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Abstract: As autonomous vehicles (AVs) are advancing to higher levels of autonomy and perfor-
mance, the associated technologies are becoming increasingly diverse. Lane-keeping systems (LKS),
corresponding to a key functionality of AVs, considerably enhance driver convenience. With drivers
increasingly relying on autonomous driving technologies, the importance of safety features, such as
fail-safe mechanisms in the event of sensor failures, has gained prominence. Therefore, this paper pro-
poses a reinforcement learning (RL) control method for lane-keeping, which uses surrounding object
information derived through LiDAR sensors instead of camera sensors for LKS. This approach uses
surrounding vehicle and object information as observations for the RL framework to maintain the
vehicle’s current lane. The learning environment is established by integrating simulation tools, such
as IPG CarMaker, which incorporates vehicle dynamics, and MATLAB Simulink for data analysis
and RL model creation. To further validate the applicability of the LiDAR sensor data in real-world
settings, Gaussian noise is introduced in the virtual simulation environment to mimic sensor noise in
actual operational conditions.

Keywords: reinforcement learning; autonomous vehicles; advanced driver assistance; vehicle
control; safety

1. Introduction

With the emergence and development of deep learning frameworks, vehicle au-
tonomous driving technologies have undergone rapid advancement in recent years, es-
pecially in object recognition and decision-making [1,2]. Interest in autonomous driving
technologies, driven by the 2004 DARPA Challenge, has grown with the concerted efforts
of original equipment manufacturers (OEMs) and industry stakeholders [3,4]. With these
technological advancements, various U.S. states and the federal government have been
preparing regulations and guidelines for the introduction of autonomous vehicles (AVs) [5].
Additionally, functional safety standards such as ISO 26262 [6] have been established. The
development of autonomous driving technologies is expected to help address various
road-related issues such as safety, traffic congestion, energy efficiency, and environmen-
tal impact [7,8]. However, the continued advancement of these technology encounters
numerous challenges.

Lane-keeping systems (LKS), a key feature of advanced driver assistance systems
(ADAS), allows vehicles to safely maintain their lanes [3]. However, most LKS rely heavily
on camera sensors. Therefore, in situations where lane recognition involves uncertainties
related to factors such as sensor damage, the system performance deteriorates, potentially
leading to accidents [9]. The United Nations Economic Commission for Europe WP.29 [10],
an international regulatory body for automotive standards, has established various reg-
ulations for AVs through its subsidiary, the United Nations Economic Commission for
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Europe (GRVA UNECE), specifying the minimal risk maneuver (MRM) functionality that
LKS must incorporate [11]. This functionality emphasizes the importance of maintaining a
stable lateral position in hazardous situations to avoid disrupting traffic flow, highlighting
its critical role as an essential safety feature in AVs. Autonomous driving technologies
classified at Level 3 or higher are designed to issue a takeover request (TOR) to the driver
in the event of hazardous situations, such as sensor failures or system limitations within
the perception system [12]. If the driver fails to respond and take control, the system is
required to perform MRM [13,14].

To address these challenges, we propose a solution based on the deep deterministic
policy gradient (DDPG) reinforcement learning (RL) model [15]. While previous imple-
mentations of RL in autonomous driving technologies were focused on path planning or
trajectory tracking [16,17], in this study, we incorporate LKS by considering the presence of
surrounding static and dynamic objects, using information obtained from LiDAR sensors.
LiDAR sensors exhibit exceptional precision in gauging distances, velocities, and direc-
tional information in the proximity of a vehicle. Their efficacy remains robust even under
challenging low-visibility conditions, such as those posed by fog or dust. This approach
allows the AV to navigate safely, even when the camera sensor is not functioning. The use
of the DDPG model for lane-keeping control is expected to significantly enhance safety
by allowing an AV to maintain its lane securely while responding to hazardous situations,
thereby preventing traffic accidents.

