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Abstract: The Internet of Things (IoT) technology has seen substantial research in Deep Learning
(DL) techniques to detect cyberattacks. Critical Infrastructures (CIs) must be able to quickly detect cy-
berattacks close to edge devices in order to prevent service interruptions. DL approaches outperform
shallow machine learning techniques in attack detection, giving them a viable alternative for use in
intrusion detection. However, because of the massive amount of IoT data and the computational
requirements for DL models, transmission overheads prevent the successful implementation of DL
models closer to the devices. As they were not trained on pertinent IoT, current Intrusion Detection
Systems (IDS) either use conventional techniques or are not intended for scattered edge–cloud de-
ployment. A new edge–cloud-based IoT IDS is suggested to address these issues. It uses distributed
processing to separate the dataset into subsets appropriate to different attack classes and performs
attribute selection on time-series IoT data. Next, DL is used to train an attack detection Recurrent
Neural Network, which consists of a Recurrent Neural Network (RNN) and Bidirectional Long Short-
Term Memory (LSTM). The high-dimensional BoT-IoT dataset, which replicates massive amounts
of genuine IoT attack traffic, is used to test the proposed model. Despite an 85 percent reduction in
dataset size made achievable by attribute selection approaches, the attack detection capability was
kept intact. The models built utilizing the smaller dataset demonstrated a higher recall rate (98.25%),
F1-measure (99.12%), accuracy (99.56%), and precision (99.45%) with no loss in class discrimination
performance compared to models trained on the entire attribute set. With the smaller attribute space,
neither the RNN nor the Bi-LSTM models experienced underfitting or overfitting. The proposed
DL-based IoT intrusion detection solution has the capability to scale efficiently in the face of large
volumes of IoT data, thus making it an ideal candidate for edge–cloud deployment.

Keywords: AI; IDS; IoT; security; edge computing

1. Introduction

The industrial sector has been revolutionized due to the widespread adoption of the
Internet of Things (IoT). But, as a result of this expansion, attackers have become more
vigilant in the pursuit of vulnerable entry points in IoT networks. Cyberattacks aimed at
susceptible smart devices have increased dramatically in recent months [1]. When linked
to Critical Infrastructure (CI), IoT-enabled networks are particularly vulnerable to a variety
of attacks. The quality of service and security of CI systems may be negatively impacted by
delays in supporting infrastructure, such as smart grids, and manufacturing. Enhanced
Intrusion Detection Systems (IDSs) depend on attack signatures but also employ network
traffic characteristics to identify aberrant network connections, which are necessary to
determine attacks over IoT devices. Many Deep Learning (DL)-inspired algorithms have
been presented to provide a solution to the IDS security issue [2]. They outperform more
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conventional Machine Learning (ML) methods, like Support Vector Machines (SVMs) in
terms of detection performance, including accuracy (96.65%), specificity (95.45%) and
recall (96.68%). Because of their computational complexity and high performance, DL
methods are implemented in shared or cloud-based infrastructures [3]. As IoT data are
large, they must be aggregated to centralized nodes for training DL techniques [4]; this
also causes delays in the detection process. Delay-sensitive CIs make DL techniques
impractical for use in intrusion detection. Distributed edge–cloud frameworks are proposed
as a countermeasure [5]. They can efficiently determine attacks over the edge platform,
avoiding delay in the identification of malicious actions. It is possible to scale IoT devices
in large domains with faster reaction times during attacks by using edge nodes to offload
compute workloads from a centralized cloud node. For the edge layer to implement
existing DL-based IDS approaches, either a high number of edge nodes is needed or
edge traffic is moved to central nodes to train the DL algorithm [6], both of which might
raise the communication overhead. The generated DL models have greater compute and
memory requirements, making it impractical to deploy them on edge nodes for efficient
intrusion detection because of the associated communication overhead. To deal with the
high dimensionality of the IoT dataset’s attributes, several solutions were suggested, using
advanced DL techniques [7].

Backpropagation-based sophisticated attribute selection algorithms, although effective,
may lengthen the training process and cause delays in deployment. Henceforth, a two-
stage procedure is presented to streamline the construction of the DL-inspired security
framework for edge computing, which will increase efficacy for the real-time platform.
Conspicuously, a multi-class issue is transformed into a binary-class problem by classifying
attacks on the IoT network as time series. Figure 1 shows the IoT attack categories (Source:
https://threatpost.com/half-iot-devices-vulnerable-severe-attacks/153609/ (accessed on
11 October 2023)). Then, basic attribute reduction is utilized to reduce the data needed
for training the DL algorithms, including Mutual Information (MI), Group Method of
Data Handling (GMDH), and Chi-Square (Chi-Sqr). An optimized technique is used for
IoT attack detection, after which the reduced datasets are uploaded to a cloud node for
training the DL algorithm. These procedures provide the partitioning of DL tasks and
cut down on both network lag and processing time. The BoT-IoT dataset [8] is used to
test the proposed technique since it includes both benign and malicious IoT traffic. The
state-of-the-art primary contributions are mentioned ahead.

Figure 1. IoT attack categories.

https://threatpost.com/half-iot-devices-vulnerable-severe-attacks/153609/
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State-of-the-Art Contributions

1. Detect attacks on latency-critical networks via an edge–cloud-distributed Intrusion
Detection System.

2. Bifurcating temporal data into smaller subsets according to type of attack allows for
the distributed analysis of a large-scale BoT-IoT dataset.

3. With the help of attribute selection methods, the proposed technique can drastically
decrease the size of the dataset without sacrificing accuracy in classifying observations.

4. Recurrent Neural Networks (Simple-RNN and Bidirectional LSTM) are used in the
BoT-IoT dataset to identify attack traffic and determine the performance enhancement
as compared to the state-of-the-art techniques.

