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Abstract: Human-to-human communication via the computer is mainly carried out using a keyboard
or microphone. In the field of virtual reality (VR), where the most immersive experience possible
is desired, the use of a keyboard contradicts this goal, while the use of a microphone is not always
desirable (e.g., silent commands during task-force training) or simply not possible (e.g., if the user has
hearing loss). Data gloves help to increase immersion within VR, as they correspond to our natural
interaction. At the same time, they offer the possibility of accurately capturing hand shapes, such as
those used in non-verbal communication (e.g., thumbs up, okay gesture, . . . ) and in sign language. In
this paper, we present a hand-shape recognition system using Manus Prime X data gloves, including
data acquisition, data preprocessing, and data classification to enable nonverbal communication
within VR. We investigate the impact on accuracy and classification time of using an outlier detection
and a feature selection approach in our data preprocessing. To obtain a more generalized approach,
we also studied the impact of artificial data augmentation, i.e., we created new artificial data from the
recorded and filtered data to augment the training data set. With our approach, 56 different hand
shapes could be distinguished with an accuracy of up to 93.28%. With a reduced number of 27 hand
shapes, an accuracy of up to 95.55% could be achieved. The voting meta-classifier (VL2) proved
to be the most accurate, albeit slowest, classifier. A good alternative is random forest (RF), which
was even able to achieve better accuracy values in a few cases and was generally somewhat faster.
outlier detection was proven to be an effective approach, especially in improving the classification time.
Overall, we have shown that our hand-shape recognition system using data gloves is suitable for
communication within VR.

Keywords: machine learning; classification; support vector machines; random forest classifier; logistic
regression; voting meta-classifier; outlier detection; feature selection; data augmentation; hand-shape
recognition; sign language; virtual reality

1. Introduction

In everyday communication, non-verbal language plays an important role alongside
verbal language, for example, through the use of hand gestures. They help us to express
feelings and thoughts, to give context to spoken language (e.g., by pointing to something
while speaking), or even to replace spoken language completely (e.g., by using the thumbs
up gesture to signal to another person that everything is okay).

With technological progress, the desire to transfer this natural way of interpersonal
interaction to computers is increasing. Thus, machines could be controlled directly using
gestures: instead of the user learning to control the machines, they would use natural and
instinctive means of communication, and the machine would learn to understand them.

In addition, even within a computer-generated environment, such as VR, interper-
sonal communication could be accomplished through the use of gestures. This would
allow simple hand gestures, such as the aforementioned thumbs up gesture, to be used in
the context of operational force training. Significantly more complex issues could also be
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presented in the context of sign language, either because this is given by the application
(e.g., sign learning software ) or because this is the user’s primary form of communication,
e.g., for deaf and hard of hearing people. This is an aspect that is becoming increasingly
important because, according to the World Health Organization [1], there are approximately
430 million people worldwide with some degree of hearing loss, and the trend is increasing.
Where hearing people within VR communicate predominantly with microphones in their
spoken language, the deaf and hard of hearing have to express themselves non-verbally,
for example, via a chat function. In addition, they cannot hear when other users commu-
nicate via the microphone. There are speech-to-text solutions that can display the spoken
word as text, but an approach that can also convert signs into text or speech would still
have to be developed for bidirectional communication.

Developing a system that can recognize and translate signs requires first determining
how signs are structured. Linguist William C. Stokoe [2,3] was one of the first to break down
signs into their characteristic components. According to him, a sign consists essentially of
the parameters of the hand shape, the orientation of the hand, the movement of the hand,
and the location of execution of the sign. Other non-manual parameters such as facial
expression are also conceivable, but the most important parameter is the hand shape [4].
This is also evident when looking at the American Sign Language (ASL) finger alphabet:
There are 26 signs with a total of 21 different hand shapes, which are all performed with
the dominant hand. Two pairs of signs have the same hand shapes, but differ by having a
movement of the hand (I ⇔ J and 1 ⇔ Z). Three other pairs of signs have the same hand
shapes, but differ in the orientation of the hand (K ⇔ P, G ⇔ Q, and H ⇔ U).

To determine the hand shapes of an entire vocabulary, a suitable data set is needed.
ASL-Lex is a public sign lexicon for ASL [5,6]. It contains videos and information on
2723 signs. One component of this information is the so-called Phonological Coding System,
which is based on the Prosodic Model of Sign Language by Brentari [7]. It describes signs
based on their characteristic features, similar to the aforementioned notation system of
Stokoe [3], only with significantly more parameters. To the best of our knowledge, there is
no other publicly accessible database of this size that displays gestures in parametric form.

To recognize hand shapes reasonably, it also needs the appropriate hardware. There
are different approaches, which can be distinguished in particular into video-based and
(other) sensor-based approaches. In VR, data gloves are often used as an alternative to
traditional controllers because they can capture hand shapes and movements even in
complex motion sequences and are independent of occlusions [8].

The main application of data gloves is hand-gesture recognition, especially for static
gestures. Between 2015 and 2022, more than 100 papers were published in English on this
topic in reputable sources, like the Institute of Electrical and Electronics Engineers (IEEE) or
the Association for Computing Machinery (ACM), according to the Web of Science (WoS).
More than 70% of these examine static gestures [9].

Even though these papers all pursue the topic of hand gesture recognition with data
gloves, they differ in some points: (i) used classification methods, (ii) number of participants,
(iii) number of samples, (iv) number of hand gestures, (v) type of hand gestures. The
type of hand gestures is defined by the used features. The more features are present,
the more information is available for the classifier to successfully recognize the hand
gesture. Therefore, many of these papers ([10–12]) not only use hand-shape information for
classification, but also add hand orientation as an additional feature.

A distinction is also made between static and dynamic gestures: Static gestures possess
spatial information, like the already-mentioned hand shape, the orientation of the hand, or
the location of the hand where the gesture is performed. Dynamic gestures additionally
possess temporal information, such as the movement of the hand [12], the rotation of the
ulnar, or a change in finger pose (e.g., closed fingers that are spread) [5]. Therefore, some of
the papers use dynamic gestures instead of static ones [10,12–14].
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Goal and Methodology

In this study, we focus on the recognition of static hand shapes with data gloves. We
investigate whether commercially available data gloves are suitable for recognizing hand
shapes of sign language in the use of VR. For this purpose, we designed a classification
pipeline to reliably detect static hand shapes using a generalizable approach that can be
used for other static data. The individual steps of data preprocessing will be examined with
respect to their performance (accuracy and time for classification) and a recommendation
is made as to which steps should be used for which use case. The classification pipeline
can be seen in Figure 1.

Data Acquisition

Outlier Detection

Feature Selection

Data Augmentation

Classification

Hand Shape

Data Scaling

Da
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g

“Horns”

Figure 1. Our classification pipeline.

First, we acquire the hand shape with a Manus Prime X data glove. To ensure high-
quality data, an outlier detection method called Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) is applied to the training data. The data are further augmented
using a proprietary method and thus artificially duplicated with the goal of counteracting
overfitting of the classification. To reduce the amount of training data and increase the
speed of training and classification, we apply feature selection in the form of a genetic
algorithm (GA).

For evaluation, we chose two different data sets: 27 hand shapes from the ASL finger
alphabet (letters and numbers) and 56 hand shapes from a 2700+ word lexicon of ASL.
On the one hand, this covers a variety of different hand shapes and, at the same time, serves
to be able to create a basis for a sign language application within VR.

Our pipeline is generic and can be applied to any type of static data as long as they are
in the correct data format. However, it is recommended to adjust the various parameters of
the pipeline, such as the hyperparameters of the classifiers, to the new data.

2. Data Acquisition

To reliably recognize hand shapes, they must be recorded in a suitable form. The record-
ings can then be used to train machine learning (ML) classifiers. Attention must be paid to
the choice of suitable hardware and the selection of features to be captured.

The data gloves that were used during our experiment are the Manus Prime X Hap-
tic (https://www.manus-meta.com/products/prime-x-haptic (last visited on 21 October
2023)) and are specifically designed for use within VR. The gloves can be seen in Figure 2.

https://www.manus-meta.com/products/prime-x-haptic
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(a) Green circles indicate the IMUs (b) Brown strips indicate the flex sensors

Figure 2. Manus Prime X data glove and bare sensors of the glove [15].