In summary, this paper proposes an LKS control method using DDPG RL, based
on the movements of surrounding vehicles when lane recognition is compromised due
to degraded camera sensor performance. As illustrated in Figure 1, learning is imple-
mented in an integrated environment, combining the simulation program IPG CarMaker
and MATLAB Simulink. Within the simulation environment of CarMaker, essential data
pertaining to surrounding objects and the behavior of the vehicle is generated. This state
information is subsequently transmitted to the Matlab Simulink environment. Following
this data exchange, the steering control values, which are obtained through reinforcement
learning, are then employed to govern the vehicle within the CarMaker environment.
MATLAB Simulink is interconnected with CarMaker in real-time, enabling monitoring of
control inputs and the vehicle outputs. Furthermore, it provides the Reinforcement Learn-
ing Toolbox, supporting reinforcement learning algorithms like DQN, PPO, and DDPG.
This toolbox facilitates efficient development through hyperparameter configuration and
training progress monitoring.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 17 
 

 

regulations for AVs through its subsidiary, the United Nations Economic Commission for 
Europe (GRVA UNECE), specifying the minimal risk maneuver (MRM) functionality that 
LKS must incorporate [11]. This functionality emphasizes the importance of maintaining 
a stable lateral position in hazardous situations to avoid disrupting traffic flow, highlight-
ing its critical role as an essential safety feature in AVs. Autonomous driving technologies 
classified at Level 3 or higher are designed to issue a takeover request (TOR) to the driver 
in the event of hazardous situations, such as sensor failures or system limitations within 
the perception system [12]. If the driver fails to respond and take control, the system is 
required to perform MRM [13,14]. 

To address these challenges, we propose a solution based on the deep deterministic 
policy gradient (DDPG) reinforcement learning (RL) model [15]. While previous imple-
mentations of RL in autonomous driving technologies were focused on path planning or 
trajectory tracking [16,17], in this study, we incorporate LKS by considering the presence 
of surrounding static and dynamic objects, using information obtained from LiDAR sen-
sors. LiDAR sensors exhibit exceptional precision in gauging distances, velocities, and di-
rectional information in the proximity of a vehicle. Their efficacy remains robust even un-
der challenging low-visibility conditions, such as those posed by fog or dust. This ap-
proach allows the AV to navigate safely, even when the camera sensor is not functioning. 
The use of the DDPG model for lane-keeping control is expected to significantly enhance 
safety by allowing an AV to maintain its lane securely while responding to hazardous 
situations, thereby preventing traffic accidents. 

In summary, this paper proposes an LKS control method using DDPG RL, based on 
the movements of surrounding vehicles when lane recognition is compromised due to 
degraded camera sensor performance. As illustrated in Figure 1, learning is implemented 
in an integrated environment, combining the simulation program IPG CarMaker and 
MATLAB Simulink. Within the simulation environment of CarMaker, essential data per-
taining to surrounding objects and the behavior of the vehicle is generated. This state in-
formation is subsequently transmitted to the Matlab Simulink environment. Following 
this data exchange, the steering control values, which are obtained through reinforcement 
learning, are then employed to govern the vehicle within the CarMaker environment. 
MATLAB Simulink is interconnected with CarMaker in real-time, enabling monitoring of 
control inputs and the vehicle outputs. Furthermore, it provides the Reinforcement Learn-
ing Toolbox, supporting reinforcement learning algorithms like DQN, PPO, and DDPG. 
This toolbox facilitates efficient development through hyperparameter configuration and 
training progress monitoring. 

 
Figure 1. CarMaker and MATLAB Simulink integrated environment. Figure 1. CarMaker and MATLAB Simulink integrated environment.



Sensors 2023, 23, 9843 3 of 17

The LiDAR sensor was set up based on the specifications of the Ouster OS1-64. The
OS1-64 LiDAR sensor actually boasts a vertical resolution of 64, a horizontal resolution
of 1024, and a field of view ranging from 360 degrees horizontally and −22.5 degrees to
22.5 degrees vertically, as shown in Figure 2. The study does not use deep learning models
for recognition. Instead, the state information provided to the reinforcement learning model
is obtained through dynamic calculations within the simulation. However, to mimic the
operational conditions of sensors installed in real vehicles and validate the applicability of
the approach in real-world scenarios, we introduce Gaussian noise into the system [18].
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The methodology employed in the research is an end-to-end reinforcement learning
(RL) approach, which utilizes information, including the relative positions, relative veloci-
ties, and relative heading angles of surrounding vehicles, to generate the steering angle.
The steering angle generated by the agent is used to control the vehicle through a PID
controller. The proposed approach is evaluated through a comparison with traditional
control methods, including the pure pursuit and Stanley control methods.