The rest of the paper is organized in different sections. The relevant literature on IoT
threat detection is provided in Section 2. Section 3 details the proposed IDS framework,
including the attribute selection methods and DL models used. Section 4 presents an
experimental simulation for validation purposes. Section 5 concludes the paper with future
research directions.

2. Literature Review

Spadaccino et al. [9] compiles a comprehensive overview of the usage of IDSs in IoT
networks, including how edge computing is used to aid in IDS deployment. The authors
identified novel problems that occur during IDS deployment in an edge situation and
provided potential solutions. Particular attention was paid to anomaly-based IDSs, with
a presentation of the primary anomaly-detection methods and a discussion of machine
learning techniques and their application in the context of an IDS, including a description of
the potential benefits and drawbacks of each. However, limitations include the limited eval-
uation on diverse edge computing environments, and lack of comparison with traditional
intrusion detection methods. To protect the IoT from threats, Khater et al. [10] proposed
a lightweight Host-Based IDS that employs the Modified Vector Space Representation
(MVSR) N-gram and Multilayer Perceptron (MLP) model. This system was implemented
with the help of Fog Computing devices. The limiting aspects included the dataset used
for evaluation lacking diversity and possibly not representing real-world scenarios. The
proposed mechanism’s performance on resource-constrained fog devices was not thor-
oughly examined. To identify malicious activity in IoT networks, many methods have
been suggested. Syed et al. [3] trained and classified attacks on a BoT-IoT dataset using a
Feed-Forward Neural Network (FNN). The FNN model was able to identify many types of
attacks with an accuracy of 97% and a high F1 score, which is used in classification tasks
to evaluate the performance of a model and its harmonic mean of precision and recall.
Several types of IoT attacks, however, have poorer accuracy and recall values when using
the trained FNN model. An ensemble hybrid IDS was developed by Jasim et al. [11],
which combines an attribute selection step based on information gain with an ensemble of
ML algorithms. The experimental findings showed that the classification techniques are
much better as part of an ensemble of classifiers. As a comparison, the proposed classifiers
managed 91% and 89% accuracy, respectively, whereas the ensemble classifiers obtained
98.9% accuracy. Hybrid DL was introduced by Popoola et al. [7], for which the authors
suggested using a Long Short-Term Memory Autoencoder (LSTMA) layer for dimensional-
ity reduction and then cascading that layer with a Bi-LSTM layer. The suggested method
used less memory and performed better than competing methods of attribute reduction.
On the contrary, attribute selection techniques based on DL may be computationally in-
tensive. To train and identify sequential network data in the cloud, Aljuhani et al. [12]
developed a bi-directional LSTM DL system. When tested on IoT datasets, the suggested
method achieved a high detection rate (between 91.2% and 97.9%) in identifying DoS and
DDoS attack traffic. Reconnaissance attacks and data theft were among the non-DoS traffic
types for which the model fared badly.To enhance the multi-layered approach that aids
in identifying intrusions for IoT network, a DL-based forensic model was suggested by
Abd et al. [13]. Local and global representations of industrial IoT network traffic were
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captured by the proposed model’s gated RNN unit. By using a gated RNN unit in the
proposed model, it is likely that the model can effectively capture both local patterns within
shorter sequences of network traffic and global patterns that span across longer sequences.
This allows for a comprehensive understanding of the industrial IoT network traffic and
enables the model to make informed predictions or decisions based on both local and global
representations. Compared to centralized DL-IDS approaches, the experiments on edge
nodes showed a considerable performance boost. Nevertheless, the suggested distributed
approach needs a large number of edge nodes to significantly enhance detection accuracy,
and its performance may degrade under heavy loads. Intrusion detection in edge-based
IoT systems was suggested by Guo et al. [14].

In the first phase of the two-stage detection procedure, network traffic is binary classi-
fied using K-Nearest Neighbor (KNN) and a Deep Neural Network (DNN). Specifically,
the input is classified as non-invasive or intrusive by the DNN model. Instances that DNN
fails to correctly classify are used by KNN, which uses the Euclidean distant to determine
similarity and provide a suitable class. The key aspect is that it has to be verified for its
efficacy on IoT datasets before it can be fully adopted. The suggested strategy has been
tested on non-IoT datasets. Moreover, the success of the kNN method is very sensitive to
the selection of the k value. Song et al. [5] suggested an ensemble learning-based method
for distributed anomaly identification in edge networks. The suggested method employs
an IoT–edge–cloud architecture and Gaussian mixture-based correntropy to identify attacks
on the IoT. The weaknesses include the need for attribute engineering, the use of shallow
ML techniques, and the evaluation of the proposed model on datasets that are not related
to the IoT. To identify cyberattacks in the Internet of Medical Things, Nayak et al. [15]
suggested an edge–cloud architecture using an ensemble learning technique. In addition to
requiring a time-consuming attribute engineering phase for training the algorithms, the
method relies on three shallow ML algorithms for ensemble learning. Table 1 provides a
summary of the literature, proposing IDS approaches for IoT networks.

Table 1. Comparative analysis.

