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Abstract: Lake ice phenology (LIP), hiding information about lake energy and material exchange,
serves as an important indicator of climate change. Utilizing an efficient technique to swiftly extract
lake ice information is crucial in the field of lake ice research. The Bayesian ensemble change
detection (BECD) algorithm stands out as a powerful tool, requiring no threshold compared to
other algorithms and, instead, utilizing the probability of abrupt changes to detect positions. This
method is predominantly employed by automatically extracting change points from time series
data, showcasing its efficiency and accuracy, especially in revealing phenological and seasonal
characteristics. This paper focuses on Bosten Lake (BL) and employs PMRS data in conjunction with
the Bayesian change detection algorithm. It introduces an automated method for extracting LIP
information based on the Bayesian change detection algorithm. In this study, the BECD algorithm was
employed to extract lake ice phenology information from passive microwave remote sensing data on
Bosten Lake. The reliability of the passive microwave remote sensing data was further investigated
through cross-validation with MOD10A1 data. Additionally, the Mann–Kendall non-parametric test
was applied to analyze the trends in lake ice phenology changes in Bosten Lake. Spatial variations
were examined using MOD09GQ data. The results indicate: (1) The Bayesian change detection
algorithm (BCDA), in conjunction with PMRS data, offers a high level of accuracy and reliability
in extracting the lake ice freezing and thawing processes. It accurately captures the phenological
parameters of BL’s ice. (2) The average start date of lake ice freezing is in mid-December, lasting for
about three months, and the start date of ice thawing is usually in mid-March. The freezing duration
(FD) of lake ice is relatively short, shortening each year, while the thawing speed is faster. The stability
of the lake ice complete ice cover duration is poor, averaging 84 days. (3) The dynamic evolution of
BL ice is rapid and regionally distinct, with the lake center, southwest, and southeast regions being
the earliest areas for ice formation and thawing, while the northwest coastal and Huang Shui Gou
areas experience later ice formation. (4) Since 1978, BL’s ice has exhibited noticeable trends: the onset
of freezing, the commencement of thawing, complete thawing, and full freezing have progressively
advanced in regard to dates. The periods of full ice coverage, ice presence, thawing, and freezing
have all shown a tendency toward shorter durations. This study introduces an innovative method for
LIP extraction, opening up new prospects for the study of lake ecosystem and strategy formulation,
which is worthy of further exploration and application in other lakes and regions.

Keywords: PMRS; Bayesian change detection; lake ice; freeze–thaw process; BL

1. Introduction

According to the latest report from the Intergovernmental Panel on Climate Change
(IPCC) in 2021, the average global temperature increased by 1.1 ◦C compared to the
average temperature during the period of 1850–1900, covering the years 2011 to 2020.
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More concerning is the prediction that, in the near future (i.e., 2021 to 2040), there is a
high likelihood of surpassing the critical threshold of 1.5 ◦C. This escalation would further
exacerbate the ongoing global warming trend [1]. Despite covering only about 2% of
the Earth’s land surface, lakes play a critical role in the Earth’s ecosystem [2]. The water
circulation processes of lakes not only have a significant impact on local climate change, but
also have a close relationship with local human activities, particularly in arid regions [3].
Lake ice, as a significant component of the cryosphere, is being affected by climate change.
Its phenological processes, including freeze-up start (FUS), freeze-up end (FUE), break-up
start (BUS), and break-up end (BUE), influence the hydrological processes and aquatic
ecosystems of lakes. Therefore, the rapid and accurate extraction of lake ice information
using remote sensing technology is crucial for understanding regional climate change, lake
ecosystem response, and the development of effective ecological protection strategies.

In high-latitude regions, the seasonal changes in lake ice also exhibit periodic pheno-
logical patterns. Over the past few decades, the duration of lake ice cover in the Northern
Hemisphere has been continuously decreasing, and this trend is expected to become even
more severe in the context of future warming [4]. Related research has shown that climate
change has a direct and significant impact on natural ecosystems on Earth [5]. Specifically,
the impact of climate change on water circulation in arid regions has been a recent focus of
study [6]. Currently, LIP research primarily focuses on the extraction of temporal and at-
tribute parameters. While temporal parameters can be obtained through field observations,
this method is often time consuming and labor intensive. Moreover, for many high-altitude
lakes, there is a lack of on-site observation data regarding LIP characteristics. As a result,
researchers are increasingly turning to remote sensing technology and modeling methods
to study LIP. For example, Stephen [7] used QuikSCAT microwave data to extract the LIP
period of the Great Bear Lake and Great Slave Lake in northern Canada from 2000 to 2006,
based on significant differences in the backscatter coefficients between the water and ice.
Using AVHRR data, they observed two lakes in the Baltic region from 1980 to 2012 and
used a threshold method to extract lake ice phenological changes [8]. High-resolution
radiometer AVHRR data were employed to analyze the freeze–thaw process of Qinghai
Lake and explore the relationship between lake ice thickness and temperature using ob-
servational data [9]. Cai et al. analyzed the freeze–thaw dates and lake ice coverage time
of over 50 lakes on the Qinghai-Tibet Plateau, from 2000 to 2017, using MODIS data and
further investigated the spatiotemporal differences and reasons for the lake ice phenological
changes [10]. Wu et al. used MODIS and AMSR-E data to identify the ice conditions of
Nam Co Lake and found that MODIS was the most accurate in determining the start of
ice thawing [11], while AMSR-E was more accurate in monitoring the time to complete
freeze-up and complete thawing [11].