A 9-degrees of freedom (DoF) inertial measurement unit (IMU) and a 2D flex sensor
are attached to each finger to obtain reliable values about the flexion/stretch of the fingers
and the spread between each finger. The latter information is not available in some data
gloves, but is indispensable for distinguishing individual hand shapes such as R, U, and V
(see Figure 3) [9]. A 6-DoF IMU is attached to the back of the hand to obtain its orientation.
The accuracy of each finger measurement is ±2.5 degrees.

(a) R (b) H/U (c) V

Figure 3. Hand shapes R, H (identical to U, only different in orientation,) and V differ only in spread.

The acquired sensor values are internally fused and preprocessed with the Manus
Core C++ SDK (https://documentation.manus-meta.com/v1.9.0/cpp-sdk/ (last visited on
21 October 2023)). The preprocessed data are transferred to the computer via Bluetooth.
According to the manufacturer, the latency is less than 5 ms, and the glove’s sensor sampling
rate is 90 Hz. Table 1 shows all spread and stretch values given by the SDK that we use as
features to represent each static gesture.

To obtain the best-quality sensor data, the gloves must be calibrated. This is achieved
by performing three simple gestures via the SDK. This also compensates for deviations that
may occur due to differently sized user hands. The calibration is stored in the glove so that
it is immediately ready for use for the next session.

https://documentation.manus-meta.com/v1.9.0/cpp-sdk/
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Table 1. Features and joint values with their respective range of motion (normalized output of Manus
Core SDK and corresponding degree range). Names of joints can be seen in Figure 6 .

Feature Finger Joint Value SDK Range Degree Range
Min Max Min Max

0 Thumb Spread CMC 0.0 1.0 5◦ 50◦

1 Index Spread MCP −1.0 1.0 −20◦ 20◦

2 Middle Spread MCP −1.0 1.0 −20◦ 20◦

3 Ring Spread MCP −1.0 1.0 −20◦ 20◦

4 Pinky Spread MCP −1.0 1.0 −20◦ 20◦

5 Thumb Stretch CMC 0.0 1.0 −20◦ 25◦

6 Thumb Stretch MCP 0.0 1.0 −20◦ 45◦

7 Thumb Stretch IP 0.0 1.0 −15◦ 80◦

8 Index Stretch MCP 0.0 1.0 0◦ 80◦

9 Index Stretch PIP 0.0 1.0 0◦ 100◦

10 Index Stretch DIP 0.0 1.0 0◦ 90◦

11 Middle Stretch MCP 0.0 1.0 0◦ 80◦

12 Middle Stretch PIP 0.0 1.0 0◦ 100◦

13 Middle Stretch DIP 0.0 1.0 0◦ 90◦

14 Ring Stretch MCP 0.0 1.0 0◦ 80◦

15 Ring Stretch PIP 0.0 1.0 0◦ 100◦

16 Ring Stretch DIP 0.0 1.0 0◦ 90◦

17 Pinky Stretch MCP 0.0 1.0 0◦ 80◦

18 Pinky Stretch PIP 0.0 1.0 0◦ 100◦

19 Pinky Stretch DIP 0.0 1.0 0◦ 90◦

3. Data Preprocessing

The main idea of data preprocessing is to highlight important information in the avail-
able data while also removing some of the redundant or misleading data that may be
present [10].

The first step of data preprocessing is often to scale all data to a predetermined interval.
The intervals [0, 1] or [−1, 1] are often used. Alternatively, statistical properties of the train-
ing data can be used for scaling. In this study, we use sklearn’s StandardScaler (https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html (last vis-
ited 27 September 2023)). It calculates the average value of each feature i, subtracts it from
each data point, and divides it by the standard deviation.

Zi =
Xi − µi

σi

In this way, all features follow a normal distribution with zero mean and unit variance. We
chose this scaling procedure because it has been shown that some models, such as support
vector machine (SVM) or certain linear models, may perform worse when the data are not
scaled and centered around zero [16,17].

Other than scaling the data, we implemented several outlier detection and feature
selection methods that sort out misleading data samples or unimportant features. We also
experimented with various data augmentation techniques to artificially enrich our data set
with the goal of improving the generalizability of our approach. The best methods in each
category are presented in the following.

3.1. Outlier Detection

Outliers are samples that differ greatly from the other recorded samples. Outliers can
occur during data acquisition, for example, due to sensor drift or because a user performs a
gesture incorrectly. Such outliers can negatively impact the performance of ML classifiers,

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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as it is often best for these models to be able to generalize and not overfit the data [18].
Outlier detection therefore aims to find and remove all outliers within the given data.

Many algorithms used to achieve this goal are similar to clustering algorithms in that
samples are also combined to form clusters. Points that do not belong to any cluster are
then identified as outliers. In this study, we used the DBSCAN algorithm. DBSCAN starts at
a random data point and searches for other samples within a predefined distance ε. If the
number of samples within this distance is greater than the minPoints parameter, the original
point is marked as a core point. This step is repeated for all data points. Afterwards, a
random core point is selected and the point itself and all neighboring points within ε are
added to a cluster. When all core points have been assigned to a cluster, the algorithm
terminates. All samples that are not part of any cluster are considered outliers.

The algorithm can be controlled with the ε and minPoints parameters. Figure 4 shows
how DBSCAN assigns multiple points into two clusters. minPoints is set to four in this
example (https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-
learning.html (last visited 21 October 2023)).

ε

Core point

Border point

Noise point

Cluster 1

Cluster 2

Figure 4. DBSCAN assigning points into core, border, and noise points (https://www.kdnuggets.
com/2020/04/dbscan-clustering-algorithm-machine-learning.html (last visited 21 October 2023)).

Outlier detection is rarely used in other works on gesture recognition. Most often,
outliers are removed from the test set. This is usually carried out when outliers and
incorrect predictions in the application phase can have serious consequences, such as in the
medical field. In these scenarios, it is often more favorable to detect outliers and output
a warning alongside the models’ prediction. Related works that operate in this way are,
for example, by Zhang et al. [19] or by Palipana et al. [20].

In this study, we focused on detecting outliers only in the training data, since our
application phase is not as critical at this time and it can be more easily compared to most
other gesture recognition work. Test data should also, in our opinion, represent a possible
real-world scenario; this includes biases in sensor values or erroneous user executions.

Once the outlier detection has been performed, the remaining data are scaled again
according to the principle described above.

3.2. Data Augmentation

In order to use ML models for reliable hand-shape classification, a sufficient amount of
high-quality training data must be available. In particular, in the application area of gesture
recognition with the use of wearable sensors as a data source, the acquisition of large
amounts of data for learning poses is one of the main challenges due to the cumbersome
acquisition process. This is because the data must be physically gathered from individuals
equipped with wearable sensors and then carefully labeled afterwards (see Section 2),
which takes time and effort and usually yields inadequate quantities, especially for deep

https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
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learning approaches [21]. In addition, further challenges may arise, for example, at the time
of the COVID-19 pandemic, which required even stricter hygiene standards and therefore
may increase the cost of physical data acquisition with wearable sensors. Thus, building
a rich and diverse data set may become even more laborious. This potential scarcity of
training data can then lead to poor generalization capabilities of the model.

One way to deal with these problems is the use of data augmentation to artificially
enrich the training data set. This is usually achieved by applying transformations to the
existing data to create new, synthetic data samples. Data augmentation can therefore be
employed as a preprocessing step in order to ultimately reduce overfitting and enhance the
robustness and generalizability of the ML models used [22].

However, the applicability of different data augmentation methods depends on the type
of data available and corresponding sensor technology, and therefore must be evaluated
for the specific task at hand. Depending on these factors, and additionally on the ML
classifiers used, the effectiveness of data augmentation may vary.

As introduced in Section 2, static spread and stretch values for each joint are used in
this study as features. However, the available literature on data augmentation for wearable
sensors is mainly concerned with dynamic data consisting of a gesture performed within a
certain time interval. For example, Um et al. [22] conducted one of the most comprehensive
evaluations of data augmentation techniques for wearable sensor data used in dynamic
approaches. These methods leverage variations in orientation or timing and are therefore
not applicable in this setting, since the available data do not capture positional or dynamic
properties. In contrast, the literature on data augmentation for static hand-shape recognition
is rather scarce and mostly not the subject of studies. However, in this study, we have
adapted a data augmentation approach presented by Liu and Ostadabbas [23] so that it is
applicable to the available data and can be used in our setting to reduce overfitting and
improve the generalizability of the models by introducing more variety to the way hand
shapes are performed. Below, we present the data augmentation approach we use to generate
artificial data samples, i.e., hand shapes.

