t̄,t
k,i to represent the condition of Rt̄

k,i (originating at
slot t̄) at current slot t, i.e.,

η t̄,t
k,i =


1, if T t̄,tol

k,i ≤ tmax

0, if T t̄,tol
k,i > tmax or T t̄,genr

k,i ≥ tmax

−1, if T t̄,genr
k,i < tmax

, (9)

where T t̄,tra
k,i is the traversed latency from t̄ to t of unfinished task Rt̄

k,i. η t̄,t
k,i = 1, η t̄,t

k,i = 0 and

η t̄,t
k,i = −1 indicates that Rt̄

k,i is exactly finished and judged to be satisfied, that Rt̄
k,i is judged

to fail, and that the judgment has to be postponed to next slot, all at slot t. The explicit
judgment on satisfied conditions of tasks are shown in Algorithm 1.

Third, when offloading Rt̄
k,i to the cloud server M, the total service latency consists of

processing, transmission, and propagation ones as well. The processing latency is ct̄
k,i/Ct̄,M

k,i ,

where Ct̄,M
k,i is the computing resource always allocated to Rt̄

k,i, and the propagation latency

is (2dt̄,L
k + 2dt̄,M

k )/c. Further, the transmission rate in the satellite downlink becomes

st̄,M
k,i = WM

k log2

1 +
Pt̄,M

k,i gt,M
k

K
∑

m=1,m 6=k

I
∑

j=1
Pt̄,M

m,j gt,M
m + σ2

, (10)

where WM
k represents the link bandwidth allocated to region k, and

K
∑

m=1,m 6=k

I
∑

j=1
Pt̄,M

m,j gt,M
m + σ2

is the interference power caused by other regions except k at slot t. Assume that the satellite
works in the full-duplex mode when forwarding the data from terminals to M via satel-

lites, the transmission rate of Rt̄
k,i becomes st̄,t,M

′

k,i = min{st̄,t,L
k,i , st̄,t,M

k,i } . Since the channel
state varies across slots, the transmission rate also changes, and the judgment on satisfied
conditions resembles Algorithm 1, with a slight difference on the data rate calculation.
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Algorithm 1 Judgment on satisfied conditions of task Rt̄
k,i(t̄ ≤ t) at slot t

Input: unfinished task Rt̄
k,i(t̄ ≤ t)

Output: judgment result η t̄,t
k,i

1: Initialize η t̄,t
k,i = −1

2: while η t̄,t
k,i = −1 do

3: Calculate the size of remaining data zt̄,t
k,i

4: if zt̄,t
k,i ≤ 0 then

5: Obtain the total service latency: T t̄,tol
k,i = (ct̄

k,i/Ct̄,L
k,i ) + (t− t̄ + 1) · τ + (2dt̄,L

k /c)

6: if T t̄,tol
k,i ≤ tmax then

7: η t̄,t
k,i = 1

8: else
9: η t̄,t

k,i = 0
10: end if
11: else
12: Calculate the traversed latency: T t̄,tra

k,i = (t− t̄ + 1) · τ + (dt̄,L
k /c)

13: if T t̄,tra
k,i ≥ tmax then

14: η t̄,t
k,i = 0

15: else
16: η t̄,t

k,i = −1
17: end if
18: end if
19: end while

3.4. Problem Formulation

Since multiple tasks may arrive at one region at the same slot, they (offloaded to the
same satellite) would compete for computing resources. It is prerequisite to jointly optimize
computing offloading and resource allocation per slot, to maximize the average number of
satisfied tasks over the long run, i.e.,

max
1
T

T

∑
t=1

K

∑
k=1

I

∑
i=1

t

∑̄
t=1

η t̄,t
k,i

s.t. C1: ∑I
i=1 Ct̄,L

k,i ≤ ωt,L
k , ∀k, ∀t̄, t

C2: 0 ≤ Pt̄,L
k,i ≤ xt̄,t,2

k,i · P
L
k,i,max, ∀k, ∀i, ∀t̄, t

C3: ∑K
k=1 ∑I

i=1 Ct̄,M
k,i ≤ ωt,M, ∀t̄, t

C4: 0 ≤ Pt̄,M
k,i ≤ xt̄,t,3

k,i · P
M
max, ∀k, ∀i, ∀t̄, t

C5: 0 ≤ Ct̄,L
k,i ≤ xt̄,t,2

k,i ·ω
t,L
k , ∀k, ∀i, ∀t̄, t

C6: 0 ≤ Ct̄,M
k,i ≤ xt̄,t,3

k,i ·ω
t,M, ∀k, ∀i, ∀t̄, t

(11)

where ωt,L
k and ωt,M are, respectively, the remaining amount of computing resources on

lk and M, both at slot t, and PL
k,i,max and PM

max are the constant maximum transmitting
power budget per terminal and per satellite. C1 denotes that the sum computing resources
allocated to offloaded task does not exceed the remaining ones of lk, C2 denotes that the
transmit power on Rt̄

k,i does not exceed the budget, C3 specifies that the sum computing
resources allocated to tasks (offloaded to M) are below the remaining capacity, and C4 is
analogous to C2, except that the power is from lk to M. Further, C5 (C6) indicates that only
when xt̄,t,2

k,i = 1 (xt̄,t,3
k,i = 1) holds, Ct̄,L

k,i (Ct̄,M
k,i ) can take positive values; otherwise, Ct̄,L

k,i = 0

(Ct̄,M
k,i = 0) must hold.