Remote sensing technology enables us to acquire essential information about lake ice
morphology and spatial distribution, while modeling methods can help systematically
extract LIP information. Qiu et al. empirically demonstrated the effectiveness of the
threshold method for LIP using PMRS data, but due to insufficient data resolution, it does
not adequately support the study of LIP in small and medium-sized lakes [12]. Ruan et al.
used PMRS data with a 25 km resolution to study the LIP of Nam Co Lake using a mixed
pixel decomposition method, but they could not distinguish between lake shore and lake
water pixels, resulting in some errors [13]. Existing LIP studies have paid relatively little
attention to the changes in LIP in Xinjiang. Qin et al. used MODIS data to study the LIP
changes in Sai Li Mu Lake in Xinjiang [14]. Aierken et al. used optical remote sensing data
to study and explore the characteristics of LIP changes in large lakes in Xinjiang, but the
time series was short and the method was not as comprehensive as traditional methods,
making it less accurate for studying long-term LIP characteristics [15]. Cai et al. used a
threshold method to calculate the LIP changes of 23 lakes in Xinjiang and concluded that
changes in area and mineralization could also affect the LIP changes of lakes [10]. Therefore,
introducing a more efficient method for calculating LIP in the context of climate change is
of great significance for this research. Unlike optical remote sensing methods, microwave
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remote sensing: (1) is not affected by cloud or rain weather conditions; (2) has a higher
(at least once in a day) revisit frequency, allowing for the acquisition of daily lake surface
brightness temperature information; (3) has a long time series from 1987 to the present,
SSMR sensors data are available from 1978 to 1987, SSMI sensors data are available from
1987 to 2008, and SSMIS sensors data are available from 2000 to the present [12]; (4) by
leveraging the significant temperature differences between lake ice, open water and land,
the freezing and thawing dates of lakes can be extracted.

In past research, various time series algorithms have been developed to utilize the
temporal dimension of satellite data, and this remains a dynamic field of research. The
advantage of time series analysis in depicting landscape dynamics and disturbances is
evident, but the availability of many alternative algorithms highlights a potential issue: no
single algorithm is always applicable to all scenarios. Recently, a study evaluating seven
common methods emphasized this issue and found that interference detected between
algorithms was nearly zero at the pixel level [16]. One approach to alleviate this dilemma
is to abandon the single best algorithm paradigm and turn to ensemble modeling. This
ensemble algorithm was originally reported by Zhao et al. for the Bayesian estimation
of mutations, seasonality, and trends [17]. The first evaluation of the algorithm was a
case study monitoring the wetland vegetation dynamic [18]. Conceptually, the Bayesian
Estimator of Abrupt change, Seasonal change, and Trend (BEAST) combines many in-
dividual weak models into a better model through Bayesian model averaging. BEAST
is rigorously formalized, and its key equations are manageable in analysis. In practical
applications, BEAST can estimate the probability of change point occurrence, detect not
only major disturbances but also low-level disturbances, and reveal complex nonlinear
trend dynamics, all of which are challenging for single best model algorithms. BEAST is
not only suitable for remote sensing data, but also for other environmental, ecological, or
socioeconomic time series data.

This paper is based on the BECD algorithm for the extraction of lake ice phenological
parameters from microwave remote sensing data. This method is formulated within
a Bayesian hierarchical modeling framework and is implemented using mixed MCMC
sampling chains to analyze the seasonal, trend, and change point components of high-
density brightness temperature data. Optical remote sensing data are used to validate and
evaluate the feasibility of this algorithm in this study. The goal is to explore the trends
and features of Bosten LIP since 1978 and propose a more efficient and rapid method for
extracting LIP.

2. Study Area

Figure 1 displays an overview of the study area, depicting the geographical features
of Bosten Lake. BL, the largest inland freshwater lake in China, is situated in the lowest
depression of the Yanqi Basin in Xinjiang [19]. The terrain exhibits a northwest-to-southeast
slope, and the lake serves as both the terminal point of the Kaidu River and the source of the
Kongque River. With a water surface area of 1646 square kilometers, an average depth of
9 m, and a maximum depth of 17 m, BL is located between 86◦40′ to 87◦25′ E and 41◦56′ to
42◦14′ N. It stretches approximately 55 km from east to west and 2 km from north to south,
with an elevation of 1048 m. It ranks as the largest inland freshwater flow-through lake in
China. The region belongs to a temperate continental arid climate zone. This climate type is
characterized by four distinct seasons, with hot and dry summers, cold and dry winters, an
annual average temperature below 10 ◦C, and an annual precipitation of less than 400 mm.
In such a climate, water resources are relatively scarce, leading to frequent occurrences of
drought and water shortages. Additionally, the pronounced diurnal temperature variation
and arid climate conditions pose challenges to the local ecosystem and biodiversity. In
summary, BL is a geographically unique lake located in a region with an arid climate in
Xinjiang. The lake ecosystem is influenced by climate and water resource variations.
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3. Materials and Methods
3.1. Microwave Remote Sensing Data

