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Abstract: Due to the difficulty in generating a 6-Degree-of-Freedom (6-DoF) object pose estimation
dataset, and the existence of domain gaps between synthetic and real data, existing pose estimation
methods face challenges in improving accuracy and generalization. This paper proposes a methodology
that employs higher quality datasets and deep learning-based methods to reduce the problem of domain
gaps between synthetic and real data and enhance the accuracy of pose estimation. The high-quality
dataset is obtained from Blenderproc and it is innovatively processed using bilateral filtering to reduce
the gap. A novel attention-based mask region-based convolutional neural network (R-CNN) is proposed
to reduce the computation cost and improve the model detection accuracy. Meanwhile, an improved
feature pyramidal network (iFPN) is achieved by adding a layer of bottom-up paths to extract the
internalization of features of the underlying layer. Consequently, a novel convolutional block attention
module–convolutional denoising autoencoder (CBAM–CDAE) network is proposed by presenting
channel attention and spatial attention mechanisms to improve the ability of AE to extract images’
features. Finally, an accurate 6-DoF object pose is obtained through pose refinement. The proposed
approach is compared to other models using the T-LESS and LineMOD datasets. Comparison results
demonstrate the proposed approach outperforms the other estimation models.
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1. Introduction

In recent years, the 6-Degree-of-Freedom (DoF) object pose estimation has garnered
significant attention in the field of computer vision and robotics, owing to its relevance in
several applications such as robot grasping, active driving, and augmented reality. The
task involves estimating the orientation and the pose of a target object in 3D space. While
traditional 6-DoF object pose estimation methods can produce satisfactory results in simple
scenes, a growing number of researchers are currently dedicating their efforts to exploring
methods and tasks using deep learning (DL)-based approaches.

Advances in DL techniques have led to significant progress not only in the areas of
target detection [1–3] and image segmentation [4–11], but also significant progress has been
made in pose estimation using these techniques. They can be classified based on the types
of datasets into (1) approaches relying on real datasets [12–23]; and (2) approaches based
on synthetic data [24–32]. However, the need for labeled real datasets raises a challenge
due to the time-consuming and labor-intensive nature of their production, resulting in high
dataset production costs [33]. To address the scarcity of real data, the researchers have
proposed approaches based on synthetic data. Nonetheless, a gap resides between synthetic
and real data, making it challenging to apply networks trained using synthetic data when
considering real environments. To bridge this gap, some researchers have proposed some
excellent 6-DoF position estimation methods for objects relying on synthetic data. Some
classical methods for 6-DoF position estimation based on synthetic data are presented below.
For instance, Yu et al. [24] utilized Blender to generate a high-fidelity large-scale synthetic
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dataset of objects and designed a TGF-Net network for feature learning to achieve object
6-DoF position estimation. Sundermeyer et al. [25] introduced the augmented autoencoder
(AAE) to implicitly represent pose features, reducing the domain gap between synthetic
data and real data through the domain randomization (DR) method. They also proposed
sharing a separate self-coder for each object in a multi-object scenario [26]. Furthermore,
the proposed 6IMPOSE [27] framework validates the efficiency of the position estimation
model acquired from synthetic data training in real scenes. However, the accuracy of the
object 6-DoF position estimation method, based on synthetic data, is notably lower than that
based on real data on the datasets [34,35]. To make progress in detection accuracy, Huang
et al. [30] proposed a network based on variant AAE network [25]. Moreover, with the help
of a textureless CAD model and a small number of real images, some researchers [29,32]
improved detection accuracy through patch-level realism images.

Despite these methods having attempted to mitigate the domain gap between synthetic
data and real data, however, it still exhibits a domain gap between real data and synthetic
data, leading to a shortfall in achieving satisfactory accuracy due to the model limitations.
Additionally, most methods struggle to deliver good results when dealing with special
surfaces, such as weak textures and occlusions. Therefore, this paper aims to explore a
high-precision object 6-DoF position estimation method based on synthetic data and DL.
Moreover, in this paper, to enhance the robustness, scalability, and flexibility of the network,
the 6-DoF pose estimation network for objects was decoupled to include: (1) an instance
segmentation network incorporating target detection and image segmentation; (2) a latent
feature extraction network based on unsupervised learning.

To sum up, this paper primarily focuses on the systematic optimization of synthetic
data and network structures to enhance the 6-DoF detection accuracy, particularly for
weakly textured objects based on synthetic data.

• Regarding the dataset, images of real realistic 3D object models are used. Specifically, in
segmentation network detection, incorporating images of these real 3D object models
proves effective in significantly and greatly reducing the domain gap between the
synthesized data and the real data [36]. Therefore, more realistic and clearer details
are obtained by performing bilateral filtering and image sharpening operations on the
obtained images in the synthetic dataset.

• Regarding the network, this paper focuses on the improved mask region-based con-
volutional neural network (R-CNN) [37] and the improved convolutional denoising
autoencoder (CDAE) networks. In the instance segmentation network part, to improve
the accuracy and speed of target detection and image segmentation, an M-ST instance
segmentation network, namely Mask Swin Transformer (M-ST) is designed. The idea
of the self-attention mechanism [38] is encompassed into the Mask R-CNN network,
incorporating the window polytope self-attention module and displacement window
self-attention module, to enhance detection accuracy while significantly reducing
model computation. Simultaneously, we add a layer of the bottom-up path to the
original FPN structure to obtain the iFPN structure, addressing the shortcoming of
the traditional FPN structure where the input feature map only contains the feature
information of the current layer and the previous layer, lacking the internalization
of the underlying features. As for the improved CDAE network, the DR method for
training the CDAE is applied [24]. Moreover, this trained network is used as a pose
feature extraction network, generating templates of various poses in virtual space to
create a codebook for subsequent template-matching tasks. To enhance the network’s
feature extraction capability, and generalization ability, and improve convergence and
training efficiency, a convolutional block attention module (CBAM) [39] is integrated
with an attention mechanism module, added to the CDAE network.

• Finally, the object bounding box information obtained from the M-ST network is used
to crop the image into the trained CBAM–CDAE network for template matching to
obtain the initial 6-DoF bit pose. Using the iterative closest point (ICP) algorithm,
the object segmentation map obtained from the example segmentation algorithm is
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combined with the object point cloud generated from the depth image to achieve
precise alignment of the position.

2. Related Works

In this section, to have a comprehensive understanding of the object 6-DoF methods,
common techniques for target detection and segmentation are first introduced; then, 6-DoF
object methods, based on real and synthetic data, are presented.

2.1. Object Detection and Image Segmentation Methods

Object detection methods can be sparsed into two categories: single-stage object detec-
tion algorithms [1,2] and two-stage object detection algorithms [3]. The former category
includes You Only Look Once (YOLO) [1] and Single Shot Detector (SSD) [2] algorithms.
In more detail, YOLO was first proposed by Redmon et al. [1], directly predicting bound-
ing box and category probabilities in a single forward pass by means of regression and
achieving, as a result, real-time target detection. In 2016, Liu et al. introduced the SSD
algorithm [2], utilizing feature maps at multiple scales and multiple convolutional layers
with the aid of anchor frames. This approach significantly improved detectability and
target detection accuracy.

They ensure real-time detection but encounter lower performance compared to the
two-stage algorithms. In the two-stage algorithms, Faster R-CNN [3] is a representative
two-stage target detection algorithm, known for its high localization and recognition
accuracy. Faster R-CNN [3] consists of the region proposal network (RPN) in the first stage,
generating candidate object bounding boxes. As for the second stage, features are extracted
from each candidate box using the RoI layer to perform classification and bounding box
regression tasks.

Furthermore, instance segmentation is a computer vision task derived from target
detection and semantic segmentation. Moreover, instance segmentation methods can be
categorized as single-stage or two-stage techniques.