Sensors 2023, 23, 9885 9 of 19

4. P-DQN-Based Approach

Traditional RL methods such as DQN, actor-critic, and asynchronous actor-critic (A3C)
are designed to handle discrete action spaces. The DDPG, on the other hand, is tailored for
dealing with continuous actions. To adapt above RL methods to the discrete-continuous
hybrid action space, there are two approaches, i.e., either discretizing the hybrid action
space, or relaxing it into a continuous one, which would result in a high-dimensional action
space. In this work, we use one prevailing architecture, namely P-DQN, which is directly
appropriate for hybrid action space without any approximation or relaxation. In particular,
existing P-DQN frameworks (which are predominantly used in the game control [48]), are
enabled to address the computation offloading in LEO satellite edge networks. To adapt
the classical P-DQN, we integrate offloading decisions with resource allocation into one
hybrid action space. More precisely, the MDP with parameterized action space has to be
constructed, followed by assessing the satisfaction of tasks and establishing the deferred
reward function. This type of parameterized action space facilitates the maximization of
satisfied task numbers.

4.1. MDP with Parameterized Action Space

The parameterized action MDP (PAMDP) model is an extension of standard MDP [49].
Note that the MDP is represented by a quadruple (S ,A,P ,R), which are the state space,
the action space, the state transition probability set, and the reward function set, separately.
In contrast, the PAMDP redefines the discrete-continuous hybrid action space in the MDP,
as follows:

A = {(v, nv) | nv ∈ Nv for all v ∈ V}, (12)

where V = {1, . . . , V} is the set of discrete actions, and Nv is the set of continuous parame-
ters of each v ∈ V . A high-level action v is first preserved from V , and then the low-level
parameter nv ∈ Nv associated with v is selected. In particular, the PAMDP model paper
can be established as follows:

• State space: For each st ∈ S , define st =
{
Y t,Z t,

{
ωt,L

k

}
k∈K

, ωt,M
}

, where Y t

and Z t, respectively, represent the sets of new arrival tasks and being already pro-
cessed ones.

• Parameterized action space: Define the parameterized action as A =
{

at̄,t
k,i

}
, where

at̄,t
k,i = {xt̄,t,1

k,i , xt̄,t,2
k,i (Ct̄,L

k,i , Pt̄,L
k,i ), xt̄,t,3

k,i (Ct̄,M
k,i , Pt̄,M

k,i )}, t̄ ≤ t. In particular, xt̄,t,1
k,i , xt̄,t,2

k,i , and

xt̄,t,3
k,i are three types of offloading decisions. For xt̄,t,1

k,i , and the task is processed locally

without parameters; for xt̄,t,2
k,i , the task is offloaded to the LEO satellite, the parameters

are Ct̄,L
k,i and Pt̄,L

k,i ; and for xt̄,t,3
k,i , the task is offloaded to the cloud server, and the

parameters become Ct̄,M
k,i and Pt̄,M

k,i .
• Transition probability: A model-free RL architecture is used since both state and

action spaces are high-dimensional and we cannot give the precise state transfer.
• Reward function: To judge all tasks in Z t per slot, the temporal reward function per

task can be defined as rt̄,t
k,i. In particular, when the task is completed in the current

slot, rt̄,t
k,i takes the large positive value; when the task is judged to be transmitted

continuously, rt̄,t
k,i is temporarily set to be zero; and when the task fails, rt̄,t

k,i is finally set
to be negative.

4.2. P-DQN Training

The original Bellman equation in Q-learning and DQN is expressed as follows:

Q(s, a) = E
rt ,st+1

[
rt + γ max

a′∈A
Q(st+1, a′)

∣∣∣st = s, at = a
]

. (13)
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In the hybrid action space A, for each a ∈ A , the action value function is defined as
Q(s, a) = Q(s, v, nv). If vt is the discrete action selected at slot t and nvt is its associated
continuous parameter, then the Bellman equation can be written as

Q(st, vt, nvt) = E
rt ,st+1

[
rt + γ max

v∈V
sup

nv∈Nv

Q(st+1, v, nv)
∣∣∣st = s, at = (vt, nvt)

]
. (14)

First, solve n∗v = arg supnv∈Nv
Q(st+1, v, nv) for all v ∈ V and then take the maximum

Q(st+1, v, n∗v). When Q is fixed, for any s and v, arg supnv∈Nv
Q(s, v, nv) can be regarded as

the mapping nQ
v : S → Nv, and then (14) becomes

Q(st, vt, nvt) = E
rt ,st+1

[
rt + γ max

v∈V
Q
(

st+1, v, nQ
v (st+1)

) ∣∣∣∣ st = s
]

