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Abstract: In the context of Minimally Invasive Surgery, surgeons mainly rely on visual feedback
during medical operations. In common procedures such as tissue resection, the automation of endo-
scopic control is crucial yet challenging, particularly due to the interactive dynamics of multi-agent
operations and the necessity for real-time adaptation. This paper introduces a novel framework that
unites a Hierarchical Quadratic Programming controller with an advanced interactive perception
module. This integration addresses the need for adaptive visual field control and robust tool tracking
in the operating scene, ensuring that surgeons and assistants have optimal viewpoint throughout the
surgical task. The proposed framework handles multiple objectives within predefined thresholds, en-
suring efficient tracking even amidst changes in operating backgrounds, varying lighting conditions,
and partial occlusions. Empirical validations in scenarios involving single, double, and quadruple
tool tracking during tissue resection tasks have underscored the system’s robustness and adaptability.
The positive feedback from user studies, coupled with the low cognitive and physical strain reported
by surgeons and assistants, highlight the system’s potential for real-world application.

Keywords: autonomous systems; Hierarchical Quadratic Programming; robotic surgery; segmentation
and tracking; visual servoing

1. Introduction

Minimally Invasive Surgery (MIS) has received great attention in the medical field,
offering advantages such as reduced trauma and quicker recovery times compared to
traditional surgical methods. Primarily studied in laparoscopic, thoracic, and colon opera-
tions [1], MIS has been expanding its range of applications due to advancements in surgical
tools and techniques. With the introduction of robotic assistance, MIS is transforming
into Robot-Assisted Minimally Invasive Surgery (RAMIS), aiming to overcome various
limitations and challenges.

1.1. Background

Central to the success of RAMIS is the endoscope, a long, thin, and remotely controlled
device that provides surgeons with a live video feed from inside the patient’s body. Proper
positioning of the endoscope and other surgical instruments is crucial, and even a small
misalignment can lead to complications [2]. Currently, surgical assistants manually handle
the endoscope, guided by the lead surgeon’s verbal commands. However, this approach
has drawbacks, such as assistant fatigue and the potential for misunderstanding, which
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compromise the field of view (FOV) control [3]. Hence, the development and automation
of robot-assisted endoscope control systems are considered crucial steps for improving
both the efficacy and safety of MIS [4]. Recent works in RAMIS worked on replacing the
assistant by designing interfaces the robotic systems that allow to control the endoscope
direct hand-operation [5], foot pedal [6], eye-tracking [7] or head-mount displays [8,9], etc.
Nevertheless, these control schemes require specialized training and might result in higher
mental load on the surgeons [3]. Hence, intelligent visual assistance through adaptive field
of view adjustment is one of the crucial challenges that needs to be addressed to further
increase the levels of autonomy in RAMIS. Addressing this issue is essential for expanding
the deployment of RAMIS across a wider variety of medical cases [10].

For robust and safe use of teleoperated and autonomous RAMIS, multiple challenges
need to be addressed [11]. In this context, we focus on the specific challenges related
to endoscope automation, an essential component of general RAMIS. The endoscope,
inserted through a trocar, must adhere to remote-center-of-motion (RCM) constraints for
patient safety; this adherence can lead to surgical view misorientation, complicating the
surgeon’s hand–eye coordination [12,13]. Moreover, the 2-D monocular vision common
in endoscopes limits depth perception and complicates vision-based controls. Perception
issues, like tracking surgical tools and estimating the viewing area or Region-Of-Interest
(ROI), also need resolution to provide visual assistance.

1.2. Related Works
1.2.1. Instrument Segmentation and Tracking

State-of-the-art techniques often utilize color markers for tracking surgical instruments,
especially given their reflective, cylindrical surfaces [14,15]. These markers, however, are
susceptible to contamination from factors like bleeding, thereby leading to algorithmic fail-
ures in tracking. As an alternative, YOLO-based detectors are increasingly employed [16].
Some research has advocated for specialized detectors that focus on generating image masks
or precise tool poses [8,17–19]. Despite promising results, these methods are contingent on
data availability and require frequent re-training for new surgical tools.

1.2.2. RCM Constraint

Safety remains paramount in MIS. RCM constraints fulfill this role and are categorized
into two primary types: mechanical and programmable [20,21]. Programmable RCMs offer
more versatility and a broader range of adaptability. Approaches vary from geometric
methods to optimization-based ones [22,23]. Due to RCM constraints, the degrees of
freedom for manipulators are often reduced. This coupling between the end effector and
image sensor complicates matters, making direct homogeneous transformations for hand-
eye calibrations unfeasible. Several works address this challenge [13,14,24,25], but mostly
under strong assumptions about detection accuracy and usually in single-tool scenarios.

1.2.3. FOV Control in MIS

Different controllers aim primarily at minimizing misorientation error [14,15,24]. Re-
cent studies consider multi-objective approaches or speech-based control as additional
variables [25,26]. Null-space projection is commonly used to handle multiple constraints but
can fall into local minima, particularly when dealing with inequality constraints like joint
states. Optimization-based approaches offer a way to include these inequalities, although
they come with the drawback of subjective weight tuning and lack of strict prioritization.

Substantial progress has been made in the development and control of multi-DOF
flexible endoscopes [27–30]. These advancements enhance the FOV and mitigate the
limitations found in rigid sensors.