Ref. Technique Performance Data Split Data Reduction Layer Dataset

[12] CorrAUC based
attribute selection

Low precision NA Yes Centralized BoT-IoT

[14] DL techniques
using GRU

Achieves better
overall performance

NA Yes Edge-based, Distributed BoT-IoT and
UNSW-NB15

[15] DL-inspired feed-
forward technique

High classification
precision

NA NA Centralized BoT-IoT

[13] DL framework with
BiLSTM model
and blockchain
technique

Enhanced accuracy NA NA Centralized UNSW-NB15 and
BoT-IoT

[3] LSTM High recall rate NA NA Cloud ISCX2012

[11] Uses multi-modal
with auto-encoder

Improved
F1 measure

NA NA Distributed BoT-IoT

[7] RNN-based attack
identification

Non-IoT-based
traffic

Yes NA Centralized NSL-KDD

Research Challenges

There are several obstacles to overcome when using DL models for IoT intrusion
detection. The key difficulties are the computed complexity, time delay, and bandwidth
needs, as well as properly dispersing the detection duty to several worker nodes. Therefore,
the partitioning of multi-category IoT datasets is performed in distinct class data according
to the time of arrival. To further minimize the size of the dataset, attribute selection is
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applied to each binary class dataset separately. Finally, in the current paper, DL models are
utilized that can sort the data into regular or offensive kinds.

3. Proposed Model

Figure 2 shows the proposed edge–cloud-based infrastructure for monitoring IoT traf-
fic for anomalies. Gaining access to data, pre-processing, attribute identification, training,
validation, and testing with the help of IoT intrusion detection models are deployed after
training using DL techniques. The proposed framework has three components, including
IoT devices, an edge layer, and a cloud layer. IoT devices function and communicate on the
most fundamental level. Deployed at the edge layer, tools like TCP collect raw network
traffic from these IoT devices. In addition, the packets are transformed into time series data
at a pre-processing stage. The BoT-IoT dataset, having a wide variety of attack timestamps,
is utilized. Analysis of the timestamps reveals that the vast majority of attacks have been
recorded at discrete times, whereas normal data appear across the board. Henceforth, it
is recommended to partition the dataset into attack-specific subsets. Therefore, training,
testing, and validation on time-stamp-based dataset partitioning are performed. In addition
to facilitating the distributed processing of datasets, the proposed approach employs an
attribute selection methodology to drastically reduce dataset sizes before sending them to
cloud instances for training. Then, the dataset is shrunk by attribute selection at the edge
layer and then transferred to the cloud. DL models may be taught and tested with the help
of the plentiful computational resources offered by the cloud layer. At last, the effective
DL models for intrusion detection are deployed in the edge layer. Moreover, the Group
Method of Data Handling (GMDH) [16], Mutual Information (MI) [17], and the Chi-Sqr
statistic techniques [18] are used to evaluate the effectiveness of dimensionality reduction
algorithms. Furthermore, RNN and a subclass of RNN called Bi-directional LSTM are
incorporated to evaluate the attack classification performance. The detailed procedure is
discussed ahead.

Figure 2. Framework workflow.

3.1. Attribute Selection

Identifying the vital characteristics and discarding non-vital ones is a crucial part
of developing a reliable framework for network intrusion detection. Using the attribute
selection step before training a DL model can reduce the dataset size and the amount of
computing power needed to train the model. The following sections provide further detail
on the different attribute selection methods utilized in the current study.
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3.1.1. Group Method of Data Handling (GMDH)

The GMDH [19] is an early example of a feedforward network for DL. It is part of a
heuristic family of algorithms that, by identifying correlations between input attributes,
may automatically create self-organization models of optimal complexity. The algorithm
then forms its internal structure without any input. The Ivakhnenko polynomial [20] is
used to describe the connection between the input variables y1 and y2:

z = b +
n

∑
j=1

cjyj +
n

∑
j=1

n

∑
k=1

djkyjyk + .... (1)

Each neuron layer has n variables, and b, c, and d are respective weights in the afore-
mentioned equation. The GMDH algorithm uses inductive learning to infer the connections
between variables with optimal complexity by mimicking the natural evolution process.
Input connections are simplified so that the algorithm may derive more complicated rela-
tionships. Instead of the standard m input variables, the algorithm is given n(n − 1)/2 to
predict z. In addition, the computational burden is decreased by eliminating variables or
attributes that are correlated with the output. For choosing the best attributes, GMDH con-
siders all possible pairings of input attributes, with “best” referring to the most significant
correlations between the input and output vectors. The following procedures are required
to implement the GMDH algorithm:

1. Step 1: Two attributes are chosen at random and supplied into a single neuron.

Step 1.1: Define the pool of attributes.
Step 1.2: Determine subset size = 2.
Step 1.3: Random subset selection.
Step 1.4: Evaluate subset performance.
Step 1.5: Select optimal subset.
Step 1.6: Repeat the process.

2. Step 2: The weights are estimated by comparing the training set to the current state of
each neuron.

3. Step 3: Probabilities are computed using the training and validation datasets at each
neuron.

4. Step 4: The most effective neurons are chosen according to some objective standard.
5. Step 5: Validation error, bias error, validation, and bias error are the available criteria

offered by the Python version of GMDH. In the current scenario, a validation error is
selected.

6. Step 6: Users have the option of customizing neurons for every layer or having it
determined automatically based on input variables.

7. Step 7: In the event of a validation error, reaching the maximum number of layers, or
selecting a single neuron, the process will restart from the beginning.