. (15)

Similar to DQN, the neural network Q(s, v, nv; w) is used to approximate Q(s, v, nv) [50],
with w as the network weight. For such Q(s, v, nv; w), the deterministic policy network
nv(·; θ) : S → Nv can approximate nQ

v (s), with θ as the policy network weight. That is,
given w, for each v ∈ V , θ is obtained as

Q(s, v, nv(s; θ); w) ≈ sup
nv∈Nv

Q(s, v, nv; w), (16)

where w is estimated by minimizing the mean square Bellman error by the gradient descent.
In the t-th step (slot) and with the multi-step algorithm with j, the j-th step’s target becomes

yt =
j−1

∑
i=0

γirt+i + γj max
v∈V

Q(st+j, v, nv(st+j, θt); wt). (17)

Then, the least squared loss function is used to train w as follows:

Lt(w) =
1
2
[Q(st, vt, nvt ; w)− yt]

2. (18)

In particular, the objective is to find θ maximizing Q(s, v, nv(s; θ); w) when w is fixed,
whereas conventional loss functions typically require minimization. Therefore, a negative
sign is added in (19) to formulate it as a loss function, allowing us to simultaneously
maximize the objective while minimize the loss function, as follows:

Lt(θ) = −
V

∑
v=1

Q(st, v, nv(st; θ); wt)/V. (19)

Next, the data in the experience replay pool is used to obtain the stochastic gradient
∇wLt(wt) and ∇θLt(θt), and both weights are updated as follows:

wt+1 = wt − βt∇wLt(wt), (20)

and
θt+1 = θt − ζt∇θLt(θt), (21)

where βt and ζt, respectively, denote the step sizes for updating parameters w and θ.
Till now, the joint computation offloading and resource allocation algorithm for LEO

edge networks with P-DQN is listed in Algorithm 2, together with the flowchart in Figure 2.
Apparently, the P-DQN is an online and off-policy RL method.
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Algorithm 2 Joint computation offloading and resource allocation with P-DQN

Input: step sizes {βt}T
t=1 and {ζt}T

t=1, exploration rate ε and batch size U.
1: Initialize the simulation environment parameter settings.
2: Initialize the network parameters ω and θ, and empty the replay buffer D.
3: for t = 1, 2, ..., T do
4: Calculate action parameters (computing resources and power): nv(st, θt)→ nv.
5: Select the action at = (vt, nvt) according to the ε-greedy strategy:

at =

{
(vt, nvt) such that vt = arg maxv∈V Q(st, v, nv; wt), with probability 1− ε

sample an action in A randomly. with probability ε

6: Execute at and store the tuple (st, at, rt, st+1) into D.
7: Randomly sample U tuples (su, au, ru, su+1) from D, u = 1, 2, . . . , U.
8: Compute the target Q value:

yu =

{
ru, if is_end is true
ru + maxv∈V γQ(su+1, v, nv(su+1, θt); wt). otherwise

9: Use the experience replay to obtain the stochastic gradients∇wLt(wt) and∇θLt(θt).
10: Update the parameters w and θ based on (20) and (21).
11: end for
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Figure 2. Flowchart for joint computation offloading and resource allocation with P-DQN.

5. Simulations and Results Analysis
5.1. Parameter Settings

Experiments are conducted on a simulation server equipped with one NVIDIA
GeForce RTX 3060 graphics card, one 12th generation 6-core processor, and two 8 GB
RAM modules. The software environment involves Python 3.9.13, PyTorch 1.13.0, and
satellite tool kit (STK 11.6). Detailed parameter settings are presented in Table 1.

In particular, to acquire position information of LEO satellites across 100 time slots,
three LEO satellites are simulated at an orbital height of 900 Km using STK, thereby
obtaining position information reports. The CPU’s computing power is configured at
1000 cycles/bit [51], making the computing resources on the LEO satellite and cloud server
reach 3 × 107 bit/s and 1 × 108 bit/s, respectively [40]. Therefore, the magnitudes of
computing resources in the figures below may appear smaller than those in Table 1, but in
reality, equivalent, with the only difference in units.
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Table 1. Simulation parameters.

Parameters Value

Length per time slot 0.1 s

Slot number per episode 100

Task size
[
8× 104, 1.2× 105] bits

Number of LEO satellites 3

LEO satellite orbit altitude 900 Km

Maximum transmit power per LEO satellite 100 w

Maximum transmission power per ground
terminal 20 w

Carrier frequency of Ka-Band 30 GHz

Link bandwidth 25 MHz

Number of terminals in region 1 14

Number of terminals in region 2 12

Number of terminals in region 3 8

Noise power spectral density −174 dBm/Hz

Computing resources per LEO satellite 3× 1010 cycle/s

Computing resources of cloud server 1× 1011 cycle/s

Maximum tolerance latency 260 ms

Discounting factor 0.9

Furthermore, for the Q network, the input layer’s dimensionality equals the sum
of state space and parameter action dimensions, while the output layer’s dimensionality
matches that of the action space. Hidden layers comprise three fully connected ones with
256, 128, and 64 neurons, respectively. Moreover, rectified linear unit (ReLU) activation
functions are utilized for each hidden layer for nonlinear mappings. Next, for the param-
eterized policy network, its input layer matches with the dimensionality of state space,
hidden layers mirror those of the Q network, and the output layer’s dimensionality corre-
sponds to that of the parameter action, utilizing the hyperbolic tangent (tanh) function as
its activation.