Despite advances, significant gaps exist in the area of viewpoint and ROI adjustments.
Most methods focus on single-tool tracking or employ data-driven methodologies [15,24].
Some even integrate surgeon preferences explicitly or via additional interfaces [8,25,26]. How-
ever, the extension of these methods for multi-tool handling is still an open research area.
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1.3. Contributions

This paper investigates the automation of endoscopes within the specific context
of tissue resection, which is one of the common surgical operations. In a minimally in-
vasive setting, the surgeon and assistant must collaborate effectively while managing
multiple tools confined within trocars, which presents a challenge for tissue manipula-
tion. The dynamism of multi-user interactions within surgical procedures poses a unique
challenge—one that has not been thoroughly addressed in current robotic surgery research.

We introduce a novel framework designed to enhance visual assistance and user
experience in surgical settings. Our system ensures that both surgeons and assistants have
access to visual information during operations, effectively reducing the potential impact of
partial occlusions typical in MIS environments.

Our key contributions are:

• Integration of HQP for Autonomous FOV Control: We introduce a hierarchical
framework that exploits Hierarchical Quadratic Programming (HQP) to autonomously
control the endoscope’s FOV. This approach manages the multiple objectives inherent
in surgical scenarios, ensuring an unobstructed view of the surgical field amidst the
dynamic nature of multi-instrument manipulation.

• Development of an Interactive Segmentation Module: Central to our framework is
what we refer to as the "Interactive Segmentation and Tracking Module." This provides
surgeons flexibility in real-time during surgeries, allowing the selection and robust
tracking of various objects within the surgical field. This module is instrumental
for adapting to the dynamic and unpredictable conditions presented by multi-user
surgical procedure.

• Implementation Availability: We provide a simulation environment and the corre-
sponding codebase. Our contributions include the HQP-based control framework and
the interactive segmentation and tracking modules, specifically designed for integra-
tion with robotic control systems. These resources aim to facilitate the integration of
our system for practical applications in the future.

The remainder of the paper is structured as follows: Section 2 provides an overview
of the proposed framework. Section 3 details the perception module and ROI strategies.
Section 4 elaborates on the HQP-based controller design. Section 5 presents experimental
validation and user case studies. Finally, Section 6 offers concluding remarks and directions
for future work.

2. Proposed System Overview

The system architecture for endoscope FOV control is depicted in Figure 1. A central
aspect of this system is that surgeons can selectively choose tools and objects of interest in
specific surgical scenarios through the Graphical User Interface (GUI). The system utilizes
the SAM model [31], a state-of-the-art segmentation algorithm, to extract masks for the
selected targets. The Xmem model [32], a neural network-based tracking model, tracks the
selected image masks, providing the capability to ensure that the targets remain visible
even during interactions with tissues and other tools.

The system dynamically refines the ROI based on this tracked data, determining the op-
timal FOV for the ongoing procedure. By combining domain knowledge with specific task
specifications, it discerns when the endoscope should zoom in or out, ensuring both preci-
sion and clarity in the surgeon’s field of vision. This integration guarantees the most critical
elements are prioritized, enhancing the efficiency and accuracy of surgical endoscopy.

The endoscope’s FOV adjustment inherently involves multiple objectives, i.e., main-
taining the RCM, tracking tools, aligning with the surgeon’s natural line of sight and
adjusting the zoom level. Ensuring efficient visual assistance requires meeting these multi-
ple constraints, which presents the challenge of designing controllers capable of satisfying
all these constraints as the surgical interaction unfolds. A key feature of the proposed
system is the HQP controller, designed to guarantee the satisfaction of the hierarchy of objec-
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tives and constraints, facilitating smooth and precise movements during FOV adjustments
by a robotic assistant handling the endoscope throughout the surgical intervention.
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Figure 1. HQP based endoscope control system architecture.

The communications between the modules rely on the ROS (Robot Operating Sys-
tem) [33] interface, which enables the synchronization of sensor readings and motor com-
mands, ensuring that only the latest readings are utilized for control.

3. Perception Methods

This section outlines the perception methods applied in our work. We detail interactive
segmentation and tracking, discuss the underlying assumptions, and define ROI selection
and adjustment strategies to provide visual assistance.

3.1. Interactive Segmentation and Tracking

In the dynamic environment of surgical procedures, the need for precise detection
extends beyond surgical tools to various anatomical features within the endoscopic image.
Developed through the training on over 1 billion annotations, predominantly sourced from
natural images, SAM can deliver high-quality object masks. The model’s interactive design,
which allows for user input through points, boxes, and textual prompts, significantly
enhances its utility and adaptability [31]. In surgical applications, SAM’s capabilities hold
promise for providing real-time overlays that accurately delineate anatomical structures and
surgical instruments [34]. This can enhance a surgeon’s spatial awareness and provide the
perception capabilities necessary for a robotic system to interpret various surgical scenes.

We enhance SAM’s capabilities by integrating it with Xmem, a neural network mod-
eled on human memory processes and optimized for object tracking in video sequences.
Xmem’s design is adept at managing memory usage efficiently, making it well-suited for
real-time applications in surgery, where rapid changes and occlusions are commonplace.

The combined use of SAM for initial segmentation and Xmem for subsequent tracking
ensures a robust workflow. Xmem maintains continuity by assigning persistent IDs to each
object, thus enabling the system to keep track of tools that may get temporarily obscured.
This feature is indispensable for maintaining an uninterrupted visual feed for the surgeon,
which is paramount in complex surgeries involving multiple instruments.

Surgeons interact with this system via a GUI, as shown in Figure 2B, where they can
select the objects of interest within the endoscopic view prior to the start of the surgery.
SAM processes these selections, and once the segmented output, illustrated in Figure 2C, is
approved, Xmem takes over to ensure continuous tracking throughout the procedure. As
the surgical scene evolves, surgeons can re-select objects or introduce new ones as needed,
offering flexibility for various scenarios without requiring re-training or re-calibration. The
GUI is intentionally designed to facilitate easy re-selection and modification of tools and ob-
jects during a task, enhancing versatility for different research setups and prototype testing.