In the current study, the GMDH technique is used to identify attributes, then feed
those attributes into a DL model as inputs. The GMDH method is measured against both
linear and covariance functions. As indicated in the equation ahead, the linear function
accumulates variables linearly with the corresponding weights:

z = x0 + x1y1 + x2y2 (2)

where linear convergence includes y1 and y2, the covariation of input variables and weights
(x) as depicted ahead:

z = x0 + x1y1 + x2y2 + x3y1y2 (3)

3.1.2. Mutual Information

One popular metric for selecting attributes based on their quality is Mutual Informa-
tion (MI). To find the most useful subset of characteristics, attribute selection algorithms
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use this strategy. How much information an attribute gives about the outcome and how
independent it is from other characteristics are two factors in the goodness meter. MI is
based on Information Theory concepts and measures the degree of dependency between
two random variables. MI gives a measure of information about Z rather than only de-
tecting the linear connection between Y and Z as would be the case with a simple linear
regression analysis. Hence, MI of Y and Z is defined as

J(Y : Z) = ∑
z→Z

∑
y→Y

q(y, z) ∗ log
q(y, z)

q(y)q(z)
(4)

where the joint distribution of Y and Z is denoted by q(y, z). Both q(y) and q(z) represent
the marginal probability distributions of Y and Z, respectively. The definition in terms of
entropy G(.) is as follows:

J(Y : Z) = G(Y)− G(Y/Z) = G(Z)− G(Z/Y) = G(Y) + G(Z)− G(Y : X) (5)

where G(Y/Z) and G(Z/Y) are conditional entropies, and G(Y:Z) are the joint entropy of Y
and Z. The MI measure of both variables is independent.

3.1.3. Chi-Square (Chi-Sqr)

The independence of two occurrences or two traits may be determined with the use of
statistical tests. This method of attribute selection calculates the observed and expected
values of an attribute to determine whether it is effective in differentiating the target class
characteristic as illustrated ahead:

χ2 =
o

∑
j=1

(Pj − Fj)
2

Fj
(6)

where Pj is the actual frequency of a property and Fj is the predicted frequency. The Chi-Sqr
statistic quantifies the absence of independence between attribute g and output class d,
where g and d are instances and attributes of a dataset, respectively. Variables can be
represented as the field length or size of attributes to distinguish between benign and
malicious traffic aimed at IoT devices. At times of attack, frame lengths are distributed
differently than they are during regular traffic. This may help distinguish between mali-
cious and benign IoT communications. The MI with output (Z) may be calculated using
heterogeneous length measures in the baseline and attack phases. Both MI and Chi-Sqr are
examples of attribute selection algorithms. Attacks against IoT devices and applications
may be detected by paying attention to other characteristics, including size value and
header length. The reason behind this is that when creating an IoT application, the device
is pre-programmed to deliver messages of a certain size. Hence, irregular connections in
IoT settings may be detected by measuring packet and field durations that deviate from the
norm. Chi-Sqr attribute selection uses a hypothesis assessment to choose the most relevant
characteristics with independence scores over a threshold. Hence, characteristics that do
not rely on the target class contribute little to the classification of the instance and have low
Chi-Sqr scores as a result. In a similar vein, MI chooses characteristics that tell us the most
about y, the outcome variable. The Scikit learn [21] SelectKBest library was used to find the
top K attributes that have a significant correlation with the final metric (MI and Chi-Sqr,
respectively). To provide a level playing field with the GMDH technique, which chooses
fewer than 15 attributes for all classes of the dataset, the value of K is set at 15.

3.1.4. Selection Validation

To find the best characteristics for DL, researchers used a four-stage experimental
design. First, several types of sub-datasets are formed, and then 20% of the dataset is
taken out for ranking and selecting attributes. As computing time is expensive, this would
help speed up the process of determining which attributes are the most useful. Third, the
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sampled dataset is used as input for the proposed algorithms. The best characteristics of the
dataset were analyzed using the GmdhPy package, which was used here with its default
settings. For both development and testing, we used the 65–35% split, which is GmdhPy’s
default. Negative values were eliminated by performing min-max scaling on the input
data for MI and Chi-Sqr. The K-Nearest Neighbor technique is used to calculate entropy as
part of the MI algorithm in sci-kit learn, a nonparametric approach discussed in [22]. To
learn the boundaries between classes, a DL algorithm is given the trimmed-down dataset
after attribute selection is performed. The following sections provide further detail about
comparing DL algorithms.

3.2. RNN

By implementing information flow in loops from the present state to the past states,
RNN enables the persistence of information. Because of their ability to take into account
the historical status of the network traffic to predict the present state, RNNs are well
suited to the task of detecting network intrusions [23]. Each cell in an RNN has one input
with one internal stage, and they propagate from one cell to the next at each time step.
Certain data are sent from one time step to the next through the activation of the hidden
layer. To fully process the input data, an RNN loops over Tn time steps, each of which
involves computing the attributes of the previous time step. Xt is the current data input, y
denotes the input value of parameter at time t, and gt−1 is the prior hidden state that stores
historical data in a single RNN cell design. In Figure 3, the basic structure of a single RNN
cell is presented. Figure 4 provides the generic RNN model and Figure 5 represents the
Generic RNN framework and associated variables are accordingly. The hidden state g′ is
calculated as:

g′ = H(Xgggt−1 + Xgyyt + cg) (7)

where H is the activation function in the hidden layers, X is the associated weights, and c is
the bias. Moreover, the prediction can be performed as zt = softmax(Xzg + cz), a combination
of RNN cells based on temporal steps.

Figure 3. Single RNN cell.



Sensors 2023, 23, 9869 9 of 20

Figure 4. Proposed RNN framework.

Figure 5. Generic RNN framework; variables are defined accordingly.

3.3. Bi-LSTM

LSTM represents an enhanced DL technique that takes into account long-term depen-
dencies to forecast the output class. Hence, LSTM has a greater capacity for long-term
memory, allowing individuals to make more informed choices. RNNs have trouble learning
long-term dependencies because of the time lag between receiving input and making a
decision, a phenomenon known as the vanishing gradient issue. To resolve it, LSTM uses
gates to forward data to the appropriate cells and to store context data for longer. Adding
input from both the forward and backward directions into an LSTM hidden layer is a great
way to boost its performance (Figure 6).