Methodology

We have adopted and slightly adapted a data augmentation approach presented by Liu
and Ostadabbas [23], where joint angle constraints are used to define range boundaries
for each joint. Using these range boundaries, new poses can be generated by randomly
sampling within the defined limits for each joint. This ensures that the newly generated
data samples are valid, since the boundaries can be set appropriately.

We modified this approach to generate new data samples for each specific hand
shape (i.e., label). Therefore, these range boundaries must be chosen differently for each
hand shape and define the amount of maximum and minimum joint bending that is still
considered to be the respective hand shape. This would be required for each hand shape in
our data set. In this study, we define the limits by first calculating the respective minimum
and maximum joint values for each hand shape from the available data. As an example,
Figure 5a,c show the minimum and maximum hand shape for the Horns label, which is
illustrated in Table A1 in Appendix A (we used the 3D hand model provided by the Manus
Core Plugins and visualized it using Blender [24]). Compared to the mean hand shape
in Figure 5b, it becomes apparent that there may be slight variations in the way a hand
shape is performed by individuals due to anatomical differences, which may lead to larger
disparities in some feature values depending on the hand shape. In addition, inaccuracies
in the glove data sensors also seem to play a role, because although the hand shapes were
recorded under supervision and performed again in case of errors, there are still sometimes
large differences in the data. These two factors can lead to large differences in some joint
values, especially in the joints of the thumb.
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(a) Minimum values (b) Mean values (c) Maximum values

Figure 5. Minimum, mean, and maximum values of hand shape Horns.

In order to improve generalizability to yet-unseen data samples, we further add
(subtract) half the standard deviation of each feature fi to (from) the calculated maximum
(minimum) values for each hand shape (i.e., label l). Since we have a normal distribution
with unit variance (σ = 1) due to standardization, the calculation simplifies as follows:

f̃ min
i = f min

i − σ

2
= f min

i − 1
2

f̃ max
i = f max

i +
σ

2
= f max

i +
1
2

Concretely, this results in minimum values with feature vector

Fmin
l = ( f̃ min

0 , f̃ min
1 , f̃ min

2 , . . . , f̃ min
n−1)

T

and maximum values with feature vector

Fmax
l = ( f̃ max

0 , f̃ max
1 , f̃ max

2 , . . . , f̃ max
n−1)

T

for each label l. Here, n = 20 is the number of features, as shown in Table 1. Using these
limits, a new data sample

F̂l = ( f̂0, f̂1, f̂2, . . . , f̂n−1)
T

can then be generated for a specific label l by sampling new feature values f̂i from a uniform
distribution U( f min

i , f max
i ) where i ∈ [0, n − 1].

Even after applying data augmentation, the entire data set, including the augmented
data, is scaled again, as described at the beginning of the chapter.

3.3. Feature Selection

Each feature of a data sample holds a certain amount of information about the per-
formed gesture. Some features may be more important than others. For example, the distal
interphalangeal (DIP) and proximal interphalangeal (PIP) joints, shown in Figure 6, are interde-
pendent in most of the gestures that were investigated here [9]. Consequently, only one of
these features holds significant information about the performed gesture. This is in contrast
to any of the thumb features, as the exact position of the thumb plays an important role in
many of gestures that were examined in this study. Thus, in general, many of the DIP and
PIP features hold very little information about the performed gesture, while other features,
such as that of the thumb, are more important for the classification.
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Figure 6. Joints and bones of the human hand [25].

Feature selection takes advantage of this and tries to keep the most important features,
while also removing features that hold very little information. That way, fewer features are
used to represent a single gesture, meaning the data take up less space and the ML models
can focus on the most important data [26].

In this study, we used a genetic algorithm (GA) for feature selection. The algorithm is
loosely based on the theory of evolution and consists of an initialization phase and four re-
peating phases after that (a step-by-step instruction can be found at https://neuraldesigner.
com/blog/genetic_algorithms_for_feature_selection#GeneticAlgorithms (last visited 21 Oc-
tober 2023)): (i) At first, multiple bitstrings are randomly created (initialization). Each bit
corresponds to a single feature that is either kept (1) or discarded (0). For each of these
bitstrings, one ML model is created and trained with the corresponding features. (ii) Af-
terwards, some of these models are selected for the next phase of the algorithm. Models
with high accuracy often have a higher chance to be selected by the algorithm. (iii) The
remaining bitstrings are combined to form new combinations of features. (iv) These may
randomly flip single bits (= mutation). The resulting bitstrings are used to train new models.
The whole process is repeated until either a predefined number of iterations is reached or
there has not been a significant accuracy improvement for multiple iterations [27].

The algorithm has also been used in related studies, such as that of Li et al. [28],
to reduce the training error alongside the number of epochs of a neural network, when
classifying ten gestures. Without GA, a training error of about 0.00566 was reached after
5000 epochs. Using GA, the error was reduced to about 0.00042. Using a handcrafted
modification of the GA reduced the error to about 0.00010 after just 608 epochs.

4. Machine Learning Classification

Building on the results of Achenbach et al. [11], we chose the classifiers support vector
machine (SVM), random forest (RF), and logistic regression (LR) for our investigations,
as they were able to achieve the highest accuracy values in a similar experiment. We
added a voting meta-classifier (VL2) to combine the advantages of all these classifiers.
In comparison, we are now using different hardware and a larger number of gestures:
Achenbach et al. [11] examined five gestures with fifteen features of hand shape and
twenty-five gestures with the same fifteen features of hand shape plus four additional
features for hand orientation. In this study, we examine 27 and 56 gestures with 20 features
of hand shape.

In the following, we briefly present the rough working of each classifier and explain
the conditions under which we used them.

https://neuraldesigner.com/blog/genetic_algorithms_for_feature_selection#GeneticAlgorithms
https://neuraldesigner.com/blog/genetic_algorithms_for_feature_selection#GeneticAlgorithms
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4.1. Support Vector Machine

SVMs are used to split data into two classes. This is achieved by mapping the data
into a vector space and looking for a linear hyperplane that separates the data according to
the max-margin paradigm. This generally results in less overfitting and more robustness
when classifying unseen data. Projecting the data into a higher-dimensional vector space,
finding a linear hyperplane there, and projecting the data and hyperplane back into the
original vector space can transform the hyperplane from a linear function to one of a
higher complexity. This procedure is used to classify data that are not linearly separable.
In practice, the so-called kernel trick is often used instead of transforming the entire vector
space to save computing time [29].

Following this procedure, a single SVM can differentiate between two classes. How-
ever, most classification problems contain more than just two output classes. In multi-class
classification problems, more than one SVM has to be used to separate the data. There are
two commonly used methods to train these SVMs. In the one-versus-one (OvO) approach,
one SVM is created for every pair of classes. The final decision is often made by performing
a majority vote over all SVMs. In the other method, one-versus-all (OvA), a single SVM is
trained for each class and is used to distinguish between that class and all the other classes.
The final output is usually provided by the SVM with the highest confidence score [30].
In this study, we used the OvO approach to classify all of our data.

4.2. Random Forest

An RF uses the results of multiple decision trees (DTs) to calculate its own prediction.
A single DT within an RF often performs worse than a full-fledged DT. This is because a
single tree inside an RF is usually trained on a small subset of the data and its features.
The subset is generated by sub-sampling the original training data with replacement [29].
It is important to have different subsets for most of the trees. The idea is to train a large
number of diverse DTs. Each one may heavily focus on one part of the training data, while
neglecting other parts, thus being worse than a DT trained with all the available data [31].
However, their results are then combined, often by a majority vote. Together, they usually
perform better than a single DT, while overfitting less and thus generalizing better.

It has been shown that RFs do not overfit by increasing the number of trees [31].
Hundreds or thousands of trees are often trained when using RFs. One advantage of
training so many classifiers is that they can also be used to analyze the data. For example,
adding noise to a single feature and observing the change in accuracy of all DTs can be an
indication of the importance of that specific feature [29]. The large number of classifiers
ensures that a higher error rate is actually caused by the random noise added to the feature
and not by a specific characteristic of a single classifier.