The efficacy of our tracking and segmentation system depends on the quality of the
initial mask generated by SAM. While this study concentrates on the simultaneous tracking
of up to four tools, the system’s architecture, underpinned by SAM and Xmem, but it can
handle additional objects as needed. Those interested in the detailed performance metrics
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and capabilities of each model can find comprehensive analyses in their respective original
publications [32,34].

A B C

Figure 2. Illustration of interactive segmentation process: (A) Initial monocular endoscopic
view, (B) User interface for choosing tools of interest, (C) Output displaying segmented regions
post-SAM processing.

3.2. Determining the ROI

Accurate estimation of the ROI is crucial to ensure the surgeon remains focused on
surgical tasks. The ROI is dynamically centered on the collective barycenter of the surgical
tools and the surgeon’s perspective within the endoscopic frame. The barycenter of each
tool tip is extracted through image moment analysis.

For a given tool i, the barycenter gi is computed as follows:

gi =

(
M(i)

10

M(i)
00

,
M(i)

01

M(i)
00

)
(1)

where M(i)
10 and M(i)

01 are the spatial moments of order one, and M(i)
00 is the zeroth-order

moment, or area, of the tool’s contour.
The system’s center of mass (xm, ym), which includes all the tools and the surgeon’s

line of sight, is determined by assigning weights to these barycenters based on their
significance to the operation.

Assuming the coordinates (xg1, yg1), (xg2, yg2), . . . , (xgn, ygn) for barycenters g1, g2, . . . ,
gn, and their corresponding weights m1, m2, . . . , mn, the center of mass is calculated as:

xm =
∑n

i=1 mixgi

∑n
i=1 mi

, ym =
∑n

i=1 miygi

∑n
i=1 mi

(2)

Upon aligning the endoscope’s lens center with the center of mass, the new camera
center coordinates (xc, yc) are offset by (u, v) from the image plane’s top left corner:

xc = xm + u, yc = ym + v (3)

In the absence of a tool, its weight is omitted from the center of mass calculation,
allowing the ROI to adjust dynamically.

The radius of the ROI rROI is derived from the minimum enclosing circles for each
tool contours, taking into account the weighted distribution of the tools:

rROI = max
i∈{1,2,...,n}

{√
(xgi − xc)2 + (ygi − yc)2 + ri

eci

}
(4)

for i = 1, 2, . . . , n, where ri
eci is the radius of the minimum enclosing circle for tool i.

The assignment of mass to each tracked tool can be informed by domain knowledge
or empirical measures, such as the size of each object in the image approximated by the
enclosing circle’s area. Figure 3 illustrates the ROI in a scenario where equal mass is
assigned to two tools, along with estimated barycenters and approximate size estimation.
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Alternative methods may involve assigning priority based on the velocity or directionality
of tool movement to enhance situational awareness and optimize visual assistance.

barycenters

ROI

Figure 3. Estimation of tool barycenters and determination of the ROI center and radius based on the
mass-weighted minimum enclosing circles. The extended blue and green lines visualize the reci radii
for the respective tools.

4. Hierarchical Framework for Surgical Robot Motion Planning

Autonomous control of surgical robots demands precise management of tasks such as
maintaining a RCM, tracking visual features, aligning with the surgeon’s viewpoint, and
adjusting magnification—all while operating within kinematic constraints. To efficiently
address these tasks in real-time, a HQP controller is employed. This controller prioritizes
tasks based on their priority, ensuring that the most important constraints are adhered to
first, as depicted in the task hierarchy (Figure 1).

By structuring tasks in a hierarchical manner, HQP ensures that high-priority tasks,
such as RCM adherence, take precedence over others. This approach allows for a systematic
resolution of Quadratic Programming (QP) problems, ensuring safety and efficacy without
compromising on the primary objectives of the surgery.

Finally, the modular nature of HQP allows for scalability and adaptability. As surgical
techniques and tools evolve, new objectives can be integrated into the hierarchy, making
HQP a robust and future-proof choice for the dynamic requirements of robotic-assisted
surgeries [35]. This ensures that the endoscope’s field of view is optimally controlled,
adapting to the complex needs of modern surgical environments.

4.1. HQP Controller

When a robot arm has more joints than needed to perform a task, it can use the extra
degrees of freedom to do other tasks without affecting the main one. This idea allows us to
create a list of tasks with different priorities and execute them in a hierarchical way using
the robot’s redundancy. For a group of k tasks, each ranked in priority from 1 to p, the
construction of the k-th task can be expressed as an optimization problem:
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min
x

1
2
||Akx− bk||2

s.t. C1x ≤ d1, . . . , Ckx ≤ dk

E1x = f1, . . . , Ekx = fk

(5)

Here x represents the optimization variable in Rn. Matrices Ak ∈ Rmk×n, Ck ∈ Rmeqk×n,
and Ek ∈ Rmineqk

×n along with vectors bk ∈ Rmk , dk ∈ Rmeqk , fk ∈ Rmineqk are arbitrary,
where mk is the dimension of the k-th task and meqk

, mineqk
are the dimensions of equality

and inequality constraints.
The proposed HQP controller is capable of managing multiple tasks and constraints

simultaneously, respecting the hierarchy between priority levels. It can also deal with
tasks that have the same priority, allowing the introduction of soft constraints by assigning
weights to each task within the optimization problem. A general form of the multi-objective
problem given a priority level p is formulated as:

min
x,w

ηp

∑
i=1

Kti

2
||Aix− Kri ri||22 +

Kd
2
||x||22 +

Kw

2
||w||22

s.t. Cpx− dp ≤ w

(6)

where ri is the i-th task residual, and Kti and Kri denote positive weights for task i. The
variable w incorporates the inequality constraints, and the squared norm of x is used for
regularization. Additionally, Kd and Kw represents positive weights for the regularization
and slack terms, respectively. Cp and dp correspond to a general matrix and vector,
that describe the inequality constraints for tasks of priority p. To handle regularization
issues with respect to singularities, a closed-loop IK scheme is employed, by including a
proportional residual as optimization error given by Kri ri [36].