5.2. Performance Analysis

To validate the effectiveness of the proposed P-DQN method, the following four
baseline methods are listed as follows:

(1) Random offloading (RO): Randomly offloading tasks locally, to LEO satellites and to
the cloud server [52].

(2) Average resource allocation (ARA): Computing resources on both LEO satellites and
the cloud server are evenly shared among offloaded tasks [40].

(3) DQN offloading (DQNO): The DQN is only used for the task offloading [52].
(4) Deep deterministic policy gradient (DDPG) resource allocation (DDPGRA): The DDPG

is used to allocate both computing and power resources for already offloaded tasks.

Figure 3 compares the average reward per episode of the proposed method at different
learning rates, set to be 0.001, 0.0001, and 0.00001, respectively. Figure 3 clearly shows
that the learning rate variation significantly impacts the converged average return and
convergence performance. With the learning rate of 0.001, the proposed method begins to
converge at episode 10 or so, but next falls into the local optimum with the lower return
value. With 0.00001, it does not converge until episode 80 or so. Further, with 0.0001, the
proposed method not only demonstrates the improved average return per episode, but
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also shows a relatively fast convergence rate. It is inferred that a high learning rate can
lead to quick convergence but increases the risk of being trapped in the local optimum.
Conversely, the lower learning rate results in a smaller step size, thus slowing down the
convergence rate to the optimum.
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Figure 3. Average reward under different learning rates.

Figure 4 compares the average return per episode of the proposed method for different
batch sizes (32, 64, and 128). The batch size of 32 results in slower convergence and lower
average return. Conversely, the batch size of 128 results in a faster convergence rate, but
is easily trapped into the local optimum. For 64, both convergence and return values are
acceptable.

There, in the sequel, we pick the learning rate of 0.0001 and a sample batch size of 64
for method comparison.
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Figure 4. Average return under different batchsize settings.

Figure 5 compares the rate of satisfied tasks under different computing resources
budgets in the cloud server. Both RO-ARA and RO-DDPGRA methods use random
offloading, thus resulting in a lower access rate when available computing resources are
less. Although the rate is improved as computing resources become more, the improvement
is limited. This is because that the RO method would not offload more tasks to the cloud
server, even with substantial resources. In contrast, both the proposed method and DQNO-
ARA tend to prioritize the task of offloading to servers with ample resources. Yet, since the
proposed method uses the parameterized continuous resource optimization and DQNO-
ARA is just the equal one, the former one obtains the higher rate. Further, as computing
resources are gradually increased, the values of both methods continue to grow, yet with
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the narrowed gap. It is intuitive that more available computing resources would weaken
the role of dynamic resource allocation.
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Figure 5. Rate of satisfied tasks under different computing resources budgets in the cloud server.

Figure 6 illustrates the rate of satisfied tasks at different computing resource budgets
in LEO satellites. When available resources are less, all methods exhibit relatively lower
satisfied task rates. Both RO-ARA and RO-DDPGRA use random offloading, showing an
approximately linear growth with increased resources. By comparison, proposed method
and DQNO-ARA consistently achieve higher satisfied rates, surpassing the other two RO
methods. Likely, due to the exploitation in dynamic resource allocation, proposed method
outperforms DQNO-ARA, nevertheless with the narrowed gap with more resources.

LEO satellite computing resources (×107 bit/s)
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Figure 6. Rate of satisfied tasks under different computing resource budgets of LEO satellites.

In Figure 7, the rate of satisfied tasks under different maximum tolerance latency are
compared. As the latency tolerance increases, the rates of all methods show an approxi-
mately linear growth. Given smaller tolerance, the rates of three other methods are almost
identical except for the RO-ARA method. However, as the latency tolerance increases,
proposed method exhibits significant advantages. In particular, at the tolerance of 290 ms,
proposed method is improved by 7%, 22%, and 27% over three other ones, respectively.
Note that even at the tolerance of 290 ms, the rates of satisfied tasks of RO-ARA and RO-
DDPGRA are still relatively lower, due to the fact that some tasks are randomly offloaded
locally. As such, there tasks cannot be completed within the tolerance, owing to the limited
computing resources in ground terminals.
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Maximum tolerance latency (ms)
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Figure 7. Rate of satisfied tasks under different maximum tolerance latency settings.

Figure 8 further compares the rate of satisfied tasks under different numbers of ter-
minals. As the number increases, the rates for all methods show a declining trend. In
particular, given more terminals, the RO-DDPGRA method surpasses the DQNO-ARA,
suggesting that more existing terminals would make the resource allocation dominate
computation offloading. More precisely, when the terminal number reaches 40, except for
the RO-ARA, the rates of three other methods become close. That is, given the excessive
terminal number, both computation offloading and resource allocation begin to take no
effects on the performance. Nevertheless, given either more or smaller existing terminals,
proposed method always outperforms benchmark ones.
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Figure 8. Rate of satisfied tasks under different terminal numbers.