Figure 6. Generic Bi-LSTM framework; variables are defined accordingly.
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3.4. Completion Time

Various phases of detection were analyzed to obtain delay for the suggested IDS
method. Pre-processing, decomposing time series data, selecting attributes, and running
the DL model are the primary procedures that need computational resources. The packet
capture tool PCAP is assumed to include O attributes and O samples. The complexity
of the pre-processing step is O(O) since it must take into account all O samples for all
O characteristics. During the attribute selection phase, three competing techniques are
evaluated concerning their respective time complexity. The complexity of the ultimate
detection method will vary depending on the chosen algorithm. The temporal complexity
of the GMDH algorithm is derived. Time complexity should primarily focus on stages 2, 3,
and 6 of the GMDH. Probabilities are determined by combining the training and validation
datasets, and an initial set of L models is constructed using a training set of T samples
(T < N). It has a temporal complexity of O(L2). The proposed procedure involves applying
an external selection criterion to the original models and ranking them accordingly. When
Rl are the created candidate models from the input characteristics, the temporal complexity
of this operation is O(Pl ∗ logPL). Then, until a halting criterion is met, steps two and
three are repeated. If the whole GMDH network has m layers, the best neurons/models
from each layer are promoted to the next. The maximum computational time of GMDH-
specific attribute selection is O(M ∗ Pl ∗ logPL), where N is the maximal layers and l is
the initiating modules. The computational time for MI-specific attribute identification is
O(NO) for N samples and O attributes due to the necessity to compute joint entropy of
attribute-to-category mapping. The Chi-Sqr statistic has a time complexity of O(S ∗ N2). S
represents the total number of random permutations, and N represents the total number
of samples. The suggested method concludes with a study of the classification border
between target classes using DL models. O(X), where X is edge nodes, is the temporal
complexity for LSTM networks. RNN and LSTM networks have O inputs, Z outputs, and
G hidden layers, where each edge represents a neuron in the network. As the RNN weight
calculation difficulty is given by

X = OG + G2 + GZ (8)

the LSTM weight calculation complexity is given by

X = 4OG + 4G2 + 3G + GZ (9)

We simplify the DL process by using attribute identification and converting a multi-
category output to the specific category. To further improve the performance of the DL
models, hyper-attribute tuning is used to determine the optimal neuron count.

4. Experimental Implementation

This section provides the experimental simulation of the proposed technique for
validation purposes. Moreover, the performance enhancement is estimated based on the
comparative analysis with state-of-the-art research works.

4.1. Conception of Experiments

Experiments were performed on a high-performance computing cluster equipped
with 16 GTX 2160 Ti GPU powered by Intel Gold at 3.10 GHz and 512 GB of memory.
The RNN and bidirectional LSTM components were implemented using the TensorFlow
library and the Keras libraries. A total of 65% was set aside for training, 15% was used for
validating the models, and the remaining was used in testing. The 70/30 rule was used
to divide the dataset into training and testing sets, which is consistent with the Pareto
principle. The remaining 65% and 15% of the training set were used for validation. The
validation set helps evaluate trained models objectively and gives guidance throughout the
training process.
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4.2. Dataset

To estimate the effectiveness of the intrusion detection mechanism, the BoT-IoT dataset
was used. The dataset was chosen because it includes both malicious and benign IoT
traffic in large quantities. DDoS, DoS attacks across UDP, TCP, HTTP, data exfiltration,
reconnaissance traffic, and the keylogging attack are the attack types. In Table 2, different
types of attacks are shown in the BoT-IoT dataset, along with the times when they occurred.
By splitting the cases into sub-classes comprising just one attack type and regular traffic,
the dataset is transformed into a binary classification. The process of translating raw data
into attributes at the datum level is performed. IP, Frame, UDP, and HTTP fields were
employed among the total of 30 used as attributes. To train the RNN DL system, we next
had to transform the data collection into a temporal segments. The arrival time of the
frame was determined by querying the epoch property. After obtaining the timestamps, the
data underwent pre-processing, which included operations such as embedding to encode
the categorical data. In particular, categories existing in the dataset were used to encode
port variables. Sub-datasets, each including just attacks of a certain kind and normal
occurrences as background traffic over the same period, were then created by separating
and sorting individual attack instances based on packet timestamps. First, the BoT-IoT
dataset is transformed into a csv file with packet-level information. By taking into account
the packet arrival timings, the dataset is then transformed into a time series. Sub-datasets
are created for each attack type and organized by period, with typical occurrences in the
same period included. The next phase is pre-processing, which involves the elimination
of duplicates and the encoding of categorical data, such as the HTTP method. Finally,
occurrences are normalized. Table 3 displays the number of cases and characteristics
retrieved for each class across all periods. Dual category data are gathered and incorporated
for attribute identification, and subsequent training, validating, and testing of the DL model
is performed, one for each attack category, and cases are seen throughout its time.

Table 2. BoT-IoT dataset: time analysis.

Category Time

DDoS_HTTP 10

DDoS_UDP 09

DDoS_TCP 08

DoS_TCP 04

DoS_UDP 05

DoS_HTTP 04

Keylogging 04

Data_Exfiltration 02

Reconnaissance 05

Normal 01

4.3. Model Formulation

We utilized the best-ranked attributes to construct a model in Keras’ RNN implemen-
tation. As the input shape is affected by the attack category, the attribute for the proposed
framework is determined accordingly. For the service attack category, 92 attributes, with a
3 s window, and 512 neurons result in 23,698 training attributes. Using the GMDH attribute
selection approach, training attributes are reduced in the RNN initial layer. The Bi-LSTM
framework was developed with the use of the Keras DL package. The activation functions
tanh and softmax were selected for the hidden and dense layers of RNN and BiLSTM,
respectively. Using the Adam Optimizer, we decided to use accuracy as our measure of
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choice and sparse categorical cross entropy as our loss value. The proposed framework
is depicted in Figure 4. First, the BoT-IoT temporal data segments were transformed in
segments, which use a predetermined amount of temporal instances to successively cover
the complete time series. The size option determines how many time samples are used to
create a window. The input characteristics are collected by an input layer in the architecture.
Next, the calculation is carried out by a hidden layer made up of many neurons, and
the output layer is responsible for sorting occurrences into normal and attack categories.
Interconnecting weights were computed and fine-tuned across the three layers of the DL
network during training. The backpropagation technique is used to update and choose the
interconnection weights that result in the lowest possible loss.