For each priority level, the optimization problem in the above equation is represented
and solved as a QP problem. The order of priority is preserved by applying optimality
conditions between consecutive tasks, as suggested by Kanoun et al. [37]. Lower-priority
tasks are prevented from affecting higher-priority tasks by using the null-space projector
operator in the optimization problem, ensuring that higher-priority tasks are executed
without interference. The optimization problem, taking into account these optimality
conditions, is:

min
x,w

ηp

∑
i=1

Kti

2
||Ai

(
Np−1x + x∗p−1

)
− Kri ri||22 +

Kd
2
||x||22

+
Kw

2
||w||22

s.t. Cp

(
Np−1x + x∗p−1

)
− dp ≤ w

Cp−1

(
Np−1x + x∗p−1

)
− dp−1 ≤ w∗p−1

...

C1

(
Np−1x + x∗p−1

)
− d1 ≤ w∗1

(7)

where Np−1 corresponds to the null space projector of the higher priority level with N0 = I
and x∗0 = O.

Each optimization problem can be addressed as a Quadratic Programming (QP) prob-
lem, in which:

z∗p = min
z

1
2

zTQpz + cT
p z

s.t. Cpz− dp ≤ 0
(8)
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where the optimization variable is given by z = [x w], Q = Ap
TAp and c = −Ap

Tbp. The
matrices Ap, Cp and vectors bp, dp are obtained from the task formulation (Equation (7)) as

Ap =

[
ApNp−1 0

0 K1/2
w I

]
bp =

[
bp
0

]
(9)

Ap =


K1/2

t1
A1

...
K1/2

tn
An

K1/2
d I

 bp =


K1/2

t1

(
A1q̇∗p−1 − b1

)
...

K1/2
tn

(
An q̇∗p−1 − bn

)
O

 (10)

The optimal solution x̂∗p is then obtained by

x̂∗p = Np−1x∗p + x̂∗p−1 (11)

where x̂∗p−1 is the optimal solution for the previous p − 1 optimization problem with
higher priority.

4.2. Tasks Hierarchy

Our framework consists of various objectives, each with joint and velocity constraints.
These objectives include respecting RCM constraint, visual servoing, alignment, and zoom
level. To incorporate these tasks into the proposed HQP controller, we write them as
QP problems.

4.2.1. Remote Center of Motion

Given the insertion port’s position, denoted as ptrocar ∈ R3, and the positions of the
joints before and after the RCM location denoted as pcam ∈ R3 and pend ∈ R3, shown
in Figure 4, the RCM point, designated as prcm, is determined as the closest point on the
endoscope axis to ptrocar. Its position can be calculated as follows:

prcm = pcam + (pT
r p̂s)p̂s, (12)

where p̂s =
pend−pcam
||pend−pcam|| represents the direction of the endoscope axis and pr = ptrocar − pcam

represents the difference between the trocar’s position and the endoscope base. The RCM
error, denoted as ercm, is defined as ||ptrocar − prcm||.

Image
feature

Endoscope

ROI

Figure 4. Coordinate frames for an endoscope motion control under RCM constraint.

The tool insertion port constrains the motion of the endoscope to 4 degrees of freedom,
involving pitch and yaw pivoting around the RCM point, as well as roll and translation
along the endoscope axis. Assuming that the endoscope is initially inserted through
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the insertion port, an allowable twist rcmξrcm ∈ R6 representing the linear and angular
velocities of the RCM point expressed in the RCM frame {rcm}, is given by

rcmξrcm =



0
0

rcmνrcmz
rcmωrcmx
rcmωrcmy
rcmωrcmz

 (13)

The HQP optimization variable, designated as x ∈ R4, is defined within the opera-

tional space, such that x =


rcmνrcmz
rcmωrcmx
rcmωrcmy
rcmωrcmz

.

4.2.2. Visual Servoing

The relationship between image feature velocities and the endoscope motion is given
by [38]

[
ṡx
ṡy

]
=

 λ
z 0 −sx

z
−sxsy

z
λ2+sx

2

λ −sy

0 λ
z

−sy
z

−λ2−sy
2

λ
sxsy

λ sx

endξend = JI
endξend (14)

where endξend =

[ endνend
endωend

]
∈ R6

Given that frames {rcm} and {end} are rigidly connected, endξend can be computed by

endξend = AdendXrcm
rcmξrcm, (15)

where AdendXrcm
=

[rcmRrcm [end prcm]×
endRrcm

O rcmRrcm

]
∈ R6×6 .

The optimization problem for centering the image to the field of view is defined as

min
x,w

1
2
||JIAdendXrcm

Hmx− Ks(sdes − sact)||22 +
Kw

2
||w||22

s.t. x−
[

ν
ω

]
≤ w[

ν
ω

]
− x ≤ w

(16)

where Hm =

[
O2×4
I4×4

]
∈ R6×4, w = [w, w] ∈ R8 and x = [ν, ω] and x = [ν, ω] denotes the

lower and upper limits for the endoscope linear and angular velocities, respectively. The
optimization problem can be formulated as Equation (6) with coefficients

As = JIAdendXrcm
Hm bs = Ks(sdes − sact)

Cs =

[
I4×4
−I4×4

]
ds =

[
x
−x

] (17)

The optimal value x̂s ensures proper endoscope motion towards reducing the visual
servoing error.
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4.2.3. Misalignment

In the context of MIS, it is crucial to minimize the misorientation effects introduced by
the motion of the laparoscope to maintain an intuitive FOV for the surgeon. The concept
of the Intuitive Virtual Plane (IVP) is employed as a virtual reference plane aligned with
the surgeon’s natural line-of-sight in open surgeries [14]. The IVP is particularly useful
because, in MIS, the center of the ROI does not necessarily correspond to a real physical
plane where depth can be easily measured.