2. Related Work
2.1. Traditional Lateral Controller for Autonomous Vehicle

In traditional autonomous driving systems, lane information is typically obtained
through cameras or vehicle position data derived from HD maps. This information is then
used to generate driving paths, followed by trajectory control [19]. Path-tracking control
techniques include controllers that track the path generated from the vehicle position
and can be categorized into kinematic-based, dynamic-model-based, and feedback-based
approaches [20]. In conventional control methods, steering angles are computed based on
lane information. The representative traditional control systems include the pure pursuit
controller and the Stanley controller. The pure pursuit controller is a path-tracking con-
troller based on geometric methods, which offers stability against disturbances. It delivers
excellent performance in terms of ride comfort and tracking capability and can be tuned to
achieve superior results, rendering it a popular choice for testing in many AVs [21,22]. The
Stanley controller, which emerged during the 2005 DARPA Grand Challenge [3,4], controls
the vehicle by focusing on the point closest to the target point from the vehicle’s front axle.
In this study, we control the vehicle using steering angle values through RL in the absence
of lane information and compare its performance with conventional control methods such
as pure pursuit and Stanley controllers. The performance of the pure pursuit and Stanley
controllers was effectively optimized through the parameter tuning process, considering
road and driving speed conditions specific to the operational design domain (ODD) for
the experiment.
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2.2. Autonomous Fault-Tolerant System

As autonomous driving technology advances, the role of the traditional driver is
transitioning to autonomous driving systems. However, ensuring safety in the complex
and highly variable road driving environment remains a challenging task. AVs rely on
a variety of sensors, which increases the likelihood of issues arising due to physical or
electrical sensor failures [23]. Creating autonomous vehicles that are immune to sensor
failures is impossible; therefore, the development of a fault-tolerant system (FTS) for
autonomous vehicles is necessary to ensure safety even in the event of failures. The FTS
starts with the detection of faulty sensors in the autonomous driving system. Realpe
and Vintimilla [24] proposed a fault-tolerant perception paradigm for the sensor suite of
autonomous driving systems. The paradigm presented in their paper involves detecting
failures in vision sensors used for perception and outlines a data fusion architecture to
minimize risks. Rather than relying on a single sensor, it employs a multi-sensor-based
vehicle architecture for fault detection and diagnosis, combining and diagnosing sensor
data. This approach allows for higher reliability and safety. After detecting faults in the
system, fault-tolerant techniques become necessary. Kans and Lee [25] introduced a fault-
tolerant control method for lane-keeping systems (LKS) to address situations where lane
recognition becomes impossible due to a camera sensor failure. In the event of a camera
sensor failure, they create a virtual lane using a lateral vehicle model, GPS, and in-vehicle
sensors, enabling the vehicle to maintain lateral control performance for up to 3 s and
minimize risks. Existing FTS solutions for LKS have proven effective in ensuring safety for
short durations. In this study, we assume a camera sensor failure in a camera-based LKS
and aim to implement FTS functionality using LiDAR sensor-based reinforcement learning.

2.3. Application of Deep Learning Technology in AVs

Artificial intelligence technology is being employed across various industries, thanks
to the rapid advancement of deep learning algorithms and the improved performance of
GPU hardware for computations. The field of autonomous driving is no exception, as it
prominently demonstrates the application of deep learning technology [26]. Companies
like Tesla in the United States have openly shared a variety of deep learning techniques and
architectures they are currently utilizing. Consequently, there is an ongoing effort to collect
and make available the datasets required for deep learning training in autonomous driving.
Furthermore, organizations such as Waymo and Argoverse have been actively collecting
and sharing diverse sets of training data, fostering vibrant research in this domain. AVs
execute perception, decision-making, and control based on an array of sensors, offering
multiple avenues for the application of deep learning technology [27]. The shift from
traditional rule-based approaches to artificial intelligence technology allows for more
adaptive responses even in previously unpredictable scenarios.