4.3. Logistic Regression

In the most basic case of LR, the model has to distinguish between two output classes.
In this case, LR calculates the probability of a sample belonging to one of the two output
classes. If the calculated value exceeds 50%, the sample is assigned to that class. Otherwise,
the other output class is chosen. Probabilities close to either 0% or 100% are often desirable
because the model is sure about assigning the corresponding sample to one of the two
classes in these cases. Probabilities close to 50% are very susceptible to small amounts of
noise. The probability is often calculated using the logit function [32],

logit(p) = ln
(

p
1 − p

)
= β0 + ∑ βi ∗ Xi,

where Xi represent the features of the data. The βi are weights that must be calculated when
fitting the model. The resulting function usually follows the shape of a sigmoid. In general,
a steeper slope leads to better predictions, as there are fewer inputs with probabilities close
to 50% this way.
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When classifying more than two classes, LR uses a similar strategy to that presented
in Section 4.1. Because of the higher training times when using large amounts of data, most
of the time the OvA approach is used for LR instead of OvO.

4.4. Voting Meta-Classifier

A meta-classifier is a model that does not operate on the input data alone. It uses
other models to improve its own predictions. This way, the entire system becomes more
resistant to failures of individual models or sensors, as well as noise in the data [33]. Such
models are often organized in layers. The voting classifier used in this study consists of
two layers. The three classifiers presented in this chapter form the first layer. These models
use the input data to predict the output class. The second layer is the voting classifier itself.
It combines the predicted probabilities of the models in the previous layer to produce its
own output based on the argmax of their sums. A weighted average, where the weights are
based on the grid search results of the classifiers in the first layer, produced the best results.

Remark: Deep-Learning Algorithms

In the specified preliminary study [11], the deep-learning algorithm feedforward neural
networks (FNN) were tested with comparable hardware and data. A Senso Glove: DK2 data
glove was used, which also enables IMU-based tracking of the hands and fingers, but does
not use flex sensors. The recorded data were hand shapes from the well-known game
rock–paper–scissors (RPS), all of which are very similar and sometimes even identical to
the hand shapes recorded in this paper. In the larger data set with 25 different hand shapes,
the orientation of the hand was taken into account and 19 features were used. The smaller
data set with five different hand shapes, all of which are identical to the hand shapes from
this paper, used 15 features without the orientation of the hand.

FNN did not perform better than traditional classifiers such as SVM, RF, or LR with this
type of hardware and data, but required significantly more effort to design and optimize.
The classifiers just mentioned achieved higher accuracies, even if FNN was sometimes able
to classify faster. We assume that the reason for this is that our classification problem (static
gestures with only 20 features) is relatively straightforward. The design of neural networks
would be considerably more complex and would significantly increase the length of the
paper. We therefore decided not to use deep-learning algorithms in this paper and to focus
on the classifiers presented so far.

5. Experiment

In an experiment [15], different hand shapes used in the ASL-Lex lexical database
(https://asl-lex.org (last visited 27 September 2023)) and ASL manual alphabet (including
digits) were recorded with a Manus Prime X data glove. We examined two different data
sets in this paper:

ASL manual alphabet consists of 26 different hand gestures with 21 different hand shapes.
To represent the digits 0–9 as well, six more hand shapes were added. This leads us
to 27 hand shapes with which fingerspelling is possible, i.e., the possibility to spell
names and numbers.

ASL-Lex uses 58 different hand shapes for the dominant hand. For reasons we cannot
explain, the hand shapes Flat H and Flat N are displayed identically (comparison of
https://aslcdi.website/images/handshape_images/flat_h.png and https://aslcdi.
website/images/handshape_images/flat_n.png (last visited 16 November 2023) [5])
in ASL-Lex and cannot be distinguished. We therefore combine them and refer to them
as Flat N. As already mentioned, the letters of the finger alphabet P and K also share
the same hand shape (comparison of https://aslcdi.website/images/handshape_
images/k.png and https://aslcdi.website/images/handshape_images/p.png (last
visited 16 November 2023) [5]) and differ only in their orientation. We therefore have
only considered K. Thus, we have a total of 56 unique hand shapes, which (together

https://asl-lex.org
https://aslcdi.website/images/handshape_images/flat_h.png
https://aslcdi.website/images/handshape_images/flat_n.png
https://aslcdi.website/images/handshape_images/flat_n.png
https://aslcdi.website/images/handshape_images/k.png
https://aslcdi.website/images/handshape_images/k.png
https://aslcdi.website/images/handshape_images/p.png
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with other details such as movement or orientation of the hand) allow a vocabulary
of more than 2700 characters.

All hand shapes from the ASL manual alphabet are found in the set of hand shapes of
ASL-Lex, with the exception of the hand shape M and N. Therefore, we have a total set of
58 hand shapes, which are shown in Table A1.

Since the focus of this study is on hand-shape recognition, all recorded hand gestures
are static, differ only by hand shape, and are independent of hand orientation. Therefore,
all stretch and spread values from Table 1 were used as features. The quaternions of the
individual fingers were not considered due to their dependence on orientation.

5.1. Data Acquisition

For data acquisition, a total of 20 participants took part in the experiment [15]. The ex-
periment was conducted as follows:

To allow for better hand mobility, the vibration motors on the gloves were removed.
Prior to each experiment, the gloves were recalibrated using the associated software of
Manus Core SDK to clean up any possible drift in the IMU sensors and to ensure that
different hand sizes of the participants did not affect the results.

After calibration, each participant sat at a table and was shown a picture of the hand
movement to be performed. Pressing the Enter key started the recording. The participant
then had three seconds to perform the hand gesture and then held it for an additional two
seconds. In a later segmentation, the static hand shape was then extracted as one keyframe
from the middle of this second section.

After recording, participants were asked to return their hands to the starting position
and place them on the table. This process was repeated three times for each hand ges-
ture. Throughout the experiment, participants were under observation to ensure that the
hand gestures were performed correctly. Incorrect recordings were repeated at the end of
the experiment.

Thus, for each of the 58 hand gestures we used, three repetitions were recorded for
20 participants, yielding a total of 3480 samples.

5.2. Hyperparameters

To find suitable hyperparameters for our hand-shape recognition system, we first per-
formed a pre-grid search with ten-fold cross-validation over all recorded samples for both
data sets and each combination of our data preprocessing methods. The hyperparameters
were searched in the same areas that Achenbach et al. [11] already used. In this way, we
were able to determine 16 different configurations of hyperparameters. From these, we
have now defined a smaller, but more precise range, which can be viewed in Table 2. This
range was used in each run of our following experiments with a five-fold cross-validation
grid search.

To save computational resources, we performed the grid search based on the suc-
cessive halving algorithm and used sklearn’s HalvingGridSearchCV (https://scikit-learn.
org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html (last
visited 7 November 2023)). This algorithm allocates resources dynamically and favors
the most promising hyperparameter configuration. Starting with an equal distribution of
resources, the grid search, therefore, iteratively excludes hyperparameter combinations
that are considered to be the least effective. Overall, this leads to considerable time savings
in the search for the best hyperparameter configuration.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html
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Table 2. Hyperparameter optimization ranges for our experiments.

Classifier Parameter Pre-Grid Search Range Grid Search Range

SVM C 2−5, 2−3, . . . , 215 20, 21, . . . , 24

γ 2−15, 2−14, . . . , 25 2−8, 2−7, . . . , 2−2

RF
criterion gini, entropy gini, entropy

max_features 1, 2, . . . , 10 1, 2, . . . , 6
n_estimators 20, 21, . . . , 210 26, 27, . . . , 210

LR

penalty elasticnet elasticnet
solver newton-cg, lbfgs, sag, saga saga

C 2−5, 2−3, . . . , 215 2−5, 2−4, . . . , 24

l1_ratio 0.1, 0.2, . . . , 1 0.2, 0.3, . . . , 0.5

penalty none, l1, l2 l2
solver newton-cg, lbfgs, sag, saga newton-cg, lbfgs, sag, saga

C 2−5, 2−3, . . . , 215 2−5, 2−4, . . . , 24

5.3. Hardware

An Apple MacBook Pro (https://support.apple.com/kb/SP858 (last visited 15 Novem-
ber 2023)) (16′′, 2021) with an Apple M1 Max processor (10-core CPU with 8 performance cores
and 2 efficiency cores, 32-core GPU, 16-core neural engine, and 400 GB/s memory band-
width) and 32 GB RAM was used to compute the results presented here. The Python library
scikit-learn (https://scikit-learn.org/stable/ (last visited 28 September 2023)) (version
1.2.1) and Python (version 3.9.6) were used.