This paper utilizes the CETB product provided by the National Snow and Ice Data
Center (NSIDC, https://nsidc.org/data/, accessed on 20 March 2023) to extract LIP infor-
mation for BL from data collected by the SMMR, SSM/I, and SSMIS sensors. The SMMR
sensor was carried on the Nimbus-7 satellite and featured five frequency bands (6.6 GHz,
10.7 GHz, 18.0 GHz, 21.0 GHz, and 37.0 GHz), with a temporal resolution of 1 day and
spatial resolutions of 25 km, 3.125 km, 12.5 km, and 6.25 km, respectively. The SSM/I and
SSMIS sensors were mounted on satellites in the Defense Meteorological Satellite Program
(DMSP) series (F 8, F 10, F 11, F 13, F 14, F 15, F 16, F 17, F 18, and F 19) and included
four frequency bands (19.35 GHz, 22.2 GHz, 37.0 GHz, and 85.5 GHz, with SSMIS replacing
85.5 GHz with a 91.655 GHz channel). This study utilized data with a spatial range covering
BL and a temporal range from October 1978 to December 2022, with a spatial resolution of
3.125 km and a temporal resolution of 1 day.

3.2. Optical Remote Sensing Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) is sourced from the
Satellite Observing Center at the National Aeronautics and Space Administration (https:
//modis.gsfc.nasa.gov/, accessed on 23 March 2023). The MODIS sensor is mounted on
both the Terra and Aqua satellites in NASA’s Earth Observing System, featuring a total
of 36 bands, with spatial resolutions of 250 m, 500 m, and 1000 m. This study made use
of the MOD09GQ dataset, obtained from the Terra satellite, and the MYD09GQ dataset,
acquired from the Aqua satellite. Both datasets feature a spatial resolution of 250 m and
a temporal resolution of one day. For the MOD09GQ dataset, data from 1 August 2000
to 31 December 2022 were utilized. As for the MYD09GQ dataset, data from 1 August
2002 to 31 December 2022 were employed. The data in this study are used for the visual
verification of the accuracy of the BECD in extracting LIP processes from PMRS data and
capturing the spatial variations in lake ice for the given lakes.

Additionally, the daily snow product from MODIS is sourced from the National
Snow and Ice Data Center in the United States (https://nsidc.org/data/, accessed on

https://nsidc.org/data/
https://modis.gsfc.nasa.gov/
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23 March 2023). This paper incorporated the MOD10A1 snow product dataset from the
Terra satellite and MYD10A1 dataset from the Aqua satellite, both offering a temporal
resolution of one day and a spatial resolution of 500 m. Data spanning from 2000 to 2022
were chosen for validation of the parameters, such as the onset of freezing, complete
freezing, the onset of thaw, and complete thaw, extracted by our research algorithm.
The results of this study indicate that the accuracy of the land cover classification with
MOD10A1 data ranges from 87.5% to 94%. Hence, this dataset serves as valuable research
support and validation for our study [20]. The purpose of this data in the present study is
to cross-validate the accuracy of the LIP information extracted from the PMRS data for the
period 2000 to 2022.

4. Research Methods and Validation
4.1. Nearest Neighbor Algorithm

During each sensor detection of the lake surface, slight differences in the coordinates
of each pixel occur due to the sensor’s position. To select the image data with the largest
detected lake area during each transit, the image closest to the center coordinates of the lake
is often chosen. To identify the central location of the lake, one can select the appropriate
image by calculating the distance to the nearest point from the lake’s center. This calculation
involves buffering a rectangular area of 3.125 km × 3.125 km on the image centered on the
lake’s coordinates to ensure that the image pixel coordinates encompass the lake’s center
point. This selection method ensures that the chosen images cover the central region of the
lake to obtain the maximum lake area information. In the specific implementation process,
image selection is based on finding the point (X min, Y min) closest to the coordinates (X, Y)
from the center point (O). This ensures that the selected image is in the closest proximity to
the lake’s central position. This strategy is commonly used in remote sensing data analysis
to obtain the most relevant and representative image data for further research on the lake’s
characteristics and changes.

4.2. Bayesian Change Detection Algorithm

The BECD is a powerful tool for analyzing time series data and detecting changes
over time. This method is based on Bayesian inference and, by sampling the posterior
distribution of the number and locations of change points, it provides confidence estimates
for the change points. It offers researchers precise change point locations and the probability
of change point occurrences. The BECD method introduces Bayesian statistics in addressing
change point detection problems, making it more flexible. This method considers the
statistical properties of the data and utilizes prior information to infer the location and
intensity of the change points.