In more detail, single-stage methods include the You Only Look At Coefficient Ts
(YOLACT) technique [4], which is an algorithm based on the RetinaNet network [5], the
Mask-IoU loss function was applied firstly using the YOLACT algorithm to optimize
target segmentation and mask prediction, exhibiting faster processing speed and higher
accuracy. The Segmenting Objects by LOcations (SOLO) instance segmentation algorithm,
proposed by Wang et al. [6], transformed the task of target segmentation into predicting
the position of the target instances and the segmentation mask. The segmentation of
target instances was directly performed at each pixel point, avoiding the need for anchor
frames. TensorMask [7] provided an effective solution for the target segmentation task by
introducing new architectures and technical means such as loss functions to improve the
segmentation performance.

Regarding the two-stage instance segmentation algorithms, they can be divided into
top-down and bottom-up approaches. Representative algorithms in this category include a
fully convolutional instance-aware semantic segmentation (FCIS) [8] and Mask R-CNN,
FCIS was an instance semantic segmentation model based on fully convolutional networks
(FCNs) that could predict the entire image directly, eliminating the need for anchor frames
and thereby improving segmentation accuracy and speed. Mask R-CNN, on the other
hand, extends a segmentation (Mask) branch to Faster R-CNN and introduces a RoIAlign
layer. This layer ensures more accurate feature extraction within each candidate region,
facilitating pixel-level segmentation prediction. This achieves excellent performance for
target detection and instance segmentation tasks. In addition, due to the effectiveness of
the Mask R-CNN method, a large number of related algorithms have been derived from
it [9,10]. It is worth noting that bottom-up methods [11] typically have lower effectiveness
compared to top-down methods.

In this paper, to balance the recognition accuracy and the recognition speed, we first
adopt the two-stage detection algorithm, using the Mask R-CNN as the base instance
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segmentation model. Consequently, we simplify the model by replacing the structure of
the backbone network and higher quality synthesized data, which would further improve
the detection accuracy through the modification of the internal structure.

2.2. A 6-DoF Object Pose Estimation Methods
2.2.1. A 6-DoF Object Pose Estimation Methods Based on Real Datasets

Traditional 6-DoF object attitude estimation methods frequently solve simple object
position estimation tasks. Therefore, these methods are not sufficient to face the increasing
industrial demands. However, with the rapid development of DL, the traditional 6-DoF
object pose estimation is evolving towards the use of DL-based 6-DoF object pose estimation
methods. In more detail, DL-based 6-DoF pose estimation methods can be classified into
two categories: pose regression-based and key point-based methods. Depending on the
dataset, these methods can be further categorized as real data-based or synthetic data-
based methods. Going back to the first classification, the pose regression-based method
is a commonly used approach for 6-DoF pose estimation, where the 6D pose of the object
is directly estimated by this method. Among the different methods, the most used one is
the SSD-6D [12], which extends the 2D target detection network SSD [2] to a 3D detection
and a 3D rotation estimation. Moreover, this technique is more accurate for object pose
estimation with rich features; however, it is less effective for recognizing weakly textured
or non-textured objects. In addition, the SSD-6D is not an end-to-end network.

As for the coordinates-based disentangled pose network (CDPN) network approach [13],
proposed by Li et al., it learns the pose parameters of the target object directly from the image.
It is characterized by its simple and compact network structure with a reduced number of
parameters, allowing it to achieve fast inference with limited computational resources. For
instance, Jin et al. [14] introduced a translation module to enable initial translation of the
depth map, and used a pose regression module to combine the RoI and the original image to
predict the rotation and optimize the translation, achieving better results; however, the main
drawback was at the level of the detection speed.

The key point-based approach applies a two-stage strategy instead of directly predict-
ing the 6D object pose. Through this approach, the first stage involves detecting the 2D
key points of the target object when the complete 3D model of the target is known. Then,
the Perspective-n-Point (PnP) algorithm is employed to calculate the 6-DOF pose based
on the correspondence between the 2D and 3D key points. Among the different methods,
the BB8 [15] algorithm presents a two-stage pose estimation framework, the 6-DoF pose of
the object was predicted with the 2D projection of the eight vertices of a 3D bounding box
combined with the PnP algorithm. To address the ill-posedness problem in pose estimation
for various types of rotational symmetry, the rotation range of the training image was
restricted, effectively resolving the issue. While YOLO-6D [16] is an end-to-end model built
based on the YOLO base framework, the core idea was to transform the position estimation
task into a target detection problem. For instance, Vidal et al. [17] employed improved
point-to-point features for 6-DoF position estimation. The algorithms proposed by BB8 [15],
YOLO-6D [16], and Vidal et al. [17] lead to excellent results when solving the 6D pose based
on key points. Moreover, BB8 and YOLO-6D are applied in the LINEMOD dataset [34],
whereas the method proposed by Vidal et al. demonstrates excellent performance when
applied to the T-LESS dataset [35].

However, the main drawback of these methods is their susceptibility to occlusion and
noise due to their heavy reliance on global information. This led to the development of
a series of excellent 6-DoF pose estimation methods, based on pixel voting. For instance,
ZAKHAROV et al. [18] proposed a 3D object detection and pose estimation method, em-
ploying three encoders to obtain U, V, and ID masks. By combining the ID mask with the
3D object model and the 2D–3D point pairs obtained from the UV combination, the PnP
algorithm is applied. For example, Peng et al. developed the pixel-wise voting network
(PVNet) [19] network, combining 3D shape information and 2D projection information
for pose estimation. However, the network was trained separately for each class, limiting
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its ability to detect multiple objects of different classes simultaneously. Moreover, Vidal
et al. [20] applied the top-down visual attention and color cues technique to improve the
performance of state-of-the-art methods in occluded scenes. The obtained results showed
excellent performance on public datasets. In addition, a deep point-wise 3D key points
voting network (PVN3D) [21] proposed a deep Hough voting network to detect the 3D key
points of an object and then estimate the 6D pose parameters using a least squares fitting
approach. Added to that, Pix2pose [22] consisted of a pose estimation method for weakly
textured or non-textured objects. It applies RGB images to predict the 3D coordinates of each
object and the expected variance at the level of each pixel. The 2D–3D correspondence is then
established using pixel-by-pixel prediction in multiple stages, enabling direct prediction
of 6D pose based on PnP and RANSAC. Furthermore, to address occlusion problems, the
Pix2pose method employs a generative adversarial network (GAN) to recover the occluded
regions. Moreover, it introduces a new loss function, known as the transformer loss for
3D coordinate regression, helping in resolving object symmetry issues. Meanwhile, Hajari
et al. [23] proposed a method, based on point cloud template matching, to realize some
progress in position estimation of weakly textured objects. Within the pose estimation task, it
is challenging to cover all object poses during training by just using real data; thus, acquiring
pose labels with ground truth values is difficult to realize in several scenarios.

2.2.2. A 6-DoF Object Pose Estimation Methods Based on Synthetic Datasets

As real datasets often have limited generalization ability, methods have been de-
veloped for estimating the 6D pose of objects based on synthetic data. For example, a
convolutional network PoseNet [28] applies a Leigh CNN to localize objects in real images
and trains them based on synthetic single-channel images to directly regress the 6D pose of
objects in real images with no need for additional engineering or graph optimization, it
can operate indoors and outdoors in real time, taking 5 ms per frame to compute. More-
over, Marion et al. [29] proposed transferring the domain where the synthetic and real
images are located to the pencil filter domain in order to increase the visual similarity in
the new domain. As for the adversarial autoencoder (AAE) [25], it has used 3D object
models to synthesize data instead of annotating data for training. It also introduced the
concept of computing global descriptors of localized object instances applying an AAE
network. Using excluding noise, this method tried to solve the challenges regarding the
domain gap between real and synthetic data. However, test results, performed on some
datasets, showed that the accuracy of the 6D localized pose estimation for target objects is
not satisfactory. Therefore, Huang et al. [30] proposed a network based on a variant AAE,
achieving a certain improvement in accuracy compared to the CDAE-based method of
the AAE network. Moreover, SyDPose [31] used synthetic depth data with neighborhood-
correlated background random noise heuristics to train end-to-end multitasking networks
to perform the pose estimation task. In addition, Xu et al. [32] introduced an image-to-
image translation-based synthetic data generation method, requiring only texture-free
CAD models and a small number of real images. The proposed method demonstrated
relatively excellent results on the T-LESS dataset. Furthermore, to solve the problem of poor
generalization ability of synthetic data- based object 6-DoF pose estimation for practical
applications, the 6IMPOSE [27] technique overcame the shortcomings of the PVN3D [21]
algorithm in terms of generalization and performance, achieving better results in synthetic
data-based pose estimation algorithms and confirming the validity of the synthetic data
developed for real scenes.