Figures 9 and 10 illustrate the proportion of offloaded tasks under different approaches,
and the rate of satisfied tasks in terminals, satellites and the cloud server, respectively.
Both figures reveal that in RO-ARA and RO-DDPGRA methods, both employing random
offloading, the number of offloaded tasks is equal to that of locally executed ones. In
Figure 10, the rate of satisfied tasks in terminals is consistently below 40%. However,
the RO-DDPGRA method shows around 10% higher rate for tasks offloaded to satellites,
and 8% higher for tasks offloaded to the cloud server, both over the RO-ARA, owing to
RO-DDPGRA. In particular, RO-DDPGRA adopts the DDPG, which can deterministically
optimize resources to tasks offloaded to the same satellite (or cloud server), while RO-
ARA only evenly distributes resources. In contrast, both PROPOSED and DQNO-ARA
methods have significantly lower rates of tasks locally executed, and noticeably higher
rates of tasks offloaded. Moreover, PROPOSED exhibits approximately 8% (and 6%) higher
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satisfaction for tasks offloaded to satellites (and the cloud server), respectively, than DQNO-
ARA, due to the difference in the resource allocation. Likewise, PROPOSED can allocate
resources in line with the parameterized continuous action, while DQNO-ARA can only
distribute resources equally. Note that RO-DDPGRA achieves higher satisfaction for tasks
offloaded than the DQNO-ARA; yet, due to the randomness in the offloading decisions,
the overall rate of satisfied tasks of the RO-DDPGA is constrained and falls below that of
the DQNO-ARA method.
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Figure 9. Proportion of offloaded tasks under different approaches.
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Figure 10. Rate of satisfied tasks in terminals, satellites, and cloud server.

6. Conclusions and Future Work

This work has investigated the application of P-DQN RL method to the joint computa-
tion offloading and resource allocation problem in LEO satellite edge networks. Unlike the
discrete action space-based method (e.g., DQN) and the continuous action space-based one
(e.g., DDPG), the P-DQN method takes effects in the mixed discrete-continuous space, with-
out approximating the mixed space into the discrete one or relaxing it into the continuous
one. Thus, this work considered the time-varying channel characteristics, and formulated
the power control, computation offloading, and resource allocation to maximize the rate of
satisfied tasks over the long run. To solve it, the PAMDP model was used to capture the dy-
namics in LEO satellite edge networks, using the parameterized continuous action. Finally,
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the effectiveness of proposed method was verified through simulations, showing that it not
only has a faster convergence rate, but also outperforms existing methods in terms of the
rate of satisfied tasks. In future work, we will consider issues such as unstable connections
between terminals and satellites (i.e., satellite handovers), and long-run optimization of EE.

Author Contributions: Conceptualization, X.Y. and H.F.; methodology, X.Y. and Y.G.; software,
X.W.; validation, X.Y., H.F. and K.W.; formal analysis, Y.G.; investigation, K.W.; resources, Z.L.; data
curation, X.Y. and H.F.; writing—original draft preparation, X.W.; writing—review and editing, X.Y.
and H.F.; visualization, Z.L.; supervision, K.W.; project administration, Y.G.; funding acquisition, X.Y.
and H.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was in part supported by the National Key Research and Development Program
of China under Grant 2020YFB1808003, in part by the National Natural Science Foundation of China
under Grant 61801379, and in part by the Natural Science Foundation of Shaanxi Province of China
under Grant 2020JQ-647.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank the editor and all reviewers for their valuable
comments and efforts on this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qu, Z.; Zhang, G.; Cao, H.; Xie, J. LEO satellite constellation for Internet of Things. IEEE Access 2017, 5, 18391–18401. [CrossRef]
2. Chien, W.; Lai, C.; Hossain, M.; Muhammad, G. Heterogeneous space and terrestrial integrated networks for IoT: Architecture

and challenges. IEEE Netw. 2019, 33, 15–21. [CrossRef]
3. Chen, S.; Sun, S.; Kang, S. System integration of terrestrial mobile communication and satellite communication—The trends,

challenges and key technologies in B5G and 6G. China Commun. 2020, 17, 156–171. [CrossRef]
4. Chen, S.; Liang, Y.C.; Sun, S.; Kang, S.; Cheng, W.; Peng, M. Vision, requirements, and technology trend of 6G: How to tackle the

challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 2020, 27, 218–228. [CrossRef]
5. Wang, G.; Zhou, S.; Zhang, S.; Niu, Z.; Shen, X. SFC-based service provisioning for reconfigurable space-air-ground integrated

networks. IEEE J. Sel. Areas Commun. 2020, 38, 1478–1489. [CrossRef]
6. Fu, S.; Gao, J.; Zhao, L. Integrated resource management for terrestrial-satellite systems. IEEE Trans. Veh. Technol. 2020, 69,