To compute the misalignment angle θ, which represents the deviation of the laparo-
scope’s view from the IVP, we use the rotation matrix of the endoscope’s current orientation,
R, and compare it to a predefined reference plane, Rref. The reference plane Rref is chosen
before the surgery to match the IVP as closely as possible.

The rotation matrix R contains three orthogonal unit vectors rx, ry, and rz, where rz is
the normal vector to the plane defined by the laparoscope’s camera view. The reference
rotation matrix Rref has corresponding vectors ux, uy, and uz, with uz being the normal
vector to the IVP.

To determine θ, we project the vectors rx and ry onto the plane defined by uz, resulting
in vectors px and py. The angle θ is then calculated by comparing these projected vectors
to the reference vectors ux and uy.

The misalignment angle θ can be calculated using the following equation:

θ = sign(n · d) · arctan
(
‖n‖
‖d‖

)
(18)

where:

• n = rx × px + ry × py is the vector representing the sine component of the angle.
• d = rx × py − ry × px is the vector representing the cosine component of the angle.
• sign(n · d) ensures that the angle θ is measured in the correct direction.

By continuously calculating and adjusting for θ, the system can dynamically align the
endoscope’s FOV with the IVP, thus maintaining an intuitive visual perspective for the
surgeon during MIS procedures.

Since the misalignment error is related to the roll angle, a misalignment task Jacobian
can be defined as

Jθ = [0, 0, 0, 0, 0, 1] (19)

which can be represented as an optimization problem (see Equation (7)) with coefficients

Aθ = JθHmNs bθ = Kθ(θdes − θact)− Jθx∗s

Cθ =

[
I4
−I4

]
Ns dθ =

[
x
−x

]
− Cθx∗s

(20)

where Ns = I4 − A†
s As ∈ R4×4 corresponds to the Null space projector of the visual

servoing task. The solution obtained is then integrated to the optimal solution found for
the visual servoing task as:

x̂θ = Nsx∗θ + x̂s (21)

that verifies the optimality condition and ensures that the visual servoing task is not affected
by the orientation adjustments.

4.2.4. Depth

Control of the endoscope insertion depth allows for adjustments in the field of view
area, providing zooming in and out options, and is considered as a subsequent task. A
depth task Jacobian is defined as

Jd = [0, 0, 1, 0, 0, 0] (22)
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which can be integrated into an optimization problem (see Equation (7)) with coefficients

Ad = JdHmNθ bd = Kd(ddes − dact)− Jdx∗θ

Cd =

[
I4
−I4

]
Nθ dd =

[
x
−x

]
− Cdx∗θ

(23)

where Nθ = Ns(I4 − (AθNs)†(AθNs)) ∈ R4×4 corresponds to the null space projector of
the visual servoing task. The optimal solution is then computed as

x̂d = Nθ x∗d + x̂θ (24)

where x∗d corresponds to the solution found from the depth optimization problem.
The proposed HQP framework enables to meet all the defined constraints providing a

suitable rcmξrcm, which is the integrated to compute the target pose endXenddes
as

endXenddes
= exp

(
AdbaseXend

AdendXrcm
rcmξrcm

)
baseXendact (25)

4.3. Inverse Kinematics

In order to reach the desired target pose endXenddes
∈ SE(3), the desired joint values

are computed through an additional QP optimization problem with its current initial
endoscope pose baseXendact as initial guess.

The tracking task’s residual is computed as:

rend(q)
= log(Xenddes

X>endact
) (26)

where the logarithm log : SE(3)→ se(3) maps the pose from the Lie group SE(3) to twists
in the se(3) [39].

The joint and velocity limits are defined as:

q− ≤ q ≤ q+

−q̇max ≤ q̇ ≤ q̇max
(27)

where q ∈ Rn denotes the manipulator’s joint configuration, q− and q+ represent the joint
limits, and q̇max denotes the maximum allowable joint velocities. By adding convenient
slack variables w = [w+ w−], both constraints can be integrated into an optimization
problem with inequality constraints given by

min
q̇,w

1
2
||w||2

s.t. q̇− q ≤ w+

− q̇ + q ≤ w−

(28)

where q = max(δt(q− − qact),−q̇max) and q = min(δt(q+ − qact), q̇max).
The Inverse Kinematics problem is then defined as a QP optimization problem:

min
q̇,w

Kt

2
||Jendq̇− Krrend||22 +

Kd
2
||q̇||22 +

Kw

2
||w||22

s.t. Cq̇− d ≤ w
(29)

where Jend represents the configuration dependent Jacobian matrix of the {end} frame, Kt,

Kr and Kw are positive constants, C =

[
In
−In

]
and d =

[
q
−q

]
.
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5. Experiments

This section evaluates our hierarchical framework through a series of tests. We first
examine the system’s tracking performance with a single tool in controlled conditions, then
extend the analysis to user case studies simulating tissue resection.