In time series data, change point detection can reveal abrupt changes, shifts in trends,
or anomalous events, providing valuable information for decision making and further
analysis. Compared to traditional change point detection methods, the BECD method is
better suited to handle data noise and uncertainty.

4.3. Bayesian Ensemble Change Detection Algorithm

In mathematical terms, the BECD method decomposes a time series Y(t) into four
components: trend (T), seasonal variation (S), change points (θt), and noise (ε). These
components are combined into the time series model as follows:

Y(t) = T(θ) + S(θ) + ε (1)

where ε represents Gaussian random errors N(0, δ2), with an unknown variance δ2. T and
S represent the basic components of the trend and seasonal variation, while change points
are represented by parameters θ t and θ s. Specifically, θ t and θ s denote the number and
location of the change points in the trend and seasonal components.

Introducing Equation (1) allows for the decomposition of the brightness temperature
data of BL, enabling us to explore the following inquiries:
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1. First, how many change points occurred, and when did they occur? Are these change
points indicatives of trends or seasonal variations [21]? The concept of change points
represents the trajectories of changes in the brightness temperature due to seasonality
and trends. This algorithm offers broader and more inclusive assumptions compared
to other algorithms.

2. What are the potential trends? Trends are not limited to linear changes but may
also involve complex nonlinear trajectories with multiple change points within a
day. Detecting change points with high fidelity is essential for understanding BL’s
ice phenology.

3. What are potential seasonal change points? Seasonal change points also encompass
trend change points, and they are related to the ice phenology of BL. Seasonal change
points may not necessarily include trend change points but can reflect the driving
factors of ice phenology changes.

4.4. Data Analysis Methods

In this study, we aimed to validate the accuracy and reliability of the BECD algorithm
on passive microwave remote sensing data, with a spatial resolution of 3.125 km. We
employed the correlation coefficient (r), root mean square error (RMSE), and mean absolute
error (MAE) for the evaluation, cross-validating the results with lake ice information
extracted from the MOD10A1 dataset spanning from 2000 to 2022 [22,23]. To gain a more
comprehensive understanding of the lake ice phenological changes in Lake Baotou from
1978 to 2022, we conducted in-depth analysis using the Mann–Kendall non-parametric
test to examine the trends and directions of these changes [24,25]. This series of methods
and analyses contribute to ensuring the accuracy and reliability of our research findings
regarding lake ice variations. All methods and details of the data processing procedures
are outlined in Figure 2.
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5. Results
5.1. Extraction and Accuracy Evaluation of Lake Ice Freeze–Thaw Process Information

A time series of brightness temperature values at a resolution of 3.125 km using PMRS
data was utilized, and the BECD algorithm was applied to this data to obtain the range
of lake ice freeze–thaw dates from 1978 to 2022. Taking the example of change detection
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in the time series brightness temperature values from 2000 to 2005, an illustration of the
decomposition of the time series of the brightness temperature values related to lake ice
is presented (refer to Figure 3). In this figure, the BECD algorithm detected five seasonal
change points (Figure 3c) and five trend change points (Figure 3e), with higher probabilities
associated with their occurrences. This indicates the probability of abrupt changes in the
brightness temperature values in BL and suggests that the times at which these changes are
highly likely to occur are closely related to the phenology of lake ice, based on differences in
the brightness temperature values between open water and ice. It is important to note that
Figure 3 is an example, showing only a small portion of the results on the decomposition of
the time series of the brightness temperature values related to lake ice. The BECD algorithm
is capable of conducting a more comprehensive analysis of the entire time series, providing
more detailed and accurate information about LIP changes.
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Figure 3. Bayesian ensemble detection decomposition and change point detection graph for bright-
ness temperature in Bosten Lake from 2000 to 2005. In the figure: (a) the original data represents the
brightness temperature (K); (b) the algorithm decomposes the original data to extract the seasonality;
(c) the algorithm identifies the seasonal change points, such as tcp1, along with the occurrence
probabilities; (d) the algorithm decomposes the original data to reveal the trend; (e) the algorithm
detects the trend change points, such as scp1, along with the occurrence probabilities.

The seasonal and trend change point probabilities were estimated using a Bayesian
Model Averaging (BMA) strategy, and the threshold for mutation probability can be man-
ually controlled to determine the change point locations based on prior knowledge. To
validate the reliability of the Bayesian ensemble change detection algorithm, the time
series extracted using optical remote sensing data was used to verify the timeframe of the
Bayesian change detection. Since Landsat data is synthesized every eight days and it is
challenging to obtain daily imagery, MOD09GQ data was used as a substitute. Figure 4
shows the remote sensing images corresponding to the detected change point dates using
the BECD algorithm.
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Figure 4. RGB remote sensing images from MOD09GQ during the freeze–thaw period from 2000 to
2004.