2.3.1. Object Detection Using Deep Learning

Cognitive technology is the technique of detecting vehicles, obstacles, and more from
various sensors such as cameras, LiDAR, ultrasonic, and radar, primarily focusing on
research involving camera and LiDAR sensors. Camera-based cognitive deep learning
models, such as YOLO, Faster R-CNN, and SSD, offer excellent object classification based on
high-resolution images but are sensitive to environmental changes and have limitations in
estimating 3D information accurately from 2D images [28]. In contrast, LiDAR recognition
technology provides accurate 3D information, even during nighttime, based on precise
distance data. LiDAR-based recognition models like VoxleNet, PointRCNN, and PV-
RCNN exhibit high performance in 3D distance information [29]. This implies that LiDAR
recognition technology holds promise for enhancing the safety of autonomous vehicles.

2.3.2. Vehicle Control Technology Using RL

RL is a subfield of machine learning that aims to determine an optimal strategy
through a series of decision-making processes. This approach has been rapidly developing
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in recent years and is being applied to complex systems such as long-distance vehicle
control. In the field of autonomous drones and vehicles, research on control mechanisms
based on hybrid RL is expanding to reduce the need for specific designs for new tasks. Off-
policy actor–critic methods have demonstrated performance in continuous control tasks.
Representative algorithms include DDPG, TD3, and SAC [30]. In the field of vehicle lateral
control and decision-making, many studies have used the DDPG algorithm. Moreover,
RL has been applied to actual vehicle lateral control [16]. These applications involve
following a path defined by waypoints spaced at intervals of 5 m, with continuous updates
associated with the Euclidean distance, angle deviation, and perception module data,
which are provided as inputs to the RL agent. Furthermore, the integration of dynamic
properties into the reward components of RL has proven effective in addressing vehicle
safety while effectively executing lateral control [31]. The DDPG algorithm is relatively
easy to understand, intuitive, and relatively simple to implement and debug compared to
other algorithms. In this study, we also used the DDPG algorithm because the values used
as reinforcement learning data are not high-dimensional but are continuous real-valued
observations, and the control extracts the steering angle as the result. In addition, when
a comparative experiment was conducted with TD3, the learning speed was faster and
demonstrated similar performance upon reaching a steady state.

3. LKS Method Based on DDPG
3.1. Proposed Method for LKS Using RL

This paper proposes an RL-based solution for LKS, using LiDAR sensor data in
situations where camera vision sensors for lane recognition are unavailable. RL is aimed
at maximizing a reward function through trial and error, based on observed data. As
shown in Figure 3, surrounding object information undergoes postprocessing and is then
transmitted to the RL model, which generates appropriate actions. The postprocessing
stage includes the transformation of data from global coordinates to local coordinates
and filtering of nearby vehicles from the entire set of vehicles. Real-time data from the
CarMaker simulation are acquired using the CM read utility, including coordinates, velocity,
acceleration, and angles of surrounding objects, all provided in global coordinates with
respect to the road. Subsequently, these data are converted into the local coordinates for
LKS control and filtering is performed to select the closest five vehicles within the specified
range of the target vehicle to be controlled.
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3.2. Training Environment

Vehicle simulation programs must adhere to certain crucial requirements to ensure
that the simulation environment mimics real vehicle conditions. In particular, any discrep-
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ancies between the simulation and real environments can render the results inconclusive.
Therefore, it is essential to configure a simulation environment that takes into account
the dynamic elements of actual vehicles. Additionally, the simulation must be capable of
being executed at speeds exceeding real-time requirements, because RL involves repeating
scenarios and learning through trial and error. Compatibility with other software programs
is also a key consideration, as it may be necessary to integrate the data generated within
the vehicle simulation environment with other programs for training [16]. In this study,
we satisfy these requirements by configuring the learning environment using the IPG
CarMaker program version 11.1 and Matlab 2021a, ensuring seamless integration and com-
patibility with other software programs. This platform enables real-time monitoring of data
during testing and faithful replication of realistic vehicle behavior through parameterized
components, such as steering, tires, brakes, powertrain, and chassis. Moreover, it supports
Simulink integration, enabling data analysis [32]. The DDPG RL agent is implemented
using MATLAB Simulink, with the hyperparameters set as outlined in Table 1 to configure
the learning environment.