However, the limited research regarding depth information leads to certain limitations.
In order to reduce the domain gap of 6-DoF object-positioning-based methods, as well as to
solve the problem of low accuracy, the following methods are innovatively proposed in
this work.

So, to reduce the domain gap between the synthetic data and the real one, higher
quality synthetic datasets are created with the objective of detecting and instantly segment-
ing stages. In more detail, the idea of the AAE network is mimicked and adopted to the
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DR method to reduce the domain gap problem during the training process. As for the
shortcomings of the Mask R-CNN network (having mainly a large number of network
parameters), it was replaced by the Swin Transformer backbone network. Moreover, the
original FPN structure was modified, leading to a reduction in the overall network parame-
ters and significantly improving the recognition accuracy. Meanwhile, regarding the CDAE
network, the idea of an attention mechanism was incorporated into the CBAM module;
therefore, the whole network achieved better results. Finally, the details will be presented
in Section 3.

3. Methodology

In this section, the general framework of the network, developed in this paper, is first
introduced. Then, the generation of high-quality synthetic datasets involved in this work is
introduced. Finally, the M-ST instance segmentation network, the CBAM–CDAE network,
and the pose refinement method are detailed.

3.1. Framework of Proposed Object 6-DoF Pose Estimation Method

In this paper, our method consists of estimating the 6-DoF pose of an object based on
a single RGB/RGB-D image. This method’s general framework is displayed in Figure 1.
The method is divided into modules, such as high-quality synthetic data processing, image
instance segmentation, and feature extraction networks based on unsupervised networks.
By incorporating bilateral filtering techniques to obtain high-quality synthetic data, the
domain gap between synthetic and real data will be narrower. In addition, to reduce the
computational cost and improve the accuracy of the detection model, a novel attention-
based Mask R-CNN network is proposed. However, an iFPN is developed by adding a
layer to bottom-up paths to extract the underlying internalized features. Consequently, a
novel CBAM–CDAE network is proposed to enhance the ability of the AE to extract image
features by introducing channel attention and spatial attention mechanisms. Finally, at
each instance, the relation to the feature extraction network of the unsupervised network is
computed to generate a code set, the initial pose is estimated using a template matching
method, and the final object pose is acquired through refinement.
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3.2. Higher Quality Dataset Based on BlenderProc and Bilateral Filtering

In this paper, the M-ST instance segmentation network serves as a target detection and
segmentation network based on synthetic data. However, the high-quality PBR method is an
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important step in the processing stage of synthetic data. It plays a key role in improving target
detection accuracy and reducing the domain gap between synthetic and real data [36,40]. The
initial dataset in this paper comprises reduced versions from BOP [41] including LineMOD
and T-LESS datasets (specific characteristics of these datasets in question are described in
Section 4). These datasets were generated by BlenderProc. BlenderProc is a modular program
pipeline based on Blender, enabling the synthesis of training images with high visual realism
and the customization of a variety of annotation information, such as mask, depth, and 6-DoF
pose, catering to a wide range of computer vision tasks. BlenderProc includes several modules
such as a camera module, object module, material module, and lighting module, among
others, providing flexibility according to the task requirements to write configuration files,
and import the 3D model into GPU for physical simulation. The common rendering process
of BlenderProc is illustrated in Figure 2.
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To achieve higher quality synthesized images, we found that applying bilateral filtering
to the synthesized image enhances edge information and image details, resulting in a
clearer image and the removal or attenuation of noise. Bilateral filtering considers the
spatial relationship between pixels, selecting a domain range of pixels to be processed for
each pixel. This limitation in the processing range allows bilateral filtering to retain local
details of the image.

Moreover, bilateral filtering considers the grayscale difference between pixels. The
grayscale difference serves as a weighting coefficient, multiplied by the pixel value, and then
applied as a weighted average to each pixel. This weighted average operation effectively
preserves edge information in the image. An example is illustrated in Figure 3.
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The use of bilateral filtering for image sharpening, in contrast to other methods, such
as Laplace operator-based image sharpening, does not generate additional noise. Therefore,
bilateral filtering can achieve better results in the processing of synthetic images. Finally, we
further enhance the images by randomly adjusting contrast, and saturation, and introducing
random Gaussian noise and blur to increase the diversity of the training set.

3.3. M-ST Instance Segmentation Network

In this paper, the aim is to increase the speed and accuracy of model recognition,
thereby improving the level of 6-DoF object pose estimation. The substitution of the
Mask R-CNN backbone network with Swin Transformer reduces the model parameters,
leading to increased model recognition accuracy. Simultaneously, to address the deficiency
of underlying feature information in the input feature maps within the traditional FPN
structure, an additional layer of bottom-up structure is added, resulting in an improved
FPN structure.

The Swin Transformer, introduced in 2021 by researchers from Microsoft Research, led
by Han Hu, has emerged as a replacement for the traditional CNN architecture, showcasing
superior performance. Despite its transformative impact on computer vision, the Swin
Transformer, as a model based on the Transformer architecture, has not garnered much
attention for industrial applications. To explore its scalability, we endeavor to extend the
applicability by combining Swin Transformer and Mask R-CNN implementations and
applying them to our specific task.

The M-ST network introduced in this paper builds upon the Mask R-CNN network,
which, in turn, is an improvement of the Faster R-CNN algorithm. The Mask R-CNN
algorithm is designed to conduct both target detection and semantic segmentation. It
achieves this by utilizing the RoI obtained through RoIAlign and incorporating a parallel
Mask branch.

Referring to Figure 4, in the backbone network, composite structure 1 consists of a
patch merging layer along with a linear embedding layer and Swin Transformer block,
whereas composite structures 2 to 4 consist of a patch merging layer combined with Swin
Transformer block structure.
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To achieve pixel-to-pixel predictive masking and multi-scale feature fusion, Mask R-
CNN employs a feature pyramid network to obtain deeper feature information. However,
the extended fusion path between low-level features and high-level features results in the
underutilization of low-level feature location information, impacting semantic segmenta-
tion accuracy. In contrast, the Swin Transformer introduces multi-scale feature modeling, a
local window mechanism, and a sliding window operation to enhance model recognition
efficiency while reducing computational complexity. Specifically, by incorporating the
patch merging layer and Swin Transformer block in the Mask R-CNN network, the network
focus is shifted to the interaction of cross-scale information. This allows effective capture
of semantic and contextual information in images at different scales, achieving improved
scale complexity simultaneously.

1. Patch Merging layer

The slice merging layer, as previously described, plays a crucial role in downsampling
the feature map. However, in the context of the composite Swin Transformer structure1, a
patch merging layer is employed to downsample the feature map, as illustrated in Figure 5.
The resulting four feature maps are then concatenated along the depth direction and passed
through a LayerNorm layer. To conclude, the depth of the feature map undergoes a linear
transformation from C to C/2 through a fully connected layer.
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Figure 5. Patch merging layer schematic.

Compared to traditional pooling or convolutional layers that necessitate a large num-
ber of parameters for downsampling, the patch merging layer achieves downsampling by
directly integrating features at multiple small spatial locations. It is worth noting that this
is achieved without adding extra parameters or computation load. Due to its capability
to retain more spatial information, the patch merging layer improves the model’s ability
to recognize object size and shape. Furthermore, the patch merging layer contributes to a
richer feature map resolution by merging different paths in each iteration.