From Figure 4, it can be observed that ten change points were detected through both
seasonal and trend signals (Figure 3), with an average of two changes occurring each year.
First, a trend signal captured a change in the brightness temperature values in December
2000, which is highly likely to be related to BL’s ice phenology. Further examination of
Figure 4 through visual interpretation indicated that BL entered the initial freezing stage
on 13 December 2000.

During the period from 2000 to 2005, the dates of BL’s ice changes obtained by the
BECD algorithm were all within the ice phenology’s freezing and thawing process. This
indicates that the BECD algorithm accurately captures the freezing and thawing processes
of BL’s ice. This has significant implications for the study of lake ice freezing and thawing.
The times of the change points extracted by the BECD algorithm, along with the remote
sensing images obtained based on this algorithm, allow for a more in-depth understanding
of the temporal characteristics and phenology of BL’s ice. This provides a reliable method
and data support for the detection and study of lake ice changes.

In order to validate the suitability of PMRS data with a spatial resolution of 3.125 km
for extracting LIP information, this study conducted cross-validation using 250 m resolution
MOD10A1 data from 2000 to 2022. The LIP information extracted from the PMRS data
during the same period was utilized for comparison. Based on Figure 5, it is evident that
whether it is the start of freezing, complete freezing, the start of thawing, or complete
thawing dates, the frozen–thawed dates extracted from the MOD10A1 data show a high
correlation with those obtained using the BECD algorithm and PMRS data. In general, the
frozen dates extracted from the PMRS data are earlier than those from the MOD10A1 data,
and thawing occurs later.
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Figure 5. Cross-validation on the ice phenology of Bosten Lake derived from PMRS data and
MOD10A1. In this figure, the X and Y axis represent the extracted dates of lake ice phenology
from MOD10A1 data and passive microwave remote sensing data, respectively. The phenological
information is derived from every 1 September to 31 August in the next year. Moreover, “r” indicates
the correlation coefficient, “MAE” represents the mean absolute error, and “RMSE” represents the
root mean square error.

The RMSE for the start of freezing date is 0.968 days, and the MAE is 0.746 days
(Figure 5), indicating that the PMRS data extracted the start of freezing date for BL earlier
from 2000 to 2022 compared to the MOD10A1 data. This is because the MOD10A1 data
were continuously affected by cloudy weather when obtaining the complete freezing date,
leading to a delay in extracting the start of freezing date from the MOD10A1 data. The
lowest MAE and RMSE values were found for the complete freezing date, with values of
0.81 days and 0.664 days, and an R-squared value of 0.952 (Figure 5). This suggests that
due to the lower spatial resolution of the PMRS data, there are limitations to obtaining
details accurately. Therefore, there is a slight tendency for the judgment of the complete
freezing date to be slightly earlier than the actual date. The start of freezing date (Figure 5)
had a maximum MAE of 1.261 and an RMSE of 2.09, indicating that the start of ice melting
in BL, as observed in the PMRS data, appears later than in the MOD10A1 data. For the
PMRS data, even small ice cover on the lake surface can be reflected by the brightness
temperature, but for smaller areas of melting, it may not be accurately represented. In
addition, the orbital swath intervals in the PMRS data are likely to contribute to the delay
in the start of melting date. The MAE value for the complete melting date is 0.79, and the
RMSE is 1.025. Similarly, due to issues with cloud cover in the MOD10A1 data and spatial
resolution in the PMRS data, there is a delay in obtaining the complete melting date.
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5.2. LIP Temporal Changes

Based on the data presented in Figure 6 and Table 1 which summarizes the ice phenol-
ogy data extracted from microwave remote sensing of BL, a comprehensive understanding
of the ice phenology changes in BL from 1978 to 2022 and the duration of each ice season
were obtained. Since the PMRS data began in October 1978, on 28 October 1978, it is
categorized as the first year in the 1978/1979 period.
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Table 1. Statistics on the Bosten Lake ice characterization information.

Numerical Value FUS FD FUE CID BUS BD BUE

Average 108.30 8.36 116.60 94.13 201.10 9.66 210.10
Range 27 9 22 39 33 8 41

Annual amplitude −0.09 −0.01 −0.27 −0.23 −0.08 −0.05 −0.32

BL typically experiences the start of freezing around mid-December, with an average
start date of 108.5 days, which is approximately 17 December. The earliest recorded start
date was on 6 December 1996, and the latest was on 2 January 1998. The range of start
dates spans 27 days, showing a tendency towards earlier freezing.

The complete freezing of the lake usually occurs in late December, with an average
date of around 25 December. The earliest complete freezing date was on 26 December 1996,
and the latest was on 8 January 2000. The range of complete freezing dates spans 22 days,
indicating a trend towards earlier complete freezing.

The FD represents the duration from the start of freezing to complete freezing, with
an average of approximately 8 days. The shortest recorded FD was 4 days in 2006, while
the longest was 12 days in 1978, showing a range of 8 days and a trend of shorter FDs.