Table 3. Processed data statistics.

Category Attack Class Normal Class Attributes

Service_Scan 958658 1254954 90

Data Ex-filtration 321542 124512 69

DDoS-HTTP 542154 452145 69

OS-Scan 124585 124562 69

DDoS-TCP 542154 325623 71

Key-logging 145214 215421 69

DoS-HTTP 163254 312451 75

DoS-TCP 124854 325484 69

DDoS-UDP 132541 215421 71

DoS-UDP 965845 965845 70

4.4. Adjusting Hyper-Attributes

It was determined by experimenting with different values for RNN hyper-attributes
which settings were most suited for the model suitable. Hidden layers, learning rate,
dropout rate, batch size, neuron count, epochs, and window size were all taken into
account during tuning. The starting point was an RNN model with three dense layers and a
512 neuron count in the first two dense layers, trained using the Adam optimizer’s default
learning rate of 0.002. Table 4 displays the range of hyper-attributes that was tested. The
results show that adding more hidden layers to RNN improves the model’s performance
but that adding more than three hidden layers has no noticeable effect on performance,
hence three hidden layers were used here. The optimal performance across all classes was
achieved by using 512 neurons. No more tweaking was performed since the dropout rate
did not influence the model’s performance. The Adam optimizer’s learning rate had a
significant effect on performance, with a value of 0.0002 producing the best results. This was
the value used for model training. Most iterations terminated before 19 epochs; therefore,
increasing the number of epochs did not improve the model’s performance. To avoid the
overfitting issue, we included an early stopping condition with four iterations, which would
terminate the train procedure if validating loss remains fixed or rises with subsequent
iterations. The learning process speed is affected by the batch size when working with
huge datasets. The testing showed that the accuracy of RNN was enhanced by increasing
the batch size to 64. To generate window data segments, the size of the window must be
specified; the results indicate that the optimal window size is 4. Specifically, simulations
were performed for window sizes 2, 4, 8, and 16. Based on the accuracy acquired, window
size 4 was selected. Moreover, window size 2 registered an accuracy of 82.65%, window size
8 registered an accuracy of 81.01%, and window size 16registered an accuracy of 78.15%.
When it came to Bi-LSTM, similar hyper-attribute measures were used since they resulted
in better model performance. But instead of 25, RNN now uses batches of 60. The RNN
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network was designed with three hidden and a dense layer, whereas the Bi-LSTM network
had two hidden and a dense layer.

Table 4. Hyper-attribute tuning values.

Attributes Range Range Range

No. of neurons 256 512 1024

Learning rate 0.01 0.001 0.0001

No. of hidden layers 3 4 5

Dropout rate 0.2 – –

No. of epochs 30 60 110

Window size (seconds) 3 4 5

Batch size 64 64 512

4.5. Evaluation of Outcomes

We give the evaluation findings, which detail how well the RNN and bidirectional
LSTM models performed, as well as the characteristics those algorithms chose to use. Each
attribute selection algorithm’s findings are displayed, together with the amount of data
reduction that happened, thanks to the best-picked attributes. It allows for a thorough
assessment of the attribute selection outcomes. Confusion matrices are used to evaluate
how well a model can distinguish between normal and attack classes in a given subset of the
network traffic dataset. Accuracy, recall, precision, and the F1 score are four more measures
used to evaluate performance. Specifically, the detection performance was measured in
terms of the accuracy, precision, recall, F1 score, and area-under-curve metrics.

4.5.1. Data Reduction and Attribute Selection

Table 5 shows the dramatic decrease in data size that occurred from attribute selection
using the three techniques. The service scan category had the greatest decrease in data
size, measured in MegaBytes (MB). In this subcategory, the reduced data storage space
is used for GMDH, MI, and Chi-Sqr, whereas the entire dataset required 1022 MB of
storage space. For data theft, DDoS-HTTP, keylogging, and DoS-HTTP, the GMDHlr and
GMDH-lr-cov approach reduced data size by over 85%. The data size was reduced by
between 85% and 95% after selecting 10 characteristics for both MI and Chi-Sqr. Our
findings suggest that, by filtering out irrelevant and uncorrelated information, attribute
selection approaches may significantly cut down on the quantity of data needed to train
and assess DL models. Table 5 lists the top ten characteristics chosen by each separate
algorithm. The abductive network training technique GMDH chooses the attribute sets’
best predictors as the model complexity rises. Using this method, high-dimensional BoT-
IoT datasets may be represented in a low-dimensional attribute space that nevertheless
captures their essential characteristics. As compared to the non-linear covariance function
employed during GMDH classifier training, the findings of the attribute selection suggest
that the latter selects fewer attributes, allowing for more data reduction. This could be
because of the relatively linear connection between the dataset’s input variables and its
output class variables. Low-dimensional representations of the original input attribute
space are sought by attribute extraction methods, like Principal Component Analysis and
embedding approaches, but these methods are difficult to understand. On the other hand,
GMDH creates candidate models and picks intermediate models of increasing complexity
depending on preset selection criteria, like validation or bias error, number of neurons, and
the maximum number of layers. By doing so, GMDH can objectively choose attributes,
picking the characteristics that have the most bearing on the goal objective automatically
based on the finest examples of those attributes.
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Table 5. Comparative analysis of percentage of memory reduction.