5.1. Experimental Setup

Our system employs a Kinova Gen-3 robotic arm with a 7-DOF, a 30-degree, 31 mm-
long rigid endoscope equipped with a high-resolution (2048 × 1080) image sensor, and
integrated lighting. We used standard surgical tools and a training phantom abdominal
cavity, as shown in Figure 5A,B. The endoscope’s camera operates at 60 fps with intrinsic
parameters estimated by camera calibration: fu = 1167.6213, fv = 1176.005, u = 1008 and
v = 536.

Figure 5. Experimental Setup Illustration: (A): The setup comprises a 7-DOF robotic manipulator
holding a rigid endoscope in an environment designed for surgical procedures. Within this setting, a
surgeon and an assistant collaborate to manipulate tissue inside a surgical phantom modeled after
the human abdomen. They employ surgical instruments and rely on visual feedback displayed on a
monitor to coordinate their actions. (B): Standard surgical training tools and a 30-degree endoscope
used for experiments. (C): Tissue phantoms used for simulated tissue resection tasks.

The perception and control modules operated on a Linux Ubuntu 20.04 workstation
with a robust Intel Core i9-10980E processor and 94 GB of RAM. For kinematic computa-
tions, transformations, and parsing the kinematic chain, we utilized the Pinocchio library
(v. 2.6.10) [40]. The backend for the HQP solvers was supported by CASadi (v. 3.5.5) [41],
while the OSQP (v. 0.5.0) [42] handled computations related to QP problems. These tools
facilitated the efficient operation of our system, allowing for quick computations necessary
for real-time control.

The detection algorithm ran on an Nvidia RTX 3090 GPU, leveraging pretrained
models for both SAM and Xmem. The Xmem utilized default memory parameters, as
outlined in [32], with an average detection time of 0.052 s for up to four tools.

All components communicated seamlessly through the ROS Noetic framework, ensur-
ing tight integration between the detection module and the controller.

5.2. Single Tool Tracking

This experiment aimed to confirm the system’s precision under near-ideal perception
conditions with a single tool. The setup involved a robotic arm with a manipulator navi-
gating a pre-defined path inside an abdominal model, as depicted in Figure 6. Using an
Optitrack motion capture system, we placed markers on the endoscope to track its position
against the constraints defined.

The task involved moving a grasping tool along a path marked within the model.
Starting from the center, the operator, via a GUI, directed the tool sequentially to points A,
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B, C, and D, as outlined in Figure 6C. The robot adjusted the endoscope’s insertion depth
and FOV accordingly.

Figure 6. Experimental Setup for Single Tool Tracking: This illustration depicts the trajectory paths
of the endoscope and the surgical tool, highlighting the coordination between visual tracking and
instrument motion. (A): Overview of the setup, illustrating the attachment positions of markers for
the Optitrack system. (B): The trajectory followed by the endoscope tip. (C): Sequential snapshots
from the endoscope, revealing the tool’s movement during the experiment.

Throughout the tracking task, the system maintained the RCM constraint within a
5 mm margin. Initially, the tracking error was negligible and, though it varied with the
movement of the tool as captured in Figure 7b, any deviations were promptly corrected.
Notably, even when rapid tool movements induced errors up to 150 pixels, the system
demonstrated resilience by consistently realigning to within the 50-pixel threshold. This
indicates a well-tuned feedback loop where the system compensates for tracking errors
dynamically, adapting to the tool’s speed and trajectory. The depth error, while showing
the greatest fluctuation due to its lower priority in the hierarchy of tasks, also diminished
to acceptable levels once the tool’s motion ceased. This controlled fluctuation and prioriti-
zation highlight the system’s capacity to handle tracking variability, a crucial feature when
the target is in motion, thus ensuring that task hierarchy is maintained during transient
shifts in the tool’s position.

The error dynamics visualized in Figure 7 confirm the hierarchical constraint prioriti-
zation, with RCM error never exceeding set limits and other errors managed sequentially
to optimize the FOV.

5.3. User Studies

We conducted user studies involving two male medical professionals, aged 52 and 33,
both experienced in robotic laparoscopic surgery, along with eight novice male participants
aged between 24 and 33, engaging them in three distinct tasks designed to simulate surgical
tissue interactions. These tasks were grouped into single-operator scenarios with dual-tool
usage and dual-operator scenarios with quadruple-tool interaction, detailed across three
cases (Figure 8).
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(a)

Center A B C DCenter A B C D

(b)

(c) (d)

Center A B C D

Center A B C D

Figure 7. Variation in constraint errors during the single tool tracking experiment, illustrating the
system’s hierarchy in managing constraints. (a): Change in RCM error (m). (b): Change in tracking
error (pixels). (c): Change in misalignment error (deg). (d): Change in depth error (m).

Figure 8. Snapshots from experiments (from the top), 2 tools, 4 tools and dissection tasks.

5.3.1. Task Scenarios

Task 1: Single Operator with Dual-Tool Interaction
In Task 1, a single operator was presented with a rhombus-shaped path composed

of nodes A, B, C, and D, illustrated in Figure 8. The operator used grasping forceps and
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scissors, starting with the scissors positioned on a dashed line section. The dashed line
was divided into equal sections to represent the allowable single cutting distance. The
operator’s objective was to grasp a red point on the tissue at the end of each section before
proceeding to cut along to the next. This task simulated the tensioning and precision
required in resection. The robot’s role was to maintain the ROI within a 200–250 pixel
radius in the FOV and and to limit positioning error to 50 pixels.

Task 2: Dual Operator with Quadruple-Tool Interaction
Task 2 increased in complexity with two operators representing a surgeon and an

assistant, each handling two tools. Similar to Task 1, the operators engaged with a rhombus-
shaped path, but this time the surgeon had to select from one of three available cutting lines,
as depicted in Figure 8. The surgeon placed the scissors on the chosen dashed line section
and grasped the red point to simulate tissue tensioning. The assistant was responsible
for positioning their tools on subsequent red points, forming a right-angle triangle with
the surgeon’s instruments, to replicate the tissue triangulation process. The robot was
programmed to modify the FOV to ensure all four tools remained within a 300–350 pixel
radius ROI, maintaining a positioning error below 50 pixels, as the surgeon and assistant
collaboratively simulated a resection.