6. Results

The four classifiers were evaluated using a leave-one-out cross-validation, i.e., the
training and test data were separated such that one participant’s data were used as test
data and all other data were used as training data. In this way, all possible combinations
were iterated, i.e., 20 repetitions for n = 20 participants. To compare the performance of the
classifiers, the accuracy and time for classification were stored and evaluated. The mean
and standard deviation were calculated from the data thus obtained. Since we had an equal
class distribution and prioritized each class equally, we omitted other measures such as
the F-score.

Tables 3 and 4 show the accuracy values of all classifiers with respect to the data
preprocessing methods used. The best results for each classifier and data preprocessing
configuration are marked in green; the worst results are marked in red.

Figures A1–A4 show the plotted metrics of the classifiers with different data prepro-
cessing steps. The black lines mark the range where the metrics of each run can be found
(maximum, mean, and minimum). The colored boxes represent the values of the first
through third quartiles. Thus, inside a box there are 50% of the determined values from
each of the 20 runs.

Independent of the data preprocessing methods used, 27 hand shapes can be classified
with an accuracy of 89.14% to 91.91% and 56 hand shapes score 82.86% to 87.50%. In both
cases, LR performs worst on average. For 27 hand shapes, VL2 can achieve the highest
average accuracy values; for 56 hand shapes, RF performs best. Regardless of the number
of hand shapes, there are only 0.51 to 2.53 percentage points between the best and worst
feature combinations for each classifier, with the range varying significantly more for
56 hand shapes.

The classification time is the time difference immediately before and after calling the
classifiers’ predict (https://scikit-learn.org/stable/developers/develop.html (last visited
28 September 2023)) function. It includes the classification of an entire user data set, i.e., up
to 168 samples (up to 56 hand shapes with three repetitions) before outlier detection. In the
case of the VL2 classifier, the classification times of the first layer classifiers are included.

https://support.apple.com/kb/SP858
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/developers/develop.html
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Table 3. Mean accuracy values of leave-one-out cross-validation in dependence of different data
preprocessing methods for 27 hand shapes (outlier detection, data augmentation, feature selection).

Data Preprocessing Machine Learning Classifier Results
Out Aug Feat SVM RF LR VL2 Mean Min Max

✗ ✗ ✗ 0.9080 0.9123 0.8963 0.9160 0.9082 0.8963 0.9160
✗ ✗ ✓ 0.9037 0.9105 0.8951 0.9185 0.9069 0.8951 0.9185
✗ ✓ ✗ 0.9037 0.9037 0.8914 0.9123 0.9028 0.8914 0.9123
✗ ✓ ✓ 0.9031 0.9049 0.9000 0.9154 0.9059 0.9000 0.9154
✓ ✗ ✗ 0.9080 0.9043 0.8981 0.9191 0.9074 0.8981 0.9191
✓ ✗ ✓ 0.9043 0.9037 0.8981 0.9111 0.9043 0.8981 0.9111
✓ ✓ ✗ 0.9031 0.9025 0.8951 0.9142 0.9037 0.8951 0.9142
✓ ✓ ✓ 0.9025 0.9000 0.8920 0.9130 0.9019 0.8920 0.9130

Mean 0.9046 0.9052 0.8958 0.9150
Min 0.9025 0.9000 0.8914 0.9111
Max 0.9080 0.9052 0.9000 0.9191

Table 4. Mean accuracy values of leave-one-out cross-validation in dependence of different data
preprocessing methods for 56 hand shapes (outlier detection, data augmentation, feature selection).

Preprocessing Machine Learning Classifier Results
Out Aug Feat SVM RF LR VL2 Mean Min Max

✗ ✗ ✗ 0.8610 0.8714 0.8542 0.8744 0.8653 0.8542 0.8744
✗ ✗ ✓ 0.8571 0.8661 0.8563 0.8711 0.8626 0.8563 0.8711
✗ ✓ ✗ 0.8515 0.8664 0.8298 0.8598 0.8519 0.8298 0.8598
✗ ✓ ✓ 0.8515 0.8664 0.8298 0.8598 0.8519 0.8298 0.8598
✓ ✗ ✗ 0.8568 0.8696 0.8539 0.8750 0.8638 0.8539 0.8750
✓ ✗ ✓ 0.8554 0.8646 0.8539 0.8711 0.8612 0.8539 0.8711
✓ ✓ ✗ 0.8518 0.8693 0.8286 0.8580 0.8519 0.8286 0.8580
✓ ✓ ✓ 0.8518 0.8693 0.8286 0.8580 0.8519 0.8286 0.8580

Mean 0.8546 0.8679 0.8419 0.8659
Min 0.8515 0.8646 0.8286 0.8580
Max 0.8568 0.8696 0.8539 0.8750

Tables 5 and 6 show the classification times of all classifiers with respect to the data
preprocessing methods used. Again, the best results are marked in green; the worst results
are marked in red.

Table 5. Mean classification times of leave-one-out cross-validation in dependence of different data
preprocessing methods for 27 hand shapes (outlier detection, feature selection, data augmentation).

Data Preprocessing Machine Learning Classifier Results
Out Aug Feat SVM RF LR VL2 Mean Min Max

✗ ✗ ✗ 2.780 16.579 0.112 21.099 10.143 0.112 21.099
✗ ✗ ✓ 2.635 14.444 0.126 18.198 8.851 0.126 18.198
✗ ✓ ✗ 7.026 30.926 0.124 40.029 19.526 0.124 40.029
✗ ✓ ✓ 7.059 26.052 0.117 35.778 17.252 0.117 35.778
✓ ✗ ✗ 2.677 16.323 0.127 20.256 9.846 0.127 20.256
✓ ✗ ✓ 2.506 20.138 0.120 23.664 11.607 0.120 23.664
✓ ✓ ✗ 6.931 28.818 0.117 38.409 18.569 0.117 38.409
✓ ✓ ✓ 6.991 29.491 0.224 39.082 18.947 0.224 39.082

Mean 4.826 22.846 0.133 29.564
Min 2.506 14.444 0.117 18.198
Max 7.059 30.926 0.224 40.029
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Table 6. Mean classification times of leave-one-out cross-validation in dependence of different data
preprocessing methods for 56 hand shapes (outlier detection, feature selection, data augmentation).

Data Preprocessing Machine Learning Classifier Results
Out Aug Feat SVM RF LR VL2 Mean Min Max

✗ ✗ ✗ 18.245 44.271 0.365 72.972 33.963 0.365 72.972
✗ ✗ ✓ 17.594 38.516 0.441 62.973 29.881 0.441 62.973
✗ ✓ ✗ 47.519 62.163 0.186 173.830 70.924 0.186 173.830
✗ ✓ ✓ 47.601 62.045 0.149 174.654 71.112 0.149 174.654
✓ ✗ ✗ 18.254 40.345 0.335 67.490 31.606 0.335 67.490
✓ ✗ ✓ 17.486 42.682 0.338 70.423 32.732 0.338 70.423
✓ ✓ ✗ 47.473 63.251 0.170 177.552 72.111 0.170 177.552
✓ ✓ ✓ 47.760 63.055 0.164 179.149 72.532 0.164 179.149

Mean 32.741 52.041 0.268 122.380
Min 17.486 38.516 0.149 62.973
Max 47.760 63.251 0.338 179.149

In contrast to the accuracy values, the classification times vary considerably: LR is by
far the fastest classifier, with times below 0.3 ms, whereas VL2 understandably takes the
longest, with 18.20–40.03 ms for 27 hand shapes and 62.97–179.15 ms for 56 hand shapes,
as it contains its own classification in addition to the three other classifiers. It is obvious
that the classification times also increase sharply with the number of hand shapes. This
affects LR the least (mean two-fold increase in classification time) and SVM the most (mean
eight-fold increase in classification time) for the difference from 27 to 56 hand shapes. When
doubling the data using data augmentation, the times also roughly double.

6.1. Machine Learning Classifier

We will now briefly look at the results of the individual ML classifiers before taking a
closer look at the data preprocessing methods.

Support vector machine (SVM) showed a robust performance in classifying both data
sets. For 27 hand shapes, SVM achieved an average accuracy of 90.46%, while for
the more extensive data set with 56 hand shapes, the accuracy dropped slightly to
85.46%. These results suggest a marginal decline in SVM’s efficacy with increasing
data complexity.