Table 1. Hyperparameters for DDPG model training.

Parameter Value

Discount factor (γ) 0.99
Target smooth factor 0.001

Mini-batch size 64
Target network update frequency 100

Replay memory size 107

Noise variance 0.6
Noise variance decay rate 106

3.3. DDPG Algorithm

The DDPG RL algorithm has demonstrated its potential in the field of control by out-
performing traditional path control methods when applied to vehicles following predefined
paths [33]. The DDPG algorithm employs the actor–critic network framework to update
the actor and critic models [34]. Perform the training steps in the following sequence.

1. Randomly initialize the critic Q(S,A;∅) and actor π(S;θ) with parameter values ∅t and
θt, respectively.

2. Utilize Equation (1) to determine the action to take based on the current observation
S, where N represents the stochastic noise component of the noise model defined via
NoiseOptions:

A = π(S; θ) + N. (1)

3. Take action A, and then observe the reward R and subsequent observation S′.
4. Store the experience (S,A,R,S′) in the experience buffer.
5. Randomly select a mini-batch of M experiences (Si, Ai, Ri, S′

i) from the experience
buffer, where M is determined by the value assigned to the MiniBatchSize option.

6. If S′
i is a terminal state, set the value function target yi to Ri:

yi = Ri + γQ′
(

S′
i , u′(S′

i
∣∣θu

)∣∣∣θ′Q). (2)

7. Optimize the critic parameters by minimizing the loss L calculated using Equation (3)
over all the sampled experiences:

L =
1
M∑M

i=1 (y i − Q
(
Si, Ai

∣∣θQ
)
)

2. (3)
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8. Optimize the actor parameters using Equation (4):

∇θu J ≈ 1
M ∑M

i=1 GaiGui,
Gai = ∇AQ

(
Si, A

∣∣θQ
)
where A = u(Si|θu), Gui = ∇θuu(Si|θu).

(4)

9. Update the target actor and critic parameters depending on the target update method.

3.4. DDPG Actor–Critic Network

In this study, the network layers are configured as indicated in Tables 2 and 3. The net-
work architecture consists of actor and critic networks, each including a feature input layer,
fully connected layers with nodes, and rectified linear unit (ReLU) activation functions. In
the actor network, the final steering value is output by the fully connected layer connected
to a tanh activation function. The scaling layer is used to determine the control range. This
design enables the mapping of the actor’s output to the desired steering control within the
specified range.

Table 2. DDPG actor network structure.

Neurons Name

Feature input layer 35, 37 Observation
Fully connected layer 100 ActorFC1
Rectified linear unit Relu1

Fully connected layer 100 ActorFC2
Rectified linear unit Relu2

Fully connected layer 100 ActorFC3
Rectified linear unit Relu3

Fully connected layer 1 ActorFC4
Hyperbolic tangent layer Than1

Scaling layer Actorscaling1

Table 3. DDPG critic network structure.

State Path

Neurons Name

Feature input layer 35, 37 Observation

Fully connected layer 100 CriticFC1

Rectified linear unit Relu1

Fully connected layer 100 CriticFC2

Addition layer 2 Add

Rectified linear unit Relu2

Fully connected layer 1 CriticFC3

Action path

Feature input layer 1 Action

Fully connected layer 100 CriticActionFC1

3.5. State Space

The state space represents the observable values in the environment. In this study, the
state space encompasses all three elements used in the training environment, as shown in
Figure 4, which includes the observation space, reward, and termination states. We have
defined the state space in Table 4. The information about surrounding vehicles focuses on
the closest five vehicles.
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Table 4. State space definitions for RL training.

State
(i = 0,1,2,3,4) Meaning

S7i+1, S7i+2 Object relative distance, dx,dy
S7i+3, S7i+4 Object relative velocity, vx,vy
S7i+5, S7i+6 Object relative acceleration, ax,ay

S7i+7 Object relative heading, θyaw

S36 Ego vehicle lateral offset, derr
S37 Ego vehicle heading offset, θerr
S38 Collision status
S39 Longitudinal velocity, vx
S40 Simulation time, Ts
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3.6. Observation Space

Observation space refers to the values the agent perceives in the environment. This
is different from the state space. In this study, we train the LKS steering using only
information from surrounding static and dynamic objects. The observation space includes
information about the surrounding vehicles and the distance to the guardrail. The guardrail
information is included only in the guardrail scenario and not in the basic or Gaussian
noise scenarios. We define the observation space in Table 5.