3256–3266. [CrossRef]
7. Zhu, X.; Jiang, C.; Kuang, L.; Ge, N.; Guo, S.; Lu, J. Cooperative transmission in integrated terrestrial-satellite networks. IEEE

Netw. 2019, 33, 204–210. [CrossRef]
8. Kapovits, A.; Corici, M.I.; Gheorghe-Pop, I.D.; Gavras, A.; Burkhardt, F.; Schlichter, T.; Covaci, S. Satellite communications

integration with terrestrial networks. China Commun. 2018, 15, 22–38. [CrossRef]
9. Yang, Y.; Ma, M.; Wu, H.; Yu, Q.; Zhang, P.; You, X.; Wu, J.; Peng, C.; Yum, T.-S.P.; Shen, S.; et al. 6G network AI architecture for

everyone-centric customized services. IEEE Netw. 2022, 1–10. [CrossRef]
10. Zhang, S.; Liu, J.; Guo, H.; Qi, M.; Kato, N. Envisioning device-to-device communications in 6G. IEEE Netw. 2020, 34, 86–91.

[CrossRef]
11. Lakew, D.S.; Tran, A.T.; Masood, A.; Dao, N.N.; Cho, S. A Review on Satellite-Terrestrial Integrated Wireless Networks:

Challenges and Open Research Issues. In Proceedings of the International Conference on Information Networking (ICOIN),
Bangkok, Thailand, 11–14 January 2023; pp. 638–641.

12. Sun, Y.; Peng, M.; Zhang, S.; Lin, G.; Zhang, P. Integrated satellite-terrestrial networks: Architectures, key techniques, and
experimental progress. IEEE Netw. 2022, 36, 191–198. [CrossRef]

13. Kumar, K.; Liu, J.; Lu, Y.H.; Bhargava, B. A survey of computation offloading for mobile systems. Mob. Netw. Appl. 2013, 18,
974–983. [CrossRef]

14. Chen, X. Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 2014, 26,
129–140. [CrossRef]

15. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [CrossRef]
16. Du, J.; Zhao, L.; Feng, J.; Chu, X. Computation offloading and resource allocation in mixed fog/cloud computing systems with

min-max fairness guarantee. IEEE Trans. Commun. 2017, 66, 1594–1608. [CrossRef]

http://doi.org/10.1109/ACCESS.2017.2735988
http://dx.doi.org/10.1109/MNET.2018.1800182
http://dx.doi.org/10.23919/JCC.2020.12.011
http://dx.doi.org/10.1109/MWC.001.1900333
http://dx.doi.org/10.1109/JSAC.2020.2986851
http://dx.doi.org/10.1109/TVT.2020.2964659
http://dx.doi.org/10.1109/MNET.2018.1800164
http://dx.doi.org/10.1109/CC.2018.8438271
http://dx.doi.org/10.1109/MNET.124.2200241
http://dx.doi.org/10.1109/MNET.001.1900652
http://dx.doi.org/10.1109/MNET.106.2100622
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1109/TPDS.2014.2316834
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/TCOMM.2017.2787700


Sensors 2023, 23, 9885 18 of 19

17. Wang, C.; Yu, F.R.; Liang, C.; Chen, Q.; Tang, L. Joint computation offloading and interference management in wireless cellular
networks with mobile edge computing. IEEE Trans. Veh. Technol. 2017, 66, 7432–7445. [CrossRef]

18. Chang, Z.; Zhou, Z.; Ristaniemi, T.; Niu, Z. Energy efficient optimization for computation offloading in fog computing system. In
Proceedings of the IEEE Global Communications Conference (IEEE GLOBECOM), Singapore, 4–8 December 2017; pp. 1–6.

19. Zhu, X.; Jiang, C. Integrated satellite-terrestrial networks toward 6G: Architectures, applications, and challenges. IEEE Internet
Things J. 2021, 9, 437–461. [CrossRef]

20. Brik, B.; Frangoudis, P.A.; Ksentini, A. Service-oriented MEC applications placement in a federated edge cloud architecture. In
Proceedings of the IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

21. Mehrabi, M.; You, D.; Latzko, V.; Salah, H.; Reisslein, M.; Fitzek, F.H.P. Device-enhanced MEC: Multi-access edge computing
(MEC) aided by end device computation and caching: A survey. IEEE Access 2019, 7, 166079–166108. [CrossRef]

22. Li, J.; Wang, R.; Wang, K. Service Function Chaining in Industrial Internet of Things With Edge Intelligence: A Natural Actor-Critic
Approach. IEEE Trans. Industr. Inform. 2023, 19, 491–502. [CrossRef]

23. Hao, Y.; Chen, M.; Hu, L.; Hossain, M.S.; Ghoneim, A. Energy efficient task caching and offloading for mobile edge computing.
IEEE Access 2018, 6, 11365–11373. [CrossRef]