In terms of classification time, SVM took between 2.51 ms and 7.06 ms to classify
the smaller data set and 17.45–47.76 ms to classify the larger one, indicating good
scalability.

Random forest (RF) offers comparable accuracy to SVM, with an average of 90.52% for
27 hand shapes and 86.79% for 56 hand shapes. However, the longer classification
times (14.44–30.93 ms for 27 hand shapes and 38.52–62.16 ms for 56 hand shapes)
could be a disadvantage in practical applications.

Logistic regression (LR) showed slightly lower accuracy, especially for the larger data set
(average 89.58% for 27 hand shapes vs. 84.19% for 56 hand shapes). It can be seen that
LR suffers a significant loss of accuracy (2.5–3%) when data augmentation is applied
to a larger data set. When looking at the learning curves in Figure 10c, it can also
be seen that the accuracy decreases as the number of samples increases. It therefore
appears that LR has problems with scalability.

Classification times were the shortest among all classifiers tested, which could make
LR an attractive choice for very time-constrained applications, as long as the amount
of data is not too high. Regardless of the number of classes, the classification times
are below 0.35 ms, but are also the most dependent on processor runtime fluctuations
due to these short runtimes. This can also be well-recognized in Figures A3c and A4c.
Therefore, comparisons of the classification time for LR should be treated with caution.
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(a) Support vector machine (SVM) (b) Random forest (RF)

(c) Logistic regression (LR) (d) Voting meta-classifier (VL2)

Figure 7. Learning curves with (dashed line) and without (solid line) data augmentation for 27 hand
shapes.

Voting meta-classifier (VL2) consistently achieved the highest average accuracy in both
data sets (91.50% for 27 hand shapes and 86.59% for 56 hand shapes), if the results for
procedures with data augmentation in the larger data set were omitted. It seems that
the poor scalability of LR affects the accuracy of VL2.

Classification times were also the longest (18.20–40.03 ms for 27 hand shapes and
62.97–179.15 ms for 56 hand shapes), which may limit its practical applicability in
time-critical environments, because it contains all other classifiers in the first layer
and additionally its own meta-classification takes place in the second layer.

6.2. Data Preprocessing Methods

Considering the results with respect to the selected data preprocessing methods, it
can be said that, with few exceptions, the highest accuracy values are achieved without
data preprocessing (except scaling). Occasionally, some combinations of data preprocessing
steps and classifiers (e.g., LR with feature selection and data augmentation for 56 hand shapes)
can achieve higher accuracy values, but since the differences are minimal and no real pattern
can be recognized, these exceptions are probably due to the choice of hyperparameters.
Only VL2 with outlier detection shows better accuracy for both 27 and 56 hand shapes
compared to VL2 without data preprocessing.

According to Figure A2, the data preprocessing methods for 56 hand shapes and
SVM almost all have the same mean, whereas the greatest fluctuations occur for LR. There,
the approaches with data augmentation are significantly worse than without. For 27 hand
shapes (see Figure A1), the fluctuations are lower for all classifiers.
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We tested 64 different configurations of data preprocessing (see Tables 3 and 4). Eight
configurations used no data preprocessing, while fifty-six used a combination of the meth-
ods described so far. Our tests have shown that only seven of these combinations perform
better in terms of accuracy than the runs without data preprocessing.

Feature selection, outlier detection, and the combination of both lead to improvements in
classification times in most cases. The times for LR are difficult to evaluate here, as they are
very low and are therefore strongly influenced by runtime fluctuations. Data augmentation
roughly doubles the classification time when doubling the data.

6.2.1. Outlier Detection

Regarding the outlier detection, we found that detecting only very few outliers yielded
the best results. Consequently, we set the the maximal distance one point is allowed to have
to the closest point within the cluster to one standard deviation per feature on average.
With 20 features, this resulted in an eps value of 4.4. The minPoints parameter was set to
51, as there were a total of 57 samples for each gesture in the training set and we figured
that at least 90% of the data should be inliers. These parameters resulted in an average of
3.25 out 1539 samples being considered outliers in the 27-gesture data set. For 56 gestures,
an average of 5.8 outliers were found in 3192 samples.

One example of an outlier alongside an inlier and the visualization of the gesture Open
F can be seen in Figure 8. The outlier was created by bending the thumb and middle finger
too much.

(a) Visualization (b) Outlier (c) Inlier

Figure 8. Outlier (bent thumb and middle finger) found for hand shape Open F alongside inlier of the
same hand shape and visualization.

About 0.78% of all samples were identified as outliers, which slightly improved the
performance in three of eight cases, as shown in Tables 3 and 4. More importantly, the
classification time improved in six out of eight cases, as seen in Tables 5 and 6. This leads
to a recommendation to use outlier detection in time-critical applications.

6.2.2. Data Augmentation

The effect of the applied data augmentation method can best be seen in Figure 9, where
the result is visualized. Here, two synthetically generated hand shapes for the Horns label
are shown as an example, along with an original sample for comparison. As can be seen,
new data samples can be successfully generated and show some variations in the way the
hand shape is performed. Overall, we doubled our training data set using this technique.

As can seen in Tables 3 and 4, the experimental application of data augmentation failed
to improve the accuracy further, especially with the larger data set. The reason could
be that the collected data are sufficient for the chosen classifiers and, therefore, do not
further improve the classification accuracy. As the number of data samples increases,
the classification time also increases. To evaluate whether better generalizability can be
achieved with data augmentation, we created and compared learning curves: We plotted the
accuracy obtained without data augmentation as a function of the number of participants,
i.e., the number and variety of available training data, and compared it with the results
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when data augmentation is applied. Figures 7 and 10 show these learning curves. When
the data are not augmented, the curves already show a good fit, with the accuracy on the
test set increasing steadily with the number of participants. The generalization gap, i.e., the
gap between the two curves, is also clearly visible. Just LR shows a significant decrease in
training accuracy as the number of data increases (whether due to a larger data set or the
use of data augmention).

(a) Original user recording (b) Augmented data (c) Another augmented data

Figure 9. Visualized effect of data augmentation for hand shape Horns.

(a) Support vector machine (SVM) (b) Random forest (RF)

(c) Logistic regression (LR) (d) Voting meta-classifier (VL2)

Figure 10. Learning curves with (dashed line) and without (solid line) data augmentation for 56 hand
shapes.
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The generalizability can therefore not be increased by augmenting the data, as they
already have a high generalizability, with the exception of LR.

Overall, we were able to successfully generate valid synthetic data samples to enrich
our training set. For the reasons stated above, the application of the data augmentation
method is altogether not worth applying in this context and for this type of data. As men-
tioned in Section 3.2, research on data augmentation for wearable sensors has mainly been
studied in a dynamic context, where models trained with this more complex type of data
benefit more from artificial augmentation of the data set. The application of data augmenta-
tion would, therefore, be more effective for dynamic gestures and would probably achieve a
better effect on accuracy in the area of deep learning, as these methods perform significantly
better with a large amount of data than the traditional ML methods [34].

6.2.3. Feature Selection

Feature selection was used for data preprocessing in a total of four configurations.
When applied to both data sets with 20 runs per experiment, we obtained 160 executions.
The amount of times each feature was discarded by the algorithm can be seen in Table 7.
There were no features discarded in 50 out of 160 runs. The maximum number of discarded
features was six (five times in 160 runs). On average, 2.069 features were discarded per run.

Table 7. Features and number of times they were discarded by GA.

Feature Finger Joint Value Discarded Discarded Discarded
Absolute Relative Total

0 Thumb Spread CMC 47 29.38%

475 Thumb Stretch CMC 0 -
6 Thumb Stretch MCP 0 -
7 Thumb Stretch IP 0 -

1 Index Spread MCP 0 -

198 Index Stretch MCP 0 -
9 Index Stretch PIP 10 6.25%
10 Index Stretch DIP 9 5.62%

2 Middle Spread MCP 3 1.88%

3711 Middle Stretch MCP 3 1.88%
12 Middle Stretch PIP 15 9.38%
13 Middle Stretch DIP 16 10.00%

3 Ring Spread MCP 66 41.25%

12914 Ring Stretch MCP 5 3.12%
15 Ring Stretch PIP 36 22.50%
16 Ring Stretch DIP 22 13.75%

4 Pinky Spread MCP 24 15.00%

9917 Pinky Stretch MCP 9 5.62%
18 Pinky Stretch PIP 30 18.75%
19 Pinky Stretch DIP 36 22.50%

According to Table 7, the thumb, index finger, and middle finger seem to be the most
important for classification. For example, no thumb stretch features were discarded at all,
but the thumb spread feature was discarded more than every fourth time. Features of the
index finger were discarded the least, and when they were, only the values of the upper
extremities (DIP and PIP stretch features). For the middle finger, each of the four features
was discarded at least three times, but the total number of discarded features is lower than
for the thumb. The ring and little finger seem to contribute the least amount of information
needed to classify gestures, as their features were discarded most often.