2. Swin Transformer block

The Swin Transformer layer consists of a normalized layer (LayerNorm), Windows
Multi-head Self Attention (W-MSA), Shifted Windows Multi-head Self Attention (SW-MSA),
and Multi-Layer Perceptron (MLP), as illustrated in Figure 6.
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In this paper, the M-ST network employs different MSA blocks, namely the W-MSA and
SW-MSA. W-MSA divides the input image into non-overlapping windows, each containing
multiple patches, and then computes self-attention within these windows. This approach
significantly reduces the complexity of the self-attention calculation, enhancing interaction
between different locations and improving feature representation capability. However, due
to the lack of information interaction between windows, extracting high-level semantic
information from the image becomes challenging. To overcome this limitation, the SW-MSA



Sensors 2023, 23, 9854 10 of 24

module is introduced, connecting adjacent but non-overlapping windows in the upper layer.
The design increases the perceptual field and captures higher level semantic information.
Therefore, to alternate between the W-SMA module and the SW-MSA module, two or a
multiple of two Swin Transformer blocks are used consecutively, as shown in Figure 6.

The self-attentive operation serves as the core of the Swin Transformer layer. Initially,
the input feature map is linearly transformed into a two-dimensional sequence dataset.
Subsequently, Q, K, and V are computed using a fully connected layer. These Q, K, and V
values are then input into the proportional dot product attention component for processing.
The results are spliced, and finally fed into a fully connected layer to obtain the final result,
as shown in Equation (1):

S = so f tmax
(

QKT
√

dk

)
V (1)

where S represents the self-attentive operation, d denotes the dimensionality set of the
model, and, finally, Q, K, and V indicate the values of the linear transformation of the
feature map.

The multi-layer perceptron is responsible for classifying the category information of
the input feature map. Comprising two fully connected layers, an activation function layer
using the Gaussian error linear unit (GELU) function, and two random deactivation layers,
the multi-layer perception plays a crucial role in preventing model overfitting.

3. The iFPN structure

The feature maps input to the RPN within the FPN structure include only the feature
information of the current and upper layers, lacking details from the lower layers. However,
the feature maps of the bottom layers contain more detailed information. To address this,
in this paper, we introduce channels that connect from the bottom to the top and then
backward. The iFPN structure is depicted in Figure 1, where Pi (i = 2, 3, 4, 5, 6) represents
the feature pyramid, and the newly added bottom-up path merges the low-level feature
map N with the high-level feature map P to generate a new feature map N.

3.4. CBAM–CDAE Network

In this paper, the concept of applying the DR technique to train on simulated views of
a 3D model was inspired by AAE network. Furthermore, an almost positive polyhedral
triangle substitution method was implemented to ensure sampling from a sufficiently
homogeneous viewpoint of the virtual camera. However, the trained pose feature ex-
traction network often produces potential vector representations that lack accuracy. To
enhance recognition accuracy and improve the extraction capability of the traditional CDAE
network, CBAM was incorporated into CDAE.

3.4.1. Uniform Multi-Viewpoint Generation

To acquire template images uniformly distributed in SO(3) space, as illustrated in
Figure 7, the sampling process entails placing the virtual camera at viewpoints where
the vertices of the almost ortho-polyhedron are sampled from the recursive triangular
decomposition of the hemisphere above the object.
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3.4.2. CBAM–CDAE Network Structure

To overcome the limited feature extraction capability of AAE networks, this paper
introduces CBAM–CDAE networks that incorporate CBAM and are trained on simulated
views using DR. The original AE is an unsupervised model, with the encoder mapping
input data to a low-dimensional latent space and the decoder reconstructing the latent
representation to the original data after upsampling.

However, the encoded values output by the encoder encompass various information
such as category, pose, and displacement, making it challenging to represent individual
pose features. In contrast, CDAE excels at extracting valuable features while filtering out
noise. By treating all information other than pose as noise, the encoded values output by
the encoder can effectively represent pose-related features.

Introducing the CBAM module enhances CDAE’s ability to capture channel correlation
and spatial correlation in the input data. This improvement significantly enhances feature
extraction, particularly for weakly textured objects. The structure of CDAE can be expressed
using Equation (2):

x̃ = (γ·ϕ· fnoise)(x) = γ(z) (2)

where x represents the original input data, z denotes the encoded value, and x̃ indicates
the reconstructed data. Moreover, the encoded value z is an implicit representation of the
original input data x, whose dimensionality is usually lower than x and x̃. In addition, the
fnoise represents the additional noise, whereas parameters related to background addition,
changing image contrast, height, Gaussian blur and color distortion, and random black
square occlusion are derived from the AAE network.

The CBAM–CDAE network structure is illustrated in Figure 8.
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The convolutional attention module CBAM is displayed in Figure 9.
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In 2018, Woo et al. [39] proposed the CBAM technique, using a combination of channel
attention and spatial attention algorithms to generate an attention graph. This approach
allows the network to focus on important local details while filtering out unimportant
local information. Moreover, this learning method highlights local key features, suppresses
irrelevant features, and enhances the network’s ability to express features.
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Referring to Figure 8, this paper splices the CBAM network after the second and third
convolutional layers of CDAE. This not only enhances the feature learning capability of the
network by channel and spatial learning of image features and enables the encoder to put
more attention on important local features and filter out unimportant local features, but it
also prevents overfitting in training due to the overly complicated model CBAM consisting
of a channel attention module and a spatial attention module, as displayed in Figure 9.

The details about the way of work of CBAM are determined as follows. The channel
attention module calculates the global maximum pooling and the global average pooling
of the input feature map F, resulting in two 1 × 1 × N feature vectors. These vectors are
then fed into the multilayer perceptron. The output of the perceptron is added to the two
feature vectors, and the result is activated using sigmoid to produce the channel attention
matrix. Multiplying the channel attention matrix with the input feature map F yields the
channel attention module’s output feature map F′. The computational representation of
the channel attention module is as follows:

Mc(F) = δ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (3)

F′ = Mc(F)× F (4)

In Equations (3) and (4), F represents the feature map, MLP denotes the multilayer
perceptron, AvgPool and MaxPool indicate the average pooling and maximum pooling,
respectively, Mc represents the channel attention matrix, and, finally, F′ is the output
feature of the channel attention module.

The spatial attention module initially applies maximum and average pooling on the
feature map in the channel dimension, resulting in two W × H × 1 feature maps. These are
then concatenated into a W×H× 2 feature map, which undergoes further processing using
convolutional layers to extract features, ultimately obtaining a W × H × 1 feature map. The
sigmoid activation function generates the spatial attention feature matrix, representing the
weights of the channels occupied by each pixel. Multiplying this matrix with the feature
map F′ yields the spatial attention feature map F

′′
. The feature map F

′′
and the input

feature map F are added to obtain the input for the next convolutional layer. Finally, the
calculation of the spatial attention module is expressed as follows:

Ms
(

F′
)
= δ

(
f
[
AvgPool

(
F′
)
; MaxPool(F)

])
(5)

F
′′
= Ms

(
F′
)
× F′ (6)

In the above expressions, f represents the convolutional layer and denotes the serial
connection, Ms is the spatial attention feature matrix, and F

′′
indicates the feature map

generated by the spatial attention module.
Among them, the pooling layer plays a crucial role in subsampling, aiming to reduce

dimensionality, mitigate overfitting, and improve the robustness of the network. Moreover,
the common types of pooling include maximum and average pooling. In this paper, the
inclusion of maximum pooling serves to decrease the computational complexity of the
upper layer by eliminating non-maximum values while providing translation invariance.

3.5. The 6-DoF Object Pose Decoupling Calculations
3.5.1. Template Matching Based 3-DoF Object Rotation Pose

In this paper, the bounding box information obtained from the M-ST instance segmen-
tation network is used to crop the image, adjusting the input size based on the longer side
of the bounding box multiplied by a fill factor of 1.2. This cropped image is then fed into
the pose feature extraction network to obtain the pose feature z_test for the object image. To
expedite template matching, cosine similarity is employed to measure the feature similarity
between the object image and the template one. Moreover, the cosine similarity is expressed
as follows:
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similarityi =
ziztest

‖zi‖‖ztest‖
(7)

Following the calculation of similarity between the object image and template images
from the codebook information, the K-nearest neighbor (KNN) algorithm is applied to
identify the k templates closest to the pose of the object image. The pose R corresponding
to these k templates serves as the hypothetical pose of the object image.