Task 3: Tissue Resection with Medical Professionals
The final task was exclusively designed and attempted by medical professionals due to

its complexity, involving a phantom tissue resection procedure. The task involved dynamic
tool positioning by both the surgeon and the assistant to mimic an actual surgical envi-
ronment. The surgeon determined the resection path, while the assistant triangulated and
tensed the tissue. Unlike the previous tasks, the points for grasping were not predefined,
requiring the operators to freely move and communicate their tool positions to establish
the desired tensioning and triangulation prior to cutting. The robotic assistant’s challenge
was to deliver visual support by keeping a dynamic FOV with an ROI radius of 300 pixels
and a positioning error under 50 pixels that adapted to the rapid and varied movements of
the operators’ tools, ensuring visual information was available for precise tissue resection.
The demonstration of this task can be found in the supplementary material (Video S1).

In all tasks, the robot’s performance was measured by its ability to keep the ROI
within a predefined pixel radius and the smoothness with which it could adjust the FOV in
response to the operators’ movements. The performance data were quantified by recording
the total manipulation time (Ttotal) and the endoscope following rate (FR), with the latter
indicating how effectively the robot’s camera followed the operators’ movements within
the desired visual field:

FR = 1− Tout

Ttotal
(30)

where Tout is the amount of the time when the tracking error is larger than the defined
threshold of 50 pixels, that is ROI is not positioned within the desired region.

5.3.2. Participants for User Studies

All participants assumed the role of User 1 (surgeon) to manipulate the surgical tools
during the study. A single novice participant was consistently assigned the role of User 2
(assistant) across all sessions.

Prior to data collection, each participant engaged in a 30-min training session with
the dual-tool setup, assisted by visual feedback from a stationary endoscope robot. This
preparatory session aimed to familiarize participants with the manipulation of the surgical
tools and the workflow of the tasks they would be performing.

Over the following three days, each User 1 performed a series of tasks—either with
two tools (solo) or with four tools (in collaboration with User 2). Each task was repeated
five times to ensure robust data collection. We specifically reserved the actual resection
tasks for the medical professionals, given the high complexity, with the assistance provided
by the novice acting as User 2.
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The effectiveness of the participants’ interactions was evaluated by recording manipu-
lation times and collecting subjective feedback through questionnaires.

The detailed experimental procedure is as follows:

1. Each User 1 completes a 30-min training session with the tools on the day before
the experiment.

2. During the main study, User 1 performs the assigned task, interacting with a GUI to
position the tools and initiate tracking.

3. Upon selecting a path, User 1 manipulates the tissue with visual assistance from
the endoscope robot until the task is completed. This is done five times, with the
endoscope returning to its initial position after each iteration.

4. Following the tasks, User 1 completes a survey designed to capture their subjective
experience.

5. For medical professionals only, additional insights are gathered through informal
post-task interviews.

5.3.3. Experiment Questionnaires

We designed two distinct questionnaires to evaluate the participants’ subjective expe-
riences. The first questionnaire focused on the overall outcome, speed, confidence in visual
assistance, adequacy of ROI, and smoothness of FOV adjustment—factors modeled after
the methodology of Yang et al. [14].

The second questionnaire employed the NASA Task Load Index framework, de-
veloped by Hart and Staveland [43], to estimate the cognitive load and fatigue levels
experienced by users during the tissue manipulation tasks within the proposed framework.
This assessment provided insights into the user’s workload and the system’s design across
varying scenarios.

5.3.4. Results on Users’ Case Studies

In contrast to single-tool tracking, User 1 and User 2 were granted the freedom to
maneuver the tools according to their judgment. This flexibility sometimes resulted in
partial tool occlusions and temporary removal of the tool from the endoscope’s FOV,
particularly when selecting appropriate insertion points on the abdominal cavity model.
Consequently, the system was challenged with various noise factors: occlusions, changes in
background and lighting conditions (adjusting the endoscope’s distance alters brightness,
affecting perception quality), as well as alterations in the tools’ orientation, shape, and
configuration during tissue interaction. Additionally, task completion speeds varied among
participants. These variables combined to offer a robust set of scenarios for evaluating
system performance.

Table 1 summarizes the experimental results across the three task scenarios. It shows
variation in manipulation time for each case, highlighting the differing complexities and
skill requirements of the tasks. It is important to note that the error values in the table
represent the average of the mean error values for each participant’s performance.

Table 1. Performance metrics across two-tool, four-tool, and resection tasks, detailing manipulation
time, following rate, and various error measurements. The data reflects the efficiency and precision
of task execution, with standard deviations indicating variability among participants.

Metrics 2 Tools 4 Tools Resection

Manipulation Time (s) 96.73 ± 10.34 164.27 ± 27.71 186.67 ± 21.59
Following Rate (%) 81.4 ± 21.7 76.1 ± 11.2 78.4 ± 22.9
Tracking Error (pixels) 113.30 ± 27.86 90.74 ± 38.48 91.68 ± 67.25
Angle Error (deg) 0.02522 ± 0.013196 0.01504 ± 0.01982 0.013599 ± 0.018781
Depth Error (m) 0.01108 ± 0.00439 0.00781 ± 0.00722 0.00974 ± 0.00799
RCM Error (m) 0.00279 ± 0.00181 0.00350 ± 0.00271 0.00431 ± 0.00311
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The following rate (FR), expressed as a percentage, sheds light on the system’s perfor-
mance in different scenarios. The FR averaged 81.4% for the two-tool scenario, 76.1% for
the four-tool case, and 78.4% for the resection task. The smaller difference between the
four-tool case and the resection task can be attributed to the medical professionals’ superior
hand-eye coordination, resulting in more stable forceps motion.