It is important to note that the stretch metacarpophalangeal (MCP) value was always
preserved for almost all fingers, while the PIP and DIP values were frequently discarded.
In most cases, only one of the latter two joints was discarded, while the other was kept
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for classification. After investigation this phenomenon further, we noticed that these two
joints are rarely moved individually. For most gestures, both joints are flexed to about the
same degree. Looking at our data, we also noticed that the value of these two joints is often
exactly the same, explaining why one of these two joints for each finger was discarded by
our feature selection so often. Anatomically, it is not possible to move the upper phalanx
(= DIP) independently of the middle phalanx (= PIP) without external influence [9]. This
dependence explains why so many values are filtered out here.

Another noteworthy observation is that the ring finger spread value was the most
frequently discarded feature and was discarded in more than 40% of all runs. This is
likely due to the ring finger barely moving along this axis in most gestures. For example,
when spreading your fingers, the ring finger barely moves, while the spread value of all
other fingers changes significantly. As the ring finger mainly has a supporting function,
its mobility is limited compared to the other fingers. In most cases, the ring finger is used
together with its neighboring fingers and therefore exhibits a strong dependence on them.
This dependency was obviously recognized by our feature selection.

Overall, it can be said that feature selection was able to achieve an improvement in
classification time with a slight decrease in accuracy. On the other hand, we were able
to prove that feature selection comprehensibly identified and filtered dependent values.
The approach would probably bring even more time advantages if more than 20 features
were used for classification.

7. Discussion

In this study, we evaluated the efficacy of various ML classifiers and data preprocessing
techniques in recognizing hand shapes of ASL. Our focus was not only on achieving high
accuracy but also on ensuring real-time applicability. The choice of the most suitable
classifier and preprocessing method requires a careful consideration of both accuracy and
classification time. The training time is not relevant for our purposes, since the training is
performed offline and is not time-critical.

7.1. Key Findings

Accuracy vs. Classification Time Trade-off: VL2 achieved the highest accuracy, but was
also the slowest, making its use in real-time applications a careful consideration.
In contrast, LR offered the best speed but lowest accuracy (2–2.5 percentage points
less than VL2). RF and SVM are somewhere in between.

Impact of Data Preprocessing: Data preprocessing techniques such as feature selection and
outlier detection improved the efficiency of classifiers in terms of classification time,
but often at the cost of a slight decrease in accuracy. The particular benefit of data
augmentation could not be proven; instead, it provided poorer accuracy values and
higher classification times.

7.2. Optimal Classifier for Real-Time Application

In general, the accuracy values achieved are at a comparable level for all classifiers.
Since VL2 can almost exclusively achieve the highest accuracy values by combining the
advantages of the other classifiers, it is very suitable for our purpose. The high classification
time is slightly relativized when considering that in a real-time scenario usually only one
hand shape has to be recognized at a time. In our case, the classification time was given for
the classification of 82 and 168 hand shapes, respectively, before applying outlier detection.

VL2 achieves an average classification time of 20.80 ms for 27 hand shapes and
68.46 ms for 56 hand shapes for data preprocessing without data augmentation. If we assume
an approximately proportional ratio of classification time to the number of data to be
classified, this results in a classification time of approximately 0.25 ms or 0.41 ms for a
single hand shape to be classified. Theoretically, classification rates of over 2.45 kHz would
be possible, i.e., far more than the 90 Hz sampling rate supported by the data glove used
in this study. It can therefore be assumed that a high classification rate for single hand
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shapes can be achieved even when using hardware that does not perform as well as what
we had available.

Regarding data preprocessing, the use of outlier detection is recommended, as this leads
to improvements, especially in classification times and, when used with VL2, in accuracy.
Feature selection brought slight improvements in classification time, but these advantages do
not add up to those of outlier detection, which is why it does not necessarily make sense to
use both methods at the same time. The experimental data augmentation approach showed
no improvements.

Overall, we therefore consider the use of VL2 in conjunction with outlier detection to be
the most useful for our purpose.

7.3. Limitations of Classification

Looking at the confusions within the classification (see Tables 8 and 9), the types
of hand shapes for which there are difficulties in classification can be seen. The data
acquisition was supervised, i.e., whether the hand shapes were correctly executed was
monitored during the recording. The listed errors are therefore mainly due to the data
gloves or the classification methods.

The corresponding confusion matrices can be viewed in the Appendix A , Figures A5
and A6.

Table 8. Top ten most common classification confusions for 27 hand shapes.

True Label Predicted Label Confusion Rate

N M 0.2333
M N 0.2333
T N 0.2000
N T 0.1333
4 Closed B 0.1000
R V 0.0833
H R 0.0833
C O 0.0667
V 7 0.0500
W Closed B 0.0500

Table 9. Top ten most common classification confusions for 56 hand shapes.

True Label Predicted Label Confusion Rate

Closed E S 0.2667
Curved 1 Bent 1 0.2667

Bent 1 Curved 1 0.2167
Curved L Bent L 0.2167
Curved 4 Spread E 0.2000

Flat Spread 5 4 0.2000
4 Flat Spread 5 0.2000

Bent L Curved L 0.1833
S Closed E 0.1667

Spread E Curved 4 0.1500

Thumb Position: There are particular difficulties with the hand shapes M, N, and T, where
a fist is formed and the thumb crosses a certain number of fingers below. Looking
beyond the top 10, it can be seen that S is also often interchanged with the hand
shapes just mentioned, because here the hand also forms a fist, but the thumb crosses
the fingers at the top (and not at the bottom). Moreover, S is confused with Closed E,
where the thumb does not rest on the fingers but directly below them.

Upon closer inspection of the visualized data, it is noticeable that the position of the
thumb is not recorded accurately enough by the data glove (examples can be seen in
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Figure 11). This is generally a weakness of this glove and seems to be the case with
other IMU-controlled gloves [11]. Similarly, it is difficult for the glove to tell whether
the thumb is on top of or underneath the crossed fingers.

(a) M, participant 5 (b) N, participant 5 (c) T, participant 2

Figure 11. Faulty recordings of hand shapes M, N, and T of participants 2 and 5.

The hand shapes Flat Spread 5 and 4 are also confused and differ only in the position
of the thumb.

Spread Values: Another example where the classifiers had difficulties with recognition
are the hand shapes R, H, and V, already shown in Figure 3, which differ only in the
spread of the index finger and ring finger. The same applies to 4 and Closed B.

Stretch Values: The classifiers also often had problems with stretch values, for example, to
distinguish between curved and bent hand shapes. Even though the recording of the
hand shapes was monitored, it cannot be completely ruled out that the hand shapes
were all recorded uniformly, as the difference between bent and curved is sometimes
marginal. Examples are Curved L ⇔ Bent L and Curved 1 ⇔ Bent 1. The differences
between the hand shapes Curved 4 ⇔ Spread E and C ⇔ O are more significant,
but there are also cases of confusion.

Based on our results and the visualizations shown (see Figure 11), we were able to
clarify that the limiting factor in the recognition of static hand shapes at this level of accuracy
is the hardware used and not the classifiers. To achieve better results, an alternative, more
accurate hardware should therefore be considered.

7.4. Comparison to Related Work

Pan et al. [9] published a state-of-the-art paper on data gloves in 2023. They examined
over 100 English-language papers from reputable publishers and created a comprehensive
review that we use for comparison:

Number of gestures: One of their results shows that the papers validate at least three to a
maximum of thirty-one hand gestures. The average for static gestures is 20 gestures.
Therefore, in comparison, our paper is in the upper range or well above, with 27 and
56 static hand gestures, respectively.

Number of participants: For the number of participants and data recorded (samples), our
study is right on the average of 20 participants and 1000 to 10,000 samples (it has
1620 and 3360 samples, and double that if the data are augmented).