The start of melting in BL typically occurs around 19 March, with an average date of
201.1 days. The earliest recorded start of melting was on 2 March 2007, while the latest
was on 4 April 1985, showing a 33-day difference. The average complete melting date is
210.1 days, occurring on 28 March. The latest complete melting occurred on 14 April 1985,
while the earliest was on 17 March 2021, with a range of 29 days. The melting period is an
indicator of the local warming rate, with the shortest melting period recorded at 4 days in
2002 and the longest at 23 days in March 2008, indicating a fast-melting rate.

The CID for BL represents the difference in days between the complete freezing date
and the start of melting date. The shortest CID was 71 days in the 2007/2008 period, while
the longest was 112 days in the 1985/1986 period, with an average of about 84 days and a
range of 41 days. The shortest ED was 81 days in the 1990/1991 period, while the longest
was 112 days in the 1985/1986 period, with a range of 39 days. The average ED was 94.13
days, indicating relatively low stability in BL’s ice cover over the past 44 years.

5.3. Spatial Variations in LIP

BL covers a large water surface area, and the dynamic evolution of its ice reflects the
differences in the water depth. The formation and melting of lake ice usually start from
the shoreline, with shallow water areas freezing earlier compared to deeper regions [26].
Figure 7 presents a study on the dynamic evolution of BL’s ice based on microwave and
optical remote sensing images, showing the brightness temperature differences in BL’s ice.

On 13 December 2010, BL entered a freezing state, with the lowest brightness tempera-
ture value of 212.56 K in the central area of the lake. The highest brightness temperature
value was 231.8 K in the southwest part of the lake. Based on the differences in the bright-
ness temperature values across the lake, it can be determined that BL’s ice on 13 December
2010 was primarily located in the southwestern area of the lake.

On 20 December 2010, the brightness temperature values of BL’s microwave pixels
changed, with the lowest value increasing from 212.56 K on the 13th to 217.32 K. Similarly,
the high-value microwave pixels expanded from the southwestern and northwestern areas
towards the center, indicating ice spreading towards the center of BL.

On 1 April 2011, BL’s microwave pixel brightness temperature values reached a
minimum of 244.64 K. Compared to the values in the previous two periods, the brightness
temperature values on 1 April 2011 significantly increased and exceeded the previous
highest values. This clearly demonstrates that BL was in a fully frozen state.



Sensors 2023, 23, 9852 12 of 17

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17 
 

 

melting stage on that day. The main concentration of melting was in the southeast area of 
the lake, and there were fewer ice pixels. 

 
Figure 7. Spatial distribution of lake ice phenology in Bosten Lake (2010–2011). 

On 9 April 2011, the high-value microwave remote sensing pixels were compared to 
those from 1 April 2011. It was observed that on that day, BL had fewer ice pixels, mainly 
concentrated in the southeast corner of the lake. This indicates that BL completed its ice 
melting in just 9 days. 

On 22 April 2011, the microwave pixel values had a minimum of 197.3 K and a max-
imum of 203.29 K, which were lower than the highest brightness temperature values from 
the previous five periods. This suggests that BL was completely ice free on 22 April 2011. 

5.4. Trends in LIP Changes 
Using the Mann–Kendall non-parametric test method [27] on the microwave remote 

sensing data extracted for BL’s ice phenology changes, Figure 8 illustrates the trends in 
BL’s ice phenology, including the dates on the beginning of freeze (FUS), complete freeze 
(FUE), start of thaw (BUS), and full thaw (BUE), from 1978 to 2022. To further enhance the 
study of BL’s ice phenology, the trends in additional parameters, such as the break dura-
tion (BD), freezing duration (FD), complete ice duration (CID), and exist duration (ED), 
were analyzed. BL’s ice phenology has shown significant changes since 1978. 

The start of freeze date has exhibited a noticeable trend of occurring earlier, with an 
average advancement of 0.9 days every 10 years. Over the 44-year period, the start of 
freeze date has advanced by 3.6 days. From Figure 8, it can be observed that BL’s start of 
freeze date is advancing, with significant fluctuations between 1990 and 2000.  

The start of thaw date has advanced, on average, by 2.7 days every 10 years, totaling 
an advancement of 10.8 days. This represents an overall trend of earlier thaw dates, alt-
hough there were noticeable fluctuations between 1990 and 2000. The complete freeze 
date showed a trend of delay over the 44-year period, with significant fluctuation. 

The FD has exhibited a stable trend over the 44-year period, shortening by 0.1 day 
every 10 years, resulting in a total reduction of 0.4 days. 

Figure 7. Spatial distribution of lake ice phenology in Bosten Lake (2010–2011).

Based on the maximum and minimum values of the microwave remote sensing pixels
on 7 April 2011 (241.98 K and 201 K, respectively), it can be seen that BL was in the melting
stage on that day. The main concentration of melting was in the southeast area of the lake,
and there were fewer ice pixels.