24. Trakadas, P.; Masip-Bruin, X.; Facca, F.M.; Spantideas, S.T.; Giannopoulos, A.E.; Kapsalis, N.C.; Martins, R.; Bosani, E.; Ramon,
J.; Prats, R.G.; et al. A reference architecture for cloud-edge meta-operating systems enabling cross-domain, data-intensive,
ML-assisted applications: Architectural overview and key concepts. Sensors 2022, 22, 9003. [CrossRef] [PubMed]

25. Militano, L.; Arteaga, A.; Toffetti, G.; Mitton, N. The cloud-to-edge-to-IoT continuum as an enabler for search and rescue
operations. Future Internet 2023, 15, 55. [CrossRef]

26. Yan, J.; Bi, S.; Zhang, Y.; Tao, M. Optimal task offloading and resource allocation in mobile-edge computing with inter-user task
dependency. IEEE Trans. Wirel. Commun. 2019, 19, 235–250. [CrossRef]

27. Zhang, G.; Zhang, S.; Zhang, W.; Shen, Z.; Wang, L. Joint service caching, computation offloading and resource allocation in
mobile edge computing systems. IEEE Trans. Wirel. Commun. 2021, 20, 5288–5300. [CrossRef]

28. Wu, F.; Leng, S.; Maharjan, S.; Huang, X.; Zhang, Y. Joint Power Control and Computation Offloading for Energy-Efficient Mobile
Edge Networks. IEEE Trans. Wirel. Commun. 2021, 21, 4522–4534. [CrossRef]

29. Tan, L.; Kuang, Z.; Zhao, L.; Liu, A. Energy-efficient joint task offloading and resource allocation in OFDMA-based collaborative
edge computing. IEEE Trans. Wirel. Commun. 2021, 21, 1960–1972. [CrossRef]

30. Ruan, Y.; Li, Y.; Wang, C.X.; Zhang, R.; Zhang, H. Energy efficient power allocation for delay constrained cognitive satellite
terrestrial networks under interference constraints. IEEE Trans. Wirel. Commun. 2019, 18, 4957–4969. [CrossRef]

31. Shi, S.; Li, G.; An, K.; Gao, B.; Zheng, G. Energy-efficient optimal power allocation in integrated wireless sensor and cognitive
satellite terrestrial networks. Sensors 2017, 17, 2025. [CrossRef]

32. Spantideas, S.T.; Giannopoulos, A.E.; Kapsalis, N.C.; Kalafatelis, A.; Capsalis, C.N.; Trakadas, P. Joint energy-efficient and
throughput-sufficient transmissions in 5G cells with deep Q-learning. In Proceedings of the IEEE International Mediterranean
Conference on Communications and Networking (MeditCom), Athens, Greece, 7–10 September 2021; pp. 265–270.

33. Hsieh, C.K.; Chan, K.L.; Chien, F.T. Energy-efficient power allocation and user association in heterogeneous networks with deep
reinforcement learning. Appl. Sci. 2021, 11, 4135. [CrossRef]

34. Liu, C.H.; Chen, Z.; Tang, J.; Xu, J.; Piao, C. Energy-efficient UAV control for effective and fair communication coverage: A deep
reinforcement learning approach. IEEE J. Sel. Areas Commun. 2018, 36, 2059–2070. [CrossRef]

35. Li, B.; Liu, Y.; Tan, L.; Zhang, Y. Digital twin assisted task offloading for aerial edge computing and networks. IEEE Trans. Veh.
Technol. 2022, 71, 10863–10877. [CrossRef]

36. Liu, W.; Li, B.; Xie, W.; Fei, Z. Energy efficient computation offloading in aerial edge networks with multi-agent cooperation. IEEE
Trans. Wirel. Commun. 2023, 22, 5725–5739. [CrossRef]

37. Qiu, C.; Yao, H.; Yu, F.R.; Xu, F.; Zhao, C. Deep Q-learning aided networking, caching, and computing resources allocation in
software-defined satellite-terrestrial networks. IEEE Trans. Veh. Technol. 2019, 68, 5871–5883. [CrossRef]

38. Xu, F.; Yang, F.; Zhao, C.; Wu, S. Deep reinforcement learning based joint edge resource management in maritime network. China
Commun. 2020, 17, 211–222. [CrossRef]

39. Cheng, N.; Lyu, F.; Quan, W.; Zhou, C.; He, H.; Shi, W.; Shen, X. Space/aerial-assisted computing offloading for IoT applications:
A learning-based approach. IEEE J. Sel. Areas Commun. 2019, 37, 1117–1129. [CrossRef]

40. Cui, G.; Li, X.; Xu, L.; Wang, W. Latency and energy optimization for MEC enhanced SAT-IoT networks. IEEE Access 2020, 8,
55915–55926. [CrossRef]

41. Wang, B.; Xie, J.; Huang, D.; Xie, X. A Computation Offloading Strategy for LEO Satellite Mobile Edge Computing System. In
Proceedings of the International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 10–12 June
2022; pp. 75–80.