3.5.2. Calculation of 3-DoF Object Translation Pose

In this paper, the M-ST network provides the bounding box information of the ob-
ject (ua, va, wa, ha). Additionally, after estimating the object’s rotation, the bounding box
information of the object in the nearest neighboring template image (ub, vb, wb, hb) can be
obtained. Therefore, leveraging the imaging model of the camera, we can derive:

ta,z·
√

w2
a + h2

a
fa

=
tb,z·

√
w2

b + h2
b

fb
(8)

where ta,z represents the z-axis displacement of the object, tb,z indicates the z-axis displace-
ment of the object in the template image, and fa and fb denote, respectively, the focal length
of the true and rendered cameras. Then, the estimated value of ta,z is formulated as follows:

ta,z = tb,z·
fa

fb
·

√
w2

b + h2
b√

w2
a + h2

a
(9)

To solve for the displacements ta,z and ta,y in the image plane coordinate system of the
object on the x-axes and y-axes, it is necessary to estimate first the pose of the object center
on the image plane (xa, ya): 

xa = ua +
wa

2
− cx,a

ya = va +
ha

2
− cy,a

(10)

where cx,a and cy,a represent the offset of the image plane coordinates. Similarly, the pose
of the object center in the template image on the image plane (x b, yb) can be determined.
Moreover, the transformation relationship between the image and the camera coordinate
systems is denoted as follows: 

xa =
fx,a·ta,x

ta,z

ya =
fy,a·ta,y

ta,z

(11)

The displacements of the object on the x-axes and y-axes can be obtained according to
Equations (10) and (11), which are expressed as follows:

ta,x =
xa

fx,a
·ta,z −

xb
fx,b
·tb,z

ta,y =
ya

fy,a
·ta,z −

yb
fy,b
·tb,z

(12)

The above yields an initial 3-DoF translation, based on RGB images. However, when
the depth information is considered, the object point cloud is applied to optimize the
object pose. The point cloud of the target object is denoted as Pa and its center of mass is
represented by Pa. Moreover, the nearest neighbor template point cloud is denoted as Pb
and its center of mass is Pb; therefore, the z-axis displacement of the object can be obtained
according to Equation (13):

ta,z
′ = Pa − Pb + tb,z (13)
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Finally, the x-axis and y-axis displacements of the target object are recalculated accord-
ing to Equation (12), and the final displacement pose of the object is represented using the
following vector:

[
ta,x, ta,y, ta,z

′].
3.5.3. The 6-DoF Object Pose Refinement

After obtaining the initial 6-DoF object pose, refinement is achieved by combining it
with the ICP algorithm. Unlike the traditional ICP algorithm that directly performs fine
alignment using the object point cloud and the source point cloud, this method is not very
accurate since only part of the scene is visible. In this method, since the object rotation is
generated as prior information, the coarse pose is applied to render the 3D model. This is
combined with the high-precision object segmentation map, obtained from the instance
segmentation algorithm, to generate the object point cloud from the depth image. Therefore,
median filtering is applied to fill point cloud holes. To enhance alignment speed, voxel
filtering and statistical filtering downsample the object point cloud, reducing the number
of points while retaining the main information. Finally, the fine alignment is executed,
resulting in the final 6-DoF object pose.

4. Experiment

For all experiments realized in this study, an Intel i7-12700k, GeForce RTX2080ti
graphics processor, and 32 GB RAM are used. For the software environment of this model,
all models were implemented in Pytorch (v. 1.10), a Python version of Torch, Facebook’s
open-source NN framework dedicated to GPU-accelerated NN programming.

Datasets: The initial T-LESS and LineMOD synthetic datasets are used for the study.
They can be accessed using the following web link https://bop.felk.cvut.cz/datasets/
(accessed on 22 March 2023). As for the T-LESS dataset, it was also used in the study
and is available at https://bop.felk.cvut.cz/datasets/#T-LESS (accessed on 12 January
2023). Data from 30 different weakly textured 3D models from the T-LESS dataset was
employed. Moreover, the LineMOD dataset was used in the study, and it is available at
BOP: Benchmark for 6D Object Pose Estimation (cvut.cz) (accessed on 12 October 2023).

Moreover, the MS COCO [42] dataset (available at https://cocodataset.org/ (accessed
on 25 January 2023)) was employed in the training phase for pre-training of the M-ST
network, and the Pascal VOC dataset (available at http://host.robots.ox.ac.uk/pascal/
VOC/ (accessed on 25 January 2023)) was employed for the training of the CBAM–CDAE
network while replacing the background image.

4.1. The 6-DoF Object Detection Results
4.1.1. Training Detail

In this paper, the instance segmentation network, M-ST, undergoes pre-training on
Microsoft COCO. The learning rate is initially set to 0.001 for 100 k iterations on a high-
quality synthetic dataset obtained by secondary processing of synthetic data rendered by
BlenderProc. The learning rate is then multiplied by 0.96 for every 1 k iterations in this
paper. Where the bounding box information from target detection is cropped and adjusted
before being input into the trained CBAM–CDAE.

The CBAM–CDAE network, benefiting from previous promising results, is trained
using the DR method. Using OpenGL, we render 20 k views of each object uniformly
at random 3D orientations and constant distance along the camera axis and resize to
128 × 128 × 3. We use the Adam optimizer with a learning rate of 0.0002. A batch size = 64
and about 40 k iterations. Details of the training process, along with the specific enhance-
ment parameters, are elaborated in Table 1, respectively [25].

https://bop.felk.cvut.cz/datasets/
https://bop.felk.cvut.cz/datasets/#T-LESS
https://cocodataset.org/
http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/
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Table 1. The augmentation parameters of CBAM–CDAE.

50% Chance
(30% Per Channel)

Light (Random Position)
and Geometric

Add µ (−0.1, 0.1) Ambient 0.4

Contrast µ (0.4, 2.3) Diffuse µ (0.7, 0.9)

Multiply µ (0.6, 1.4) Specular µ (0.2, 0.4)

Invert Scale µ (0.8, 1.2)

Gaussian blur δ~µ (0.0, 1.2) Translation µ (−0.15, 0.15)

Occlusion ∈[0, 0.25]

4.1.2. Experiments on the LineMOD Dataset

We assess our method using the LineMOD dataset, a recognized benchmark for 6-DoF
pose estimation of non-textured objects in cluttered scenes. The dataset comprises 13 objects
and approximately 1200 RGB-D images per object. In our approach, we employed around 50 k
high-quality synthetic images to train the M-ST network. The implementation of our method
is conducted on pytorch. For example, in the instance segmentation network, we utilize SGD
with momentum for optimization, employing a learning rate of 0.001, 40 k iterations, and a
batch size of 256. On the other hand, for the CBAM–CDAE network, Adam was used for
optimization, with a learning rate of 0.0002, 40 k iterations, and a batch size of 64.

In this paper, to showcase the effectiveness of our algorithm from various perspectives,
we evaluate the performance of 13 objects in the LineMOD dataset using accuracy under
the average distance difference (ADD) metric. Notably, the assessment involves training
solely with synthetic data in the dataset, namely Benchvise, Cat, Duck, Holepuncher, Iron,
Lamp, and Phone.

ADD =
1
m∑M

∥∥∥(Rx + T)−
(

R̃x + T̃
)∥∥∥ (14)

For an indistinguishable view of the target, the average distance difference-symmetrical
(ADD-S) is measured between the model vertices and their ADD-S.

ADD-S =
1
m∑x1∈M

min
x2 ∈ M

∥∥∥(Rx + T)−
(

R̃x + T̃
)∥∥∥ (15)

Given the true values of the rotation matrix R and the translation matrix T, along with
the estimated rotation matrix R̃ and the translation matrix T̃, ADD computes the average
distances between the 3D model points for both sets. If the average distance between the
true coordinates of the 3D mesh and the predicted pose estimate is less than 10% of the
object diameter, the predicted pose is considered exact. Notably, in our test, LineMOD
objects “eggbox” and “glue” are symmetric. Moreover, in this paper, we denote these two
metrics as ADD(-S) and use the appropriate metric for the object.