Class GMDH (lr) GMDH (lr-cov) χ2 MI

Service 90.23 90.25 90.48 90.14

Data Exfiltration 90.23 90.14 90.59 91.25

DDoS-HTTP 91.25 93.21 90.15 91.02

DDoS-UDP 90.15 90.23 90.14 90.14

OS 90.65 90.48 90.65 90.14

DoS-HTTP 90.47 90.65 90.11 90.32

DDoS-TCP 90.48 90.65 90.12 90.87

Keylogging 90.65 90.41 90.54 90.26

DoS-UDP 90.15 90.16 90.16 90.17

DoS-TCP 90.48 90.489 90.65 90.33

4.5.2. Efficiency of the Model

The effectiveness of both full-attributed and attribute-selected RNN and Bi-LSTM
models was compared over the BoT-IoT dataset and NSL-KDD dataset. The NSL-KDD
dataset (Source: https://www.unb.ca/cic/datasets/nsl.html (accessed on 11 October 2023))
is a more recent version of the well-known KDD Cup 1999 dataset. It is a benchmark dataset
for network-based Intrusion Detection Systems, and it includes various types of attacks
and normal network traffic. RNN studies on different attack traffic subsets reveal that
attribute-selected models outperform and are on par with complete attribute-based models.
Experimental results show that compared to models trained on the whole attribute set,
those trained on the limited set of attributes resulted in greater recall rates. Nevertheless,
models trained on characteristics picked by the GMDH approach have reduced accuracy
compared to other models in a few categories of attacks, including OS fingerprinting,
Keylogging, and DoS-HTTP. For the classification task comparison, the DL models were
also compared to other machine learning models. The models were compared using a
binary classification on the complete dataset without any time-based data partitioning
or attribute selection. According to Table 6 (BoT-IoT) and Table 7 (NSL-KDD), RNN and
Bi-LSTM models outperformed other popular DL algorithms, including Naive Bayes (NB),
Random Forest (RF), and Support Vector Machines (SVMs). In addition, training using
limited subsets of data points significantly increases the time required for SVM to converge
and finish the training process. Table 8 shows the comparative analysis of the suggested
method against various IDS frameworks. According to the findings, certain frameworks
may be more accurate overall but at the expense of precision and recall. The accuracy,
F1 score, and recall rates for the suggested framework presented in [24] are excellent. To
achieve quicker and more accurate edge detection, however, our work focuses on reducing
the number of attributes in DL models and creating class-based sub-datasets for distributed
processing. Both full-attribute and attribute-selected Bi-LSTM models produced the same
result. Experimental results show that compared to the model trained with all available
attributes, the performance metrics for models trained with a subset of attributes are better.
The Bi-LSTM loss throughout training and validation is shown in Figures 7 and 8. Both
figures show that for the vast majority of sub-datasets, training and validation lasted
for more than 25 epochs but less than 60 epochs. At the third epoch, the training loss
decreased below 0.1 across the board for attack sub-categories. Moreover, the validation
loss decreased to below 0.05 across all categories, ranging from 0 to 0.02 for DoS HTTP and
DoS UDP, respectively. As it can take into account long-term temporal dependencies while
generating choices, the Bi-LSTM model also exhibited overall superior performance than
the RNN models. Overfitting and underfitting may be problematic in intrusion detection
tasks, but the models trained on decreased attribute space demonstrated resistance to both.

https://www.unb.ca/cic/datasets/nsl.html
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Training and validation loss for both the whole and restricted attribute space of a single
kind of attack are compared in Figures 9 and 10. Models trained with a smaller attribute
space did not overfit or underfit as measured by the training and validation losses, which
stayed between 0 and 0.01 after the first 13 epochs.

Figure 7. Training loss comparison: all categories.

Figure 8. Validation loss comparison: all categories.

Figure 9. Training loss comparison: Bi-LSTM for service-scan attack.
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Figure 10. Validation loss comparison: Bi-LSTM for service-scan attack.

Table 6. Performance comparative analysis of ML techniques: Bot IoT data.

Model Data
Size

F1 (%) Accuracy (%) Precision (%) Recall (%) AUC (%) Delay

RNN 4.1 M 99.5 99.65 99.65 99.01 99.5 401 s

RF 4.1 M 99.2 98.5 98.6 98.45 98.15 241 s

NB 4.1 M 91.23 99.1 98.56 97.56 98.1 10.25 s

Bi-LSTM 4.1 M 99.15 97.56 94.56 96.58 97.45 841 s

SVM 111 K 95.26 96.23 94.25 94.36 94.15 1625 s

Table 7. Performance comparative analysis of ML techniques: NSL-KDD data.

Model Data
Size

F1 (%) Accuracy (%) Precision (%) Recall (%) AUC (%) Delay

RNN 5.2 M 98.15 97.54 98.54 98.00 98.40 395 s

RF 5.2 M 98.10 97.4 97.5 97.34 97.04 230 s

NB 5.2 M 90.12 98.0 97.45 96.45 97.0 9.14 s

Bi-LSTM 5.2 M 98.04 96.45 93.45 95.47 96.34 830 s

SVM 132 K 94.15 95.12 93.14 93.15 93.04 1152 s

Table 8. Performance comparative analysis (N, not applicable).