Number of classifiers: Most papers examined between three and five classifiers; again, we
are in the mean range with four classifiers examined. However, we examine eight
different combinations of data preprocessing methods for each classifier.

Table 10 shows us an overview of the related studies [9,11,13,14]. Since most papers
([10–12,14]) report their results in a user-dependent manner, we conducted an additional
experiment for this purpose. This means that a user’s data can appear in both the training
and the test data. For better comparability, we therefore conducted another experiment for
both data sets.
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Table 10. Comparison of user-dependent recognition accuracy with related studies, ordered by
number of gestures (NoG) and number of participants.

Author(s) Classifier Type HS Mo Or NoG NoP Accuracy

Achenbach et al. [11] SVM Hand shapes of rock–paper–scissors ✓ 5 30 99.20%
Shukor et al. [13] Distance Hand gestures of Malaysian Sign Language ✓ ✓ 9 4 88.88%
Saggio et al. [14] CNN Signs of Italian Sign Language ✓ ✓ 10 7 98.00%
Plawiak et al. [10] SVM Hand–body language gestures, e.g., Okay sign ✓ ✓ ✓ 22 10 98.32%
Achenbach et al. [11] SVM Hand gestures of rock–paper–scissors ✓ ✓ 25 9 99.50%
Pezzuoli et al. [12] SVM Simple hand gestures, e.g., clockwise rotation ✓ ✓ ✓ 27 5 99.70%
This study VL2 Hand shapes of ASL finger alphabet ✓ 27 20 95.55%
This study RF Hand shapes of ASL-Lex [5] ✓ 56 20 93.28%

The following abbreviations are used: hand shape (HS), movement (Mo), orientation (Or), number of gestures
(NoG), number of participants (NoP).

This time, randomly combined training and test data were examined in a ratio of 80 to
20. For this, we used VL2 with the already-used hyperparameter ranges and with outlier
detection, as this was the most promising approach, and trained and tested them 100 times.
The training and testing data were randomized again before each run.

An accuracy of 95.55% was achieved for the data set with 27 hand shapes, and 93.19%
for 56 hand shapes. Looking at the other classifiers, we see that they are at a similarly high
level, between 94.17% (LR) and 95.34% (RF) for 27 hand shapes and between 90.16% (LR)
and 93.28% (RF) for 56 hand shapes. It should be noted here that RF can even achieve a
slightly higher result than VL2 and that LR obviously scales poorly.

Comparable works, such as Pezzuoli et al.’s [12], achieve an accuracy of up to 99.70%
for 27 dynamic gestures, but also use five times as many features. These 96 features include
information about hand orientation and movement.

Plawiak et al. [10] use ten sensor values per frame to detect dynamic hand gestures,
two of which are rejected using principal component analysis (PCA). They interpolate the
average of 60 frames of data to 20 frames, resulting in 160 data points, which they use to
classify the 22 different hand gestures. While this gives them a higher accuracy of 98.32%
than us (95.92% for 27 hand shapes), they also use eight times the amount of features
for classification.

Achenbach et al. [11] achieve a higher accuracy than we do with a comparable number
of gestures (25 compared to 27) and features (19 compared to 20) with 99.50%, but they can
also rely on information about the orientation of the hands, which we lack.

In direct comparison with the related studies shown in Table 10, we perform slightly
worse with 27 hand shapes in terms of accuracy, but we can also rely on significantly less
information, which generally has a positive effect on the classification times. With 56 hand
shapes, we can distinguish more than twice as many hand shapes as the related studies
and this still with a high accuracy.

8. Conclusions

In this study, the effects of different data preprocessing steps on the classification of
27 and 56 static hand shapes were investigated. The metrics considered were accuracy and
classification time.

According to our research, we can recommend the VL2 classifier with outlier aetec-
tion, as it has a high accuracy with an acceptable classification time. With this setting,
91.91% (27 hand shapes) and 87.50% (56 hand shapes) accuracy could be achieved for
user-independent tests, with a classification time of less than 15 ms and less than 60 ms,
respectively. In user-dependent tests, as much as 95.55% and 93.28% accuracy could be
achieved. Comparable studies with better accuracy values either had more information
available to classify the data or were only able to distinguish significantly fewer classes.
For very time-critical applications, LR with outlier detection can also be used, whose accuracy
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is slightly lower, but classification time is significantly higher. This recommendation is
independent of the number of hand shapes to be classified.

The use of feature selection brought a slight improvement in classification times, but this
is not necessarily additive to the advantages of outlier detecion. With more features, the ad-
vantages of feature selection would certainly be greater. Our approach to data augmentation
was able to double the number of training data with valid data; however, no improvement
in accuracy or generalizability was observed. This is certainly due to the fact that we
classified static gestures, whereas related studies have pointed to noticeable improvements
for dynamic gestures.

Outlook

Future work will evaluate how the data preprocessing methods would behave with
dynamic data with significantly more features. Especially improvements in data augmenta-
tion and feature selection could then be expected. Data augmentation should lead to higher
accuracy and better generalizability, whereas feature selection should lead to faster classifica-
tion times.

In this paper, we have examined and compared some traditional classifiers in detail, so
it would be exciting to know how deep-learning algorithms would perform in comparison.
The development and optimization of these classifiers could be one of the main topics of
the next study.

It would also be conceivable to include hand orientation in the future. This would
increase the number of features from the current 20 to 24. This additional information could
help to further increase accuracy and classify an even greater number of different hand
shapes. It would then also be possible to classify not only hand shapes, but simple signs,
such as letters from the finger alphabet, as well. A distinction between, for example, K and
P, which share the same hand shape (see Section 1), would then be possible.

We hope to achieve a further significant improvement in accuracy by using a new
generation of data gloves. The Manus Quantum Precision XR data gloves use magnetic
tracking instead of an IMU and flex sensor-based tracking. With this, the position of the
various sensors in the glove is measured by detecting fluctuations in the magnetic field
around the glove [35]. Especially the problems with the thumb position (see Figure 11)
could be solved with this new technology. Overall, the new glove makes a very accurate
impression in initial tests.
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Abbreviations
The following abbreviations are used in this manuscript:

ACM Association for Computing Machinery
ASL American Sign Language
CMC Carpometacarpal
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DIP Distal Interphalangea
DoF Degrees of Freedom
DT Decision Tree
GA Genetic Algorithm
IEEE Institute of Electrical and Electronics Engineers
IP Interphalangeal
IMU Inertial Measurement Unit
LR Logistic Regression
MCP Metacarpophalangeal
ML Machine Learning
OvA One-versus-Al
OvO One-versus-One
PCA Principal Component Analysis
PIP Proximal Interphalangeal
RF Random Forest
SVM Support Vector Machine
VL2 Voting Meta-Classifier
VR Virtual Reality
WoS Web of Science

Appendix A

Table A1. Used hand shapes of ASL finger alphabet (1 to Y) and ASL-Lex (all hand shapes except M
and N).

1 3 4 5 7 8 A

Closed B C D E F G H

I K L M N O R
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Table A1. Cont.

S T V W Bent 1 Y Baby O

Bent L Bent V Closed E Curved 1 Curved 4 Curved 5 Curved H

Curved L Curved V Flat 1 Flat 4 Flat B Flat Horns Flat ILY

Flat M Flat N Flat O Flat V Flat Spread 5 Goody Goody Horns

ILY Open 8 Open B Open E Open F Open H Spread E

Spread Open E Stacked 5

Hand shapes can be viewed in detail at https://sign-parametrization.netlify.app/handshapes.

https://sign-parametrization.netlify.app/handshapes
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Figure A1. Accuracy values in leave-one-out cross-validation for classifiers with 27 gestures (outlier
detection, feature selection, data augmentation).
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Figure A2. Accuracy values in leave-one-out cross-validation for classifiers with 56 gestures (outlier
detection, feature selection, data augmentation).
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Figure A3. Classification times in leave-one-out cross-validation for classifiers with 27 gestures
(outlier detection, feature selection, data augmentation).
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Figure A4. Classification times in leave-one-out cross-validation for classifiers with 56 gestures
(outlier detection, feature selection, data augmentation).
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Figure A5. Leave-one-out cross-validation confusion matrix for 27 hand shapes and VL2 classifier
with outlier detection.

Figure A6. Leave-one-out cross-validation confusion matrix for 56 hand shapes and VL2 classifier
with outlier detection.
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