Moreover, Table 2 presents the evaluation of all 13 objects in the LineMOD dataset using
accuracy under the ADD(-S) metric. All considered methods are trained exclusively with
synthetic data. Our method outperforms in detection accuracy for seven objects (Benchvise,
Cam, Duck, Holepuncher, Iron, Lamp, and Phone); however, it does not lead for the symmetric
objects “eggbox” and “glue”. Yet, the average accuracy across all objects is competitive with
to the SyDPose, AAE, and 6IMPOSE methods, which are well based on synthetic data for
positional pose estimation. In addition, our method is compared in the field of 6-DoF position
estimation of objects based on synthetic data, and it is found to present certain advantages
over today’s state-of-the-art algorithms on the LineMOD dataset.
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Table 2. The accuracies of our method and the baseline methods on the LINEMOD dataset in terms
of the ADD(-S) metric, where glue and eggbox are considered symmetric objects.

Method AAE [25] DPOD [18] Ours (RGB) SyDPose [32] AAE [25] SSD-6D [12] 6IMPOSE [27] Ours (Depth)

Ape 3.96 37.22 23.7 16.4 20.6 65 78 77.6
Benchvise 20.92 66.76 45.2 35.2 64.3 80 92 92.5

Cam 30.47 24.22 55.6 16.7 63.2 78 66 84.2
Can 35.87 52.57 58.2 27.3 76.1 86 95 86.5
Cat 17.90 32.36 61.4 34.2 72 70 97 96.4

Driller 23.99 66.60 47.2 30.7 41.6 73 91 66.7
Duck 4.86 26.12 35.4 9.3 32.4 66 89 92

Eggbox 81.01 73.35 86.8 52.8 98.6 100 91 96.5
Glue 45.49 74.96 74.5 51.7 96.4 100 73 85.7

Holepunch 17.60 24.50 43.1 29.2 49.9 49 61 88.3
Iron 32.03 85.02 62.4 34.3 63.1 78 94 95.4

Lamp 60.47 57.26 72.5 37.5 91.7 73 87 92.6
Phone 33.79 29.08 56.4 17.2 71 79 74 93.8

Average 28.65 50.00 55.6 31.2 64.7 79 83.6 88.3

4.1.3. Experiments on the T-LESS Dataset

The T-LESS dataset comprises 20 scenes, providing an untextured CAD model and a
textured 3D model for each object. Both models were created using three sensors to measure
the texture of 30 common objects in industrial production, without distinct texture features
and without distinguishing surface reflectance properties and colors. The dataset includes
approximately 38,000 images for training, with each sensor contributing to both training
and testing sets (10,000 images for testing). Training images feature a single example object
against a black background, while test images showcase multiple example objects with a
large range of colors, introducing clutter and heavy occlusion.

During the training process, 3D model views without 6-DoF object pose annotations
were employed as training data. This approach falls under unsupervised learning, provid-
ing a cost-effective alternative to supervised learning. To quantify prediction results and
measure recall for objects with or without textured surfaces, the visible surface difference
(VSD) [43] metric was applied as represented here below.

eVSD

(
D̃, D, Ṽ, V, τ

)
= avgp∈Ṽ∪V

{
0, p ∈ Ṽ ∩V ∧

∣∣∣D̃(p)− D(p)
∣∣∣ < τ

1, others
(16)

where D̃ represents the distance from the center of the camera to the 3D projection point
obtained after estimating the object model, errvsd is determined by the distance between the
estimated and ground truth visible object depth surfaces; moreover, in the test experiment,
the thresholds τ = 20 mm, θ = 0.3 are set.

Referring to Table 3, to visualize the results of our method through the T-LESS dataset,
line plots methods were drawn to compare it with AAE [25], Pix2Pose [22] and Kehl
et al. [44] method with RGB input and RGB-D input, respectively.

The results, displayed in Table 3, show that our method mostly dominates over
the RGB and RGB-D input-based methods when considering the T-LESS dataset for 30
in textureless objects. The average recognition accuracy and recognition time are also
displayed in Table 3.
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Table 3. The object recall for errvsd.

Object AAE [25]
-RGB Pix2Pose [22] MP-AAE [26] Xu et al. [40] OURS

-RGB
AAE [25]

+Depth(ICP)
OURS-

+Depth(ICP)

1 9.48 12.65 5.56 33.54 18.62 67.95 76.38
2 13.24 16.01 10.22 39.99 35.05 70.62 88.32
3 12.78 22.84 14.74 52.73 28.41 78.39 79.42
4 6.66 6.70 6.23 36.34 19.21 57.00 65.46
5 36.19 39.93 37.53 34.03 46.96 77.18 82.56
6 20.64 28.26 30.36 15.86 37.32 72.75 79.98
7 17.41 26.56 14.62 36.59 32.73 83.39 84.39
8 21.72 18.01 10.73 11.95 35.63 78.08 78.11
9 39.98 33.36 19.43 10.02 45.54 88.64 74.22
10 13.37 33.15 32.75 31.66 26.73 84.47 87.32
11 7.78 17.94 20.34 44.29 29.67 56.01 76.27
12 9.54 18.38 29.53 43.42 26.42 63.23 54.98
13 4.56 16.20 12.41 20.22 19.34 43.55 35.67
14 5.36 10.58 21.30 14.77 15.46 25.58 49.39
15 27.11 40.50 20.82 33.00 55.82 69.81 86.94
16 22.04 35.67 33.20 13.48 41.53 84.55 69.36
17 66.33 50.47 39.88 30.83 57.39 74.29 78.36
18 14.91 33.63 14.16 40.47 46.28 83.12 86.93
19 23.03 22.53 9.24 9.09 29.87 58.13 74.9
20 5.35 9.46 1.72 7.24 7.36 26.73 38.92
21 19.82 19.41 11.48 28.71 34.23 53.48 65.69
22 20.25 18.32 8.30 20.22 38.58 60.49 72.97
23 19.15 19.15 2.39 15.87 37.48 62.69 86.85
24 4.54 27.94 8.66 6.93 21.98 62.99 74.39
25 19.07 51.01 22.52 22.97 45.38 73.33 79.69
26 12.92 33.56 30.12 19.28 32.69 67.00 71.59
27 22.37 33.61 23.61 28.76 37.34 82.16 78.36
28 24.00 30.88 27.42 16.42 42.29 83.51 86.79
29 27.66 35.67 40.68 13.81 47.93 74.45 76.39
30 30.53 41.32 56.08 3.22 51.89 93.65 92.97

Mean (%) 19.26 26.79 20.53 24.52 34.84 68.57 74.45

Time (s) 0.077 0.127 0.2 / 0.18 0.4 0.63

Moreover, referring to Table 3, compared to the related work that uses only synthetic
data for training, our method, whether based on RGB or RGB-D images, has shown a
latency with respect to AAE [25], Pix2Pose [22], MP-AAE [26], and Xu et al. [40] methods
in terms of detection speed, but outperformed these four methods in terms of detection
accuracy. Although the recognition speed is not leading compared with some methods, the
proposed method still meets the real-time requirements.

Moreover, Table 4 presents the average processing time of each stage of the algorithm,
requiring 50 ms for object detection, and 230 ms for each object’s position estimation, leading to
a total of 280 ms. Furthermore, this method requires 450 ms for position refinement combined
with depth information. For applications with low real-time requirements, such as robot static
grasping, the algorithms proposed in this paper meet the requests of practical applications.
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Table 4. Processing time for each stage of the algorithm in this paper.

Stage Name Average Processing Time (RGB)/ms Average Processing Time (ICP)/ms

Object detection 50 50
Pose feature calculation 4 4

Similarity calculation 2 2
Translation calculation 124 124

ICP / 450

Total time 180 630

However, to quantify the pose prediction results of the objects, all poses of the nth
object in all scenes are predicted. In this work, we calculate the rotation error (RE) and the
translation error (TE) of the object in the test set of the T-LESS dataset in the experiment.
As a result, the error of estimated pose P̂ =

(
R̂, t̂
)

and the ground truth pose P =
(

R, t
)

are
measured using TE (eTE) and RE (eRE).

eTE
(
t̂, t
)
=
∥∥t− t̂

∥∥
2 (17)

eRE
(

R̂, R
)
= arccos

Tr
(

R̂R−1
)
− 1

2

 (18)

In Equation (17), t is a 3× 1 vector, and R is a rotation 3× 3 matrix with an RE ranging
between 0◦ and 180◦ as represented in Equation (18).