On 9 April 2011, the high-value microwave remote sensing pixels were compared to
those from 1 April 2011. It was observed that on that day, BL had fewer ice pixels, mainly
concentrated in the southeast corner of the lake. This indicates that BL completed its ice
melting in just 9 days.

On 22 April 2011, the microwave pixel values had a minimum of 197.3 K and a maxi-
mum of 203.29 K, which were lower than the highest brightness temperature values from
the previous five periods. This suggests that BL was completely ice free on 22 April 2011.

5.4. Trends in LIP Changes

Using the Mann–Kendall non-parametric test method [27] on the microwave remote
sensing data extracted for BL’s ice phenology changes, Figure 8 illustrates the trends in
BL’s ice phenology, including the dates on the beginning of freeze (FUS), complete freeze
(FUE), start of thaw (BUS), and full thaw (BUE), from 1978 to 2022. To further enhance the
study of BL’s ice phenology, the trends in additional parameters, such as the break duration
(BD), freezing duration (FD), complete ice duration (CID), and exist duration (ED), were
analyzed. BL’s ice phenology has shown significant changes since 1978.
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Figure 8. Mann–Kendall trend test graph on Bosten Lake ice phenology from 1978 to 2022. The MK
values in the figure represent the annual trend changes for each parameter, measured in units per
day. For parameters FUS, FUE, BUS, and BUE, a negative MK value indicates an advanced state. For
parameters FD, BD, ED, and CID, a negative MK value signifies a shortened state.

The start of freeze date has exhibited a noticeable trend of occurring earlier, with an
average advancement of 0.9 days every 10 years. Over the 44-year period, the start of freeze
date has advanced by 3.6 days. From Figure 8, it can be observed that BL’s start of freeze
date is advancing, with significant fluctuations between 1990 and 2000.

The start of thaw date has advanced, on average, by 2.7 days every 10 years, totaling an
advancement of 10.8 days. This represents an overall trend of earlier thaw dates, although
there were noticeable fluctuations between 1990 and 2000. The complete freeze date showed
a trend of delay over the 44-year period, with significant fluctuation.

The FD has exhibited a stable trend over the 44-year period, shortening by 0.1 day
every 10 years, resulting in a total reduction of 0.4 days.

The trend chart for the start of thaw date shows an overall tendency of occurring
earlier, with an advancement of 0.8 days every 10 years, totaling an advancement of 3.2 days
over the 44-year period. There were noticeable fluctuations between 1990 and 2000 in the
thaw dates.

The trend for the complete thaw date, as shown in the graph, indicates a significant
advancement, with an average of 3.2 days every 10 years and a total advancement of
14.8 days over the 44-year period. The fluctuations in the complete thaw date are more
pronounced between 1985 and 1995, showing a delay in the complete thaw date.
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In the context of ice phenology, the duration of lake ice represents the stability of the
ice [28]. The trend analysis of the CID, extracted from microwave remote sensing of BL,
shows that the average FD is 84.56 days. The shortest CID occurred in 1999, while the
longest occurred in 1996. Over the 44-year period, the CID exhibited frequent fluctuations,
mainly shortening, with an average reduction of 1.6 days every 10 years, resulting in a total
reduction of 7.04 days and indicating a reduction in the ice stability.

The ED for BL has also shown a consistent shortening trend over the past 44 years,
with an average reduction of 2.3 days every 10 years, totaling a reduction of 10.12 days.
This further underscores the decreasing ice stability in BL. Both the FD and thaw period
can reflect the local climate change status. The FD advanced by 0.5 days every decade, and
the thaw period exhibited an advancement rate of 0.1 day/year. The CID shortened by an
average of 1.6 days every 10 years, while the ED reduced by 2.3 days every 10 years.

6. Discussion

LIP exhibits seasonal changes [23]. This study employs the BECD algorithm to de-
compose brightness temperature values from passive microwave remote sensing data,
seasonally and trend wise. Combined with the MOD10A1 dataset, the research explores
the freezing and thawing processes of BL from 1978 to 2022. The study reveals trends of
earlier start of freezing and complete freezing dates for BL. Similarly, the start of thaw date
and complete thaw date also exhibit earlier changes. The duration of complete ice cover
and ice presence significantly shortens, aligning with previous studies, such as those by
Aiken Tursun [15].

The use of time series data has not only unveiled changes in the target object, but has
also driven algorithmic development in the field [29]. This study attempts to experimentally
demonstrate the effectiveness of the BECD algorithm in detecting mutations, seasonality,
and trends. BEAST, as a Bayesian method, separates seasonal and periodic signals from
time series data, detects mutations in these signals, and is particularly useful for trend
analysis and change point detection in phenological studies [17]. Differentiating it from
previous research, this study utilizes the BECD algorithm to better capture the seasonal
and trend characteristics of LIP using lake brightness temperature values.