The primary metric for visual servoing, the tracking error, varied between 90 and
113 pixels across all cases. The highest error was observed in the two-tool scenario, likely
due to the ROI being significantly affected by hand motion and potential tool loss, making it
more sensitive to manipulation quality and perception stability. The four-tool and resection
task tracking errors were similar, averaging at 90 pixels, though the resection task showed
higher variance due to the compact arrangement of tools and the lessened impact of
individual forceps movement on the overall ROI position.

Additional errors related to constraints within the HQP controller were compared to
single-tool tracking experiments. The RCM error remained under the specified threshold
for all tasks, while depth error showed the most fluctuation, with a mean range of 0.007 m
to 0.011 m across tasks.

The questionnaire outcomes, depicted in Figures 9 and 10, reveal that the overall
satisfaction across all three tasks is comparably high, averaging around 5.5 on a 7-point
scale. However, the notable variance in the four-tool scenario indicates its relative difficulty.
Speed metrics exhibit the largest variability; despite mean values approximately at 4.5, the
large variance suggests that task speed may need fine-tuning according to the user’s skill
level. This inference is supported by the low variance in smoothness scores for the resection
task, which only medical professionals undertook.

Confidence and ROI metrics similarly averaged at 5.5, but the variability in confi-
dence, especially in the two-tool task, implies that incorporating more task-specific domain
knowledge could enhance the user experience.

Figure 10 presents the NASA-Task Load Index results, presenting the perceived dif-
ficulty and user experience of the tasks. The data indicates a moderate workload across
the tasks, with the highest perceived load scoring at 45 out of 100. The two-tool task is
rated lower on the scale, suggesting it is less mentally and physically demanding. In
contrast, the resection task scores higher by demonstrating the extra effort required due to
the task difficulty.

0 1 2 3 4 5 6 7

Overall

Speed of Assistance

Confidence

ROI

Smoothness
2 tools task
4 tools task
Resection task

Figure 9. Comparative analysis of questionnaire results capturing user satisfaction and perceived task
complexity for two-tool, four-tool, and resection tasks. Variance in scores highlights the differential
difficulty levels and user experience across tasks.
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Figure 10. NASA-Task Load Index assessment profiles indicating cognitive and physical workload for
the two-tool, four-tool, and resection tasks. Task load variations suggest differing levels of challenge
and required user skill among the tasks.

Despite the diverse task complexities, the consistency in workload scores indicates the
system’s capability to offer visual assistance while keeping cognitive and physical loads
low during tissue resection procedures. To enhance the user experience, particularly for the
complex resection task, additional adjustments to speed settings and ROI selection criteria
may be required. Such refinements will ensure that even in the most demanding scenarios,
the workload remains within a moderate and manageable threshold.

6. Conclusions and Future Works

In this research, we have introduced a hierarchical control framework utilizing HQP
in conjunction with interactive segmentation based on SAM and Xmem algorithms. Our
framework stands out for its ability to autonomously adjust the FOV of an endoscope,
ensuring visual clarity during the dynamic conditions of surgical procedures. The SAM
component of our system offers interactive segmentation capabilities, allowing users to
select and segment any object within the image via a user interface. This interaction is
highly customizable and user-friendly. Meanwhile, the Xmem algorithm ensures consistent
and accurate tracking of these segmented objects, even under challenging conditions related
such as temporary obscurity or partial occlusion.

A distinctive feature of our approach is its operational readiness without the need for
pre-training, which enables the inclusion and consistent tracking of any object, regardless
of the varying light, background conditions, or changes in the object’s appearance due
to interactions with tissue. Tested in complex scenarios, including single-user with dual-
tool interaction and multi-user with four-tool coordination, our system has showcased its
robustness by offering visual assistance. The proposed system adeptly managed various
constraints, including RCM, alignment, and depth level, while preserving the endoscope’s
field of view and granting full control to both the surgeon and assistant during tissue
manipulation. This capability has been substantiated through empirical robot motion
analysis and user feedback questionnaires, resulting in high user satisfaction and minimal
mental and physical load when using the proposed system.

Future works will focus on broadening the ROI to include various objects within
the surgical field, thus requiring the system to anticipate user actions and intentions
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with greater precision. Refining the HQP constraints to incorporate collision avoidance
between the endoscope and surgical tools is another challenging issue for advancement.
This addition will significantly enhance the safety and functionality of the framework.
Additionally, our focus will be on incorporating domain-specific knowledge and machine
learning to evaluate the user’s skill level. These adaptive capabilities will enable the
system to offer personalized and intuitive visual assistance, thereby optimizing the surgical
workflow to align with the expertise of the medical professionals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23249865/s1, Video S1: This video showcases a tissue resection
task carried out by medical experts, including a surgeon and an assistant, with the footage being
accelerated to four times the normal speed. The video features two perspectives: The first view
highlights the movement of the robot holding the endoscope, actively adjusting the viewpoint
in response to the actions of the surgeon and assistant. The second view displays the system’s
capabilities in tool detection and ROI estimation, utilized to dynamically adjust the endoscope’s FOV.
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DOF Degrees of Freedom
FOV Field of View
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MIS Minimally Invasive Surgery
QP Quadratic Programming
RAMIS Robot-Assisted Minimally Invasive Surgery
RCM Remote Center of Motion
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