Concerning the histograms of error statistics proposed in Figures 10 and 11, it is
evident that both TE and RE are reduced when depth information is incorporated using
RGB-D. The reduction in TE is particularly significant. It is evident that refining the pose,
based on mask and depth information, has beneficial effects on the error reduction in the
pose estimation task.
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Figure 10. The histogram of rotation error for the 5th object, one view-dependent symmetry.

To visualize the detection process, as illustrated in Figure 12, the first column represents
the image to be detected, whereas the second column is the result of target detection by the
M-ST network and the third one denotes the cropped image with the network input shape.
Finally, the fourth column represents the result of visualization.
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4.1.4. Analysis of Experimental Results

In the paper, our method conducted a large number of experiments on T-LESS and
LineMOD datasets (see Figures 13 and 14). Comparing it to the same adopted synthetic
data, we find that, compared with the current state-of-the-art algorithms, our method
has shown a certain advantage in average recognition accuracy, and has achieved high
recognition accuracy on both scenes when occlusion and weakly textured objects were
considered. Meanwhile, we find that the recognition accuracy advantage is not obvious
enough regarding symmetric objects, and the recognition speed of our method is not as fast
as other methods when being tested over the T-LESS dataset. These findings also provide
ideas for subsequent research work.
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4.2. Ablation Experiment on the T-LESS Dataset
4.2.1. Results of M-ST

In this paper, to evaluate the recognition performance of the model when being
applied to the T-LESS dataset, each detected picture in the target detection problem may
contain multiple classes of target objects. Therefore, target detection has to find the objects
contained in the picture, not only to classify the objects in the picture but also to localize
them. As a result, target detection needs to evaluate the ability of the model to classify and
localize objects for measuring the performance of the model.

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

AP =
∫ 1

0
p(r)dr (21)

mAP =
∑N

I=1 APi
N

(22)

In the above equations, Precision denotes the accuracy rate, Recall is the recall rate, TP
represents the number of correctly detected samples TN indicates the number of correctly
detected negative samples, FP is the number of incorrectly detected samples, and FN
denotes the number of missed samples. In multi-target detection, a P-R curve can be
plotted for each category. The average precision (AP) is the area under the P-R curve
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whereas the mean average precision (mAP) is obtained by calculating the average value of
AP for multiple categories, as shown in Equations (21) and (22).

The experiments evaluated the mAP for the IoU when considering the 0.5 thresh-
old cases. In addition, the experiments applied a number of parameters to measure the
complexity of the model, and the ablation experiment results are displayed in Table 5.

Table 5. The mAP (%) for the example segmentation ablation experiment on the T-LESS dataset.

Model Baseline Mask R-CNN + Swin Mask R-CNN + iFPN Ours

box 68.9 75.2 72.1 78.2
seg 67.7 74.5 70.8 77.4

Referring to Table 5, “Baseline” represents the training data that are generated by
pasting objects from the T-LESS dataset with random translation, scaling, and in-plane
rotation on random background images [26]. As for “Mask-RCNN + Swin”, it represents
the Swin Transformer backbone network replacement operation for Mask-RCNN only, and
“Mask-RCNN + iFPN” denotes the improvement of the FPN structure only, Finally, “Ours”
denotes the M-ST instance segmentation network model used in this paper.

By analyzing the results of the ablation experiments in Table 5, our improvements to
the example segmentation network have yielded some effect, as the introduction of the
Swin Transformer in the network reveals the most obvious effect, and the precision of “box”
is higher than that of “seg”.

Moreover, the same ablation experiment as in Table 5 was validated on the LineMOD
dataset, as shown in Table 6.

Table 6. The mAP (%) for the example segmentation ablation experiment on the LineMOD dataset.

Model Baseline Mask R-CNN + Swin Mask R-CNN + iFPN Ours

box 62.5 68.3 65.7 69.7
seg 61.2 66.8 63.9 67.8

Upon analyzing the above experimental results, it is evident that the results of the
instance segmentation network on the T-LESS dataset surpass that on the LineMOD dataset.
This observation suggests that our method exhibits advantages when applied to weakly
textured industrial objects.

4.2.2. Results of 6-DoF Object Pose Estimation

To verify the effectiveness of each module of the proposed framework, ablation ex-
periments were conducted. The overall framework was evaluated after being compared
to the classical 6-DoF object pose estimation algorithm AAE network. Furthermore, the
performance of the model was just compared with the CBAM module incorporated, the
Swin Transformer algorithm incorporated, and finally, the proposed algorithm.

Table 7 shows the experimental results, where “Baseline” represents the CDAE com-
bined with the Mask R-CNN instance segmentation network, the “CBAM-CDAE” denotes
the result of improving only the CDAE network, “M-ST” indicates the result of improving
only the Mask R-CNN network, and, finally, “OURS” represents the effect of the completed
model proposed in this paper.

Table 7. Results of ablation experiments for 6-DoF object attitude estimation on LineMOD dataset
and TLESS dataset (ADD(-S) evaluation criterion is used for LineMOD dataset and VSD evaluation
criterion is used for TLESS dataset).

Object Baseline CBAM–CDAE M-ST OURS

LineMOD 72.4 78.0 85.6 88.30
T-LESS 61.59 64.35 70.25 74.45
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The results of the ablation experiments in Table 6 demonstrate that both the CBAM–CDAE
network and the M-ST network contribute to the improvement of detection accuracy. The
instance segmentation network exhibits a more pronounced effect on the improvement of the
detection accuracy, revealing variations in the impact across datasets with different features.

5. Conclusions and Discussion

In this paper, we propose a DL-based 6-DoF object position estimation method relying
on synthetic data. We leverage high-quality physically based rendering and DR aiming at
addressing the domain gap between synthetic and real data in target detection and image
segmentation tasks. Moreover, the proposed approach aims to overcome the challenges
of low accuracy in current recognition based on synthetic data. This contribution holds
significance for achieving high-precision pose estimation of weakly textured objects in
various complex environments. Therefore, the advantages of this work can be summarized
as follows:

1. In the example segmentation dataset processing, the BlenderProc realism dataset
generation method, based on bilateral filtering processing, was employed to reduce the
neighborhood problem between the synthetic data and the real data while obtaining a
higher quality synthetic dataset;

2. In the network section, we introduce a Mask R-CNN network enhanced by the atten-
tion mechanism. This enhancement not only improves the accuracy but also reduces
the number of model parameters. In addition, we propose an iFPN structure, address-
ing the deficiency in underlying feature information observed in the traditional FPN
structure by adding a layer of bottom-up paths;

3. We also add a CBAM structure to the CDAE network to obtain a CDAE-CBAM
network, yielding a better ability to extract potential feature vectors compared to the
existent ones;

4. We put forth a CDAE-CBAM network, exhibiting enhanced potential feature vec-
tor extraction capabilities through the introduction of spatial and channel attention
mechanisms compared to the pre-improvement one.

Our method not only improves the accuracy of pose estimation but also maintains
a high detection speed. These findings contribute to the expansion and advancement of
scientific research in the field of 6-DoF object pose estimation based on synthetic data. The
experimental results demonstrate the effectiveness of the method and provide insights for
future research in this area.

Future research will explore category-level 6-DoF object pose estimation tasks and
lightweight networks with the aim of improving reliability and utility in industrial real-
world scenarios.