The rapid growth in the use of satellite time series data to reveal landscape changes
has spurred algorithm development [29,30]. This progress has led to many new products
on ecosystem dynamics, yet it has also opened new research gaps [12]. Many time series
methods have been introduced to applications in remote sensing or other disciplines [31].
Many of them are developed under various names, such as trend analysis, seasonal decom-
position, breakpoint or breakpoint analysis, signal segmentation, regime shift detection,
anomaly detection, and structural change [31–34]. BEAST provides a universal approxima-
tor for any arbitrarily complex trends. In contrast, most existing methods only export linear
or piecewise linear trends [35]. The true driving factors behind ecosystem dynamics are
unlikely to be purely linear or piecewise linear trends, but rather complex and nonlinear.
For example, it is known that plant succession stages largely follow a nonlinear recovery
trajectory [36]. Long-term climate trends have been confirmed to have intrinsic nonlinear-
ity [37]. Due to its better approximation capability, BEAST is more likely to find these truly
nonlinear trends than existing methods. Improved trend fitting can also help in breakpoint
detection, as errors in fitted trends can be translated into errors in breakpoint detection.

The BECD algorithm is effective at detecting dynamic changes in time series data,
but it cannot determine the driving mechanisms behind these changes. Seasonal change
points often represent certain phenological changes, while trend change points indicate
transitions in other dynamics [38]. Whether the rapid freezing and thawing changes in lake
ice or long-term trends are related to factors such as temperature, lake mineralization, or
precipitation remains unexplored. The BECD algorithm alone cannot fully provide research
support for the driving factors in studying LIP. To investigate the driving mechanisms
of LIP, integrating the BECD algorithm with other algorithms and auxiliary information
is necessary. This integration holds promise for gaining insights into the driving factors
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behind the changes in LIP of BL from 1978 to 2022. The BECD algorithm can rapidly extract
change points from lake brightness temperature values, providing information on LIP. In
today’s rapidly changing climate, this method is particularly worthy of utilization in other
lakes, such as those in the typically arid region of Xinjiang, China. Combining it with other
algorithms can further explore the driving factors. It is essential to note that when studying
the LIP characteristics using passive microwave remote sensing data with a resolution of
3.125 km, it is advisable to choose large lakes to avoid mixed pixels that could affect the
accuracy of LIP information.

7. Conclusions

The study, based on the Bayesian ensemble change detection algorithm, has derived
lake ice phenology parameters for Bosten lake from 1978 to 2022 using passive microwave
remote sensing data. By employing correlation coefficient analysis, root mean square
error, mean absolute error, and the Mann–Kendall non-parametric test, the study analyzed
the feasibility of passive microwave remote sensing data and investigated the temporal
characteristics and spatial trends of lake ice phenology. The following conclusions have
been drawn:

1. The Bayesian ensemble change detection algorithm accurately captured the freezing
and thawing dates of Bosten Lake’s lake ice. Through cross-validation with lake ice
information extracted from passive microwave remote sensing data on Bosten Lake
from 2000 to 2022 and lake ice information obtained from MOD10A1, the minimum
correlation coefficient was 0.845. This indicates that the Bayesian ensemble change
detection algorithm aligns with the requirements of this study when applied to passive
microwave remote sensing data with a spatial resolution of 3.125 km.

2. The lake ice phenology for BL displays distinct trends. The dates for the onset of
freezing and complete freezing are being delayed, while the dates for the onset of
thawing and complete thawing are occurring earlier. The freezing duration has been
shrinking. On average, the freeze-up start date takes place in mid-December, with
the freeze-up end date typically occurring by the end of December. The break-up
duration usually starts in early March and is typically complete by the end of March.
These trends suggest a relatively rapid increase in local temperatures and a decrease
in the stability of the lake ice. The shorter freezing duration reflects a faster decrease
in the temperature.

3. The dynamic evolution of Bosten Lake ice reveals differences in the water depth
across the lake, and the characteristics of ice formation and thawing starting from the
lake’s shores and expanding inwards. Freezing usually initiates from the southwest
part of the lake, extending towards the central and southeastern regions. As spring
temperatures rise, the lake ice melts, and the ice layer thins until it completely thaws.

4. The lake ice phenology for Bosten Lake exhibits significant trend changes. The
freeze-up start date is occurring earlier, with an average advancement of 0.9 days per
decade. The freeze-up start date is also happening earlier, advancing by an average
of 2.7 days per decade. The break-up end date is significantly advancing, with an
average advancement of 3.2 days per decade. However, the break-up start date is
displaying a delayed trend. The duration and stability of the lake ice are significantly
decreasing, indicating the lake’s sensitivity to climate change.

In the study of lake ice phenology, it is essential to explore the driving factors of lake
ice phenology. While the powerful tool, the Bayesian ensemble change detection algorithm,
can accurately capture lake ice phenological information, it cannot determine the driving
factors of the lake ice. To identify the reasons for rapid and slow changes in lake ice, it
is necessary to combine the Bayesian ensemble change detection algorithm with other
algorithms and data to investigate the driving factors of lake ice.
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