42. Lyu, Y.; Liu, Z.; Fan, R.; Zhan, C.; Hu, H.; An, J. Optimal Computation Offloading in Collaborative LEO-IoT Enabled MEC: A
Multiagent Deep Reinforcement Learning Approach. IEEE Trans. Green Commun. Netw. 2023, 7, 996–1011. [CrossRef]

43. Maattanen, H.L.; Hofstrom, B.; Euler, S.; Sedin, J.; Lin, X.; Liberg, O.; Masini, G.; Israelsson, M. 5G NR Communication over GEO
or LEO Satellite Systems: 3GPP RAN Higher Layer Standardization Aspects. In Proceedings of the IEEE Global Communications
Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

http://dx.doi.org/10.1109/TVT.2017.2672701
http://dx.doi.org/10.1109/JIOT.2021.3126825
http://dx.doi.org/10.1109/ACCESS.2019.2953172
http://dx.doi.org/10.1109/TII.2022.3177415
http://dx.doi.org/10.1109/ACCESS.2018.2805798
http://dx.doi.org/10.3390/s22229003
http://www.ncbi.nlm.nih.gov/pubmed/36433599
http://dx.doi.org/10.3390/fi15020055
http://dx.doi.org/10.1109/TWC.2019.2943563
http://dx.doi.org/10.1109/TWC.2021.3066650
http://dx.doi.org/10.1109/TWC.2021.3130649
http://dx.doi.org/10.1109/TWC.2021.3108641
http://dx.doi.org/10.1109/TWC.2019.2931321
http://dx.doi.org/10.3390/s17092025
http://dx.doi.org/10.3390/app11094135
http://dx.doi.org/10.1109/JSAC.2018.2864373
http://dx.doi.org/10.1109/TVT.2022.3182647
http://dx.doi.org/10.1109/TWC.2023.3235997
http://dx.doi.org/10.1109/TVT.2019.2907682
http://dx.doi.org/10.23919/JCC.2020.05.016
http://dx.doi.org/10.1109/JSAC.2019.2906789
http://dx.doi.org/10.1109/ACCESS.2020.2982356
http://dx.doi.org/10.1109/TGCN.2022.3186792


Sensors 2023, 23, 9885 19 of 19

44. Zhou, D.; Sheng, M.; Wang, Y.; Li, J.; Han, Z. Machine learning-based resource allocation in satellite networks supporting internet
of remote things. IEEE Trans. Wirel. Commun. 2021, 20, 6606–6621. [CrossRef]

45. Yuan, Y.; Lei, L.; Vu, T.; Chang, Z.; Chatzinotas, S.; Sun, S. Adapting to dynamic LEO-B5G systems: Meta-critic learning based
efficient resource scheduling. IEEE Trans. Wirel. Commun. 2022, 21, 9582–9595. [CrossRef]

46. Dong, Y.; Wang, L.; Wang, J.; Hu, X.; Zhang, H.; Yu, F.R.; Leung, V.C.M. Accelerating Wireless Federated Learning via Nesterov’s
Momentum and Distributed Principle Component Analysis. IEEE Trans. Wirel. Commun. 2023. [CrossRef]

47. Dong, Y.; Zhang, H.; Li, J.; Yu, F.R.; Guo, S.; Leung, V.C. An online zero-forcing Precoder for weighted sum-rate maximization in
green CoMP systems. IEEE Trans. Wirel. Commun. 2022, 21, 7566–7581. [CrossRef]

48. Xiong, J.; Wang, Q.; Yang, Z.; Sun, P.; Han, L.; Zheng, Y.; Fu, H.; Zhang, T.; Liu, J.; Liu, H. Parametrized deep q-networks learning:
Reinforcement learning with discrete-continuous hybrid action space. arXiv 2018, arXiv:1810.06394. [CrossRef]

49. Masson, W.; Ranchod, P.; Konidaris, G. Reinforcement learning with parameterized actions. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), Phoenix, AZ, USA, 12–17 February 2016; pp. 1934–1940.

50. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

51. Wang, Y.; Zhang, J.; Zhang, X.; Wang, P.; Liu, L. A computation offloading strategy in satellite terrestrial networks with double
edge computing. In Proceedings of the IEEE International Conference on Communication Systems (ICCS), Chengdu, China,
19–21 December 2018; pp. 450–455.

52. Jiang, W.; Feng, D.; Sun, Y.; Feng, G.; Wang, Z.; Xia, X.G. Joint computation offloading and resource allocation for D2D-Assisted
mobile edge computing. IEEE Trans. Serv. Comput. 2023, 16, 1949–1963. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TWC.2021.3075289
http://dx.doi.org/10.1109/TWC.2022.3178171
http://dx.doi.org/10.1109/TWC.2023.3329375
http://dx.doi.org/10.1109/TWC.2022.3159779
https://doi.org/10.48550/arXiv.1810.06394
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1109/TSC.2022.3190276

	Introduction
	Related Work
	System Model and Problem Description
	LEO Satellite Edge Network Model
	Channel Model
	Latency and Satisfied Task Model
	Problem Formulation

	P-DQN-Based Approach
	MDP with Parameterized Action Space
	P-DQN Training

	Simulations and Results Analysis
	Parameter Settings
	Performance Analysis

	Conclusions and Future Work
	References