Ref. Technique Accuracy Precision F1-Measure Recall AUC

[3] LSTM 98.56 N N N N

[7] CNN 94.65 N N N N

[11] RF 94.69 N 96.15 N N

[12] RF 95.65 95.12 N N N

[13] DT 94.56 96.25 94.15 94.56 N

[14] BiLSTM 94.01 93.2 91.12 N N

This paper RNN + BiLSTM 99.56 99.45 99.12 98.25 96.25
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4.6. Comparative Analysis

The findings of the deep blockchain framework (DBF) presented in [25], which uses
Bi-LSTM to categorize attack traffic in the BoT-IoT dataset, were compared with those of
our own suggested method. Figure 11 gives a comparison of the recall rate of several attack
sub-categories. We found that our strategy for identifying attack traffic had a greater recall
rate than theirs did. Service scanning, operating system fingerprinting, data exfiltration,
and keylogging are just a few examples. The attribute selection procedure enhances the
efficacy of DL models in identifying IoT-based threats as shown by the results of attribute
selection and DL-based categorization. Using an attribute selection step with DL has the
primary benefit of drastically shrinking the dataset without sacrificing any of the useful
class-discriminating information between the input and output variables. As compared
to other attribute selection algorithms, the MI algorithm’s choices resulted in the greatest
performance gains across several types of attacks. The area-under-the-curve metrics for
each of the subcategories is shown in Figures 12 and 13. If a model has a higher AUC,
it suggests it does a better job of predicting what category each data point belongs to.
For simplicity, we only provide the total AUC score when there are numerous types of
attacks. Using attribute selection helps the deployed model consume fewer computing
resources. Using the stored DL models, the number of Floating Point Operations Per Second
(FLOPS) needed was estimated to compare the computational needs of the models with
full and reduced attribute sets. Multiplication, addition, and other batch normalization and
activation function operations are all part of the FLOPS that are produced. Table 9 details
the FLOPS demands of the created models for different types of attacks. Empirical findings
show that, across all categories, models trained with a subset of attributes need around
0.20 million fewer FLOPS. Hardware devices used at the edge and edge layers, which
generally allow 1–99 and 100–999 million FLOPS correspondingly, are likewise compatible
with the FLOPS recorded for the proposed technique. Nevertheless, following attribute
selection, all models trained on the smaller dataset recorded fewer than 0.62 million model
attributes, using less than 2 MB of memory. Nevertheless, low-powered IoT devices may
not be able to accommodate such memory utilization due to memory limits on the order of
Kilo Bytes. In comparison to micro-controllers, the memory and processing power of most
devices at the edge layer—such as access points, tiny servers, routers, gateways, and so
on—is far greater. As a result, the proposed method is well suited for DL-based intrusion
detection applications at the edge layer since its low FLOPS and memory needs allow
for faster detection times. To improve generalization performance, the suggested method
may also be used in settings where attack detection is dispersed across fewer processing
nodes in the edge layer. As a result, fewer worker edge nodes and fewer computational
resources are needed for intrusion detection. In addition, a cloud–edge intrusion detection
framework is provided to correctly identify attacks on IoT devices by reducing the dataset
size using attribute selection and outsourcing the time-consuming and difficult model
training activities to the cloud nodes. The process of creating IDS may be considerably
improved by adding an attribute selection phase before the DL layer. This is because
experts have figured out which characteristics are crucial for spotting attacks.
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Figure 11. Comparison of recall rate.

Figure 12. Comparison of AUC of proposed RNN.

Figure 13. Comparison of AUC of proposed Bi-LSTM.

One of the disadvantages of using a subset of the dataset is that the accuracy value for
certain categories is lower than it would be using the whole dataset. To get around this
restriction, an ensemble of classifiers that have been trained on carefully chosen attributes
may be constructed.
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Table 9. Comparative analysis of number of floating point operations.

Full GMDH-LR GDMH-LRCOV Chi MI

Service 1.25 1.02 1.02 1.03 1.07

DDoS-UDP 1.2 1.06 1.07 1.056 1.065

Data-exfiltration 1.23 1.026 1.02 1.06 1.05

OS 1.32 1.02 1.05 1.02 1.02

DoS-UDP 1.14 1.02 1.02 1.02 1.02

Keylogging 1.15 1.04 1.07 1.07 1.02

DoS-TCP 1.2 1.05 1.07 1.02 1.03

DoS-HTTP 1.32 1.07 1.02 1.02 1.04

DDoS-HTTP 1.23 1.065 1.07 1.02 1.02

DDoS-TCP 1.65 1.05 1.04 1.03 1.02

5. Conclusions

DL-inspired IDS have been found to successfully recognize attack patterns. DL-based
IDS needs to be put closer to the IoT devices to decrease the time delay in detecting
sophisticated attacks targeting the IoT paradigm. The adoption of DL-based IDS near-the-
edge IoT devices may be hampered, however, by issues such as the vast amount of IoT
data and the sophisticated computing needs of DL approaches. Conclusively, we present
a DL-based IDS framework for the IoT that may be efficiently implemented utilizing an
edge–cloud design. The suggested system includes partitioning the dataset based on the
time of arrival of the attack flow. The high-dimensional BoT-IoT dataset is further reduced
in size by selecting the characteristics of interest. Hybrid RNN algorithms are trained and
tested on the reduced dataset to categorize the occurrences as an attack or regular traffic.
Our findings demonstrate the usefulness of our suggested framework and its resistance to
over- and underfitting. The dataset size was decreased by 85% due to the attribute selection
phase, which means that vast amounts of IoT data may be sent to the cloud network for DL
tasks with far less impact on the network’s latency. Both the RNN and Bi-LSTM models,
when trained on a smaller attribute set, outperformed conventional techniques. In addition,
the attribute selection process minimized the time and space needed to train DL models.
The proposed DL-based edge–cloud IDS method is enhanced in detecting cyberattacks
targeting the IoT devices in CI due to its ability to split datasets, reduce dataset size through
attribute selection, reduce the computational requirements of trained models, and provide
superior detection capability.
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