Author Contributions: Conceptualization, T.Z. and C.Z.; methodology, T.Z. and C.Z.; software, T.Z. and
Y.W.; validation, T.Z. and C.Z.; formal analysis, S.Z.; investigation, Y.W.; resources, C.Z.; data curation,
T.Z. and Y.W.; writing—original draft preparation, T.Z., S.Z. and Y.W.; writing—review and editing, C.Z.;
visualization, T.Z. and Y.W.; supervision, S.Z.; project administration, T.Z. and C.Z.; funding acquisition,
C.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Postgraduate Research & Practice Innovation Program of
Jiangsu Province, grant number: KYCX23_3854.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: For confidentiality reasons, no further details will be disclosed at this time.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 9854 23 of 24

References
1. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
2. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single Shot Multibox Detector. In Proceedings of

the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2015, 28, 1137–1149. [CrossRef] [PubMed]
4. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-Time Instance Segmentation. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9157–9166.
5. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
6. Wang, X.; Kong, T.; Shen, C.; Jiang, Y.; Li, L. Solo: Segmenting Objects by Locations. In Proceedings of the Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 649–665.
7. Chen, X.; Girshick, R.; He, K.; Dollár, P. Tensormask: A Foundation for Dense Object Segmentation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 2061–2069.
8. Li, Y.; Qi, H.; Dai, J.; Ji, X.; Wei, Y. Fully Convolutional Instance-Aware Semantic Segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2359–2367.
9. Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack detection and comparison study based on faster R-CNN and

mask R-CNN. Sensors 2022, 22, 1215. [CrossRef] [PubMed]
10. Wu, Q.; Feng, D.; Cao, C.; Zeng, X.; Feng, Z.; Wu, J.; Huang, Z. Improved mask R-CNN for aircraft detection in remote sensing

images. Sensors 2021, 21, 2618. [CrossRef] [PubMed]
11. Liu, S.; Jia, J.; Fidler, S.; Urtasun, R. Sgn: Sequential Grouping Networks for Instance Segmentation. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3496–3504.
12. Kehl, W.; Manhardt, F.; Tombari, F.; Ilic, S.; Navab, N. Ssd-6d: Making rgb-Based 3d Detection and 6d Pose Estimation Great

again. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1521–1529.
13. Li, Z.; Wang, G.; Ji, X. Cdpn: Coordinates-Based Disentangled Pose Network for Real-Time rgb-Based 6-dof Object Pose Estimation.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 7678–7687.

14. Jin, L.; Wang, X.; He, M.; Wang, J. DRNet: A Depth-Based Regression Network for 6D Object Pose Estimation. Sensors 2021, 21, 1692.
[CrossRef] [PubMed]

15. Rad, M.; Lepetit, V. Bb8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3d Poses of Challenging
Objects without Using Depth. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 3828–3836.

16. Tekin, B.; Sinha, S.N.; Fua, P. Real-Time Seamless Single Shot 6d Object Pose Prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 292–301.

17. Vidal, J.; Lin, C.-Y.; Martí, R. 6D Pose Estimation using an Improved Method Based on Point Pair Features. In Proceedings of the
2018 4th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 23–26 April 2018; pp. 405–409.

18. Zakharov, S.; Shugurov, I.; Ilic, S. Dpod: 6d Pose Object Detector and Refiner. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1941–1950.

19. Peng, S.; Liu, Y.; Huang, Q.; Zhou, X.; Bao, H. Pvnet: Pixel-Wise Voting Network for 6dof Pose Estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 4561–4570.

20. Vidal, J.; Lin, C.-Y.; Martí, R. Visual Attention and Color Cues for 6D Pose Estimation on Occluded Scenarios Using RGB-D Data.
Sensors 2021, 21, 8090. [CrossRef] [PubMed]

21. He, Y.; Sun, W.; Huang, H.; Liu, J.; Fan, H.; Sun, J. Pvn3d: A Deep Point-Wise 3d Keypoints Voting Network for 6dof Pose
Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 11632–11641.

22. Park, K.; Patten, T.; Vincze, M. Pix2pose: Pixel-Wise Coordinate Regression of Objects for 6d Pose Estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7668–7677.

23. Hajari, N.; Lugo Bustillo, G.; Sharma, H.; Cheng, I. Marker-Less 3d Object Recognition and 6d Pose Estimation for Homogeneous
Textureless Objects: An RGB-D Approach. Sensors 2020, 20, 5098. [CrossRef] [PubMed]

24. Yu, H.; Li, S.; Liu, H.; Xia, C.; Ding, W.; Liang, B.J.I.R.; Letters, A. TGF-Net: Sim2Real Transparent Object 6D Pose Estimation
Based on Geometric Fusion. IEEE Robot. Autom. Lett. 2023, 8, 3868–3875. [CrossRef]

25. Sundermeyer, M.; Marton, Z.-C.; Durner, M.; Triebel, R. Augmented Autoencoders: Implicit 3D Orientation Learning for 6D
Object Detection. Int. J. Comput. Vis. 2019, 128, 714–729. [CrossRef]

26. Sundermeyer, M.; Durner, M.; Puang, E.Y.; Marton, Z.-C.; Vaskevicius, N.; Arras, K.O.; Triebel, R. Multi-Path Learning for Object
Pose Estimation across Domains. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 13916–13925.

https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.3390/s22031215
https://www.ncbi.nlm.nih.gov/pubmed/35161961
https://doi.org/10.3390/s21082618
https://www.ncbi.nlm.nih.gov/pubmed/33917904
https://doi.org/10.3390/s21051692
https://www.ncbi.nlm.nih.gov/pubmed/33804518
https://doi.org/10.3390/s21238090
https://www.ncbi.nlm.nih.gov/pubmed/34884094
https://doi.org/10.3390/s20185098
https://www.ncbi.nlm.nih.gov/pubmed/32906801
https://doi.org/10.1109/LRA.2023.3268041
https://doi.org/10.1007/s11263-019-01243-8


Sensors 2023, 23, 9854 24 of 24

27. Cao, H.; Dirnberger, L.; Bernardini, D.; Piazza, C.; Caccamo, M. 6IMPOSE: Bridging the reality gap in 6D pose estimation for
robotic grasping. Front. Robot. AI 2023, 10, 1176492. [CrossRef] [PubMed]

28. Kendall, A.; Grimes, M.; Cipolla, R. Posenet: A Convolutional Network for Real-Time 6-dof Camera Relocalization. In Proceedings
of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2938–2946.

29. Marion, P.; Florence, P.R.; Manuelli, L.; Tedrake, R. Label Fusion: A Pipeline for Generating Ground Truth Labels for Real rgbd
Data of Cluttered Scenes. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
QLD, Australia, 21–25 May 2018; pp. 3235–3242.

30. Huang, D.; Ahn, H.; Li, S.; Hu, Y.; Lee, D.J.N.P.L. Estimation of 6D Pose of Objects Based on a Variant Adversarial Autoencoder.
Neural Process. Lett. 2023, 55, 1–16. [CrossRef]

31. Thalhammer, S.; Patten, T.; Vincze, M. SyDPose: Object detection and pose estimation in cluttered real-world depth images
trained using only synthetic data. In Proceedings of the 2019 International Conference on 3D Vision (3DV), Quebec, QC, Canada,
16–19 September 2019; pp. 106–115.

32. Yang, X.; Fan, X.; Wang, J.; Lee, K. Image translation based synthetic data generation for industrial object detection and pose
estimation. IEEE Robot. Autom. Lett. 2022, 7, 7201–7208. [CrossRef]

33. Jin, R.; Jiang, J.; Qi, Y.; Lin, D.; Song, T. Drone Detection and Pose Estimation Using Relational Graph Networks. Sensors 2019, 19, 1479.
[CrossRef] [PubMed]

34. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Konolige, K.; Bradski, G.; Navab, N. Technical Demonstration on Model Based
Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes. In Proceedings of the Computer
Vision–ECCV 2012, Workshops and Demonstrations, Florence, Italy, 7–13 October 2012; pp. 593–596.

35. Hodan, T.; Haluza, P.; Obdržálek, Š.; Matas, J.; Lourakis, M.; Zabulis, X. T-LESS: An RGB-D Dataset for 6D Pose Estimation of
Texture-Less Objects. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa
Rosa, CA, USA, 24–31 March 2017; pp. 880–888.
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