Table 5. Observation space definitions for RL training.

Observation
(i = 0,1,2,3,4) Meaning

O7i+1, O7i+2 Object relative distance, dx,dy
O7i+3, O7i+4 Object relative velocity, vx,vy
O7i+5, O7i+6 Object relative acceleration, ax,ay

O7i+7 Object relative heading angle, θyaw
O36, O37 Guard rail distance, GL,GR

To better emulate real-world conditions, Gaussian sensor noise is introduced to the
position and velocity values, as shown in Figure 5. This addition of sensor noise is essential
for assessing the direct applicability of the results to real vehicles. Specifically, the addition
of noise renders the simulation more realistic, accounting for the uncertainty and variabil-
ity that real-world sensors typically exhibit. The testing scenarios in this study involve
single-lane and four-lane roads. Because only nearby vehicle information is required to
maintain the lane, the forward and rear vehicle perception ranges are set as 40 m and 10 m,
respectively. A maximum of five vehicles are considered in the perception range. The state
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values of these vehicles are summarized in Table 4. The state values of vehicles beyond the
perception range are assumed to be 0.
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3.7. Action Space

The action space is structured for lateral control of the vehicle, specifically in terms of
the steering angle, as presented in Table 6. Longitudinal control is managed by setting a
default target speed of 50 kph, controlled by a PI controller based on the internal parameters
of CarMaker. CarMaker provides an adaptive cruise control (ACC) controller, which
functions by maintaining the target speed when no leading vehicle is detected, and it
engages the ACC feature when a leading vehicle is detected. The controller is composed
of a PI controller and adjusts the position of the brake and gas pedals to control the
longitudinal acceleration. Additionally, it includes a speed adjustment feature based on the
road curvature. The rate of change of the steering angle for the lateral control is limited to a
maximum of ±150◦/s to prevent abrupt steering actions, thereby ensuring stable control
performance. The range of steering wheel control angles is confined within −180◦ to +180◦.
These constraints are designed to maintain safe and stable control of the vehicle during the
learning process.

Table 6. Action space for LKS control. The steering angle is adjustable within the range of −180◦ to 180◦.

State Description Min Max

δ Steering angle −180◦ 180◦

3.8. Reward Function

The reward function calculates rewards during the learning process based on how well
the agent’s actions align with the intended objectives. It provides feedback to the agent to
guide it toward learning optimal behaviors. In this study, a reward function is designed to
address lane-keeping control problems using RL. This function encompasses terms related
to lane-keeping, collision avoidance, and steering wheel oscillation prevention, as shown in
Equation (5). This function plays a pivotal role in shaping the agent’s behavior by assigning
rewards for actions that contribute positively to the desired objectives while penalizing
actions that lead to deviations.

R(vx, θerr, derr, δ, Ts) =k1|vxcosθerr|+ k2|vxsinθerr|+ k3|derr|+ k4|δt − δt−1|+ k5|Ts| (5)

The reward function weights for training are shown in Table 7. k1 governs the pre-
view error for lane-keeping control, while k2 and k3 are negative compensatory values
to minimize lateral deviation of the vehicle. k4 is used to mitigate steering oscillations.
This parameter is essential in preventing unstable control behavior that may arise if the
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sole objective is lane-keeping. k5 enhances the simulation robustness and encourages the
expansion of simulations.

Table 7. Reward function weights for training.

k1 k2 k3 k4 k5

20 1 40 1 300

3.9. Termination States

The definition of appropriate termination conditions is crucial in RL to ensure that the
learning process converges effectively and can prevent unpredictable or undesirable behav-
iors. Without well-defined termination conditions, an RL agent might continue learning
indefinitely, which can lead to inefficient learning and potentially harmful behaviors. The
learning process terminates when the agent achieves satisfactory performance. If intervals
of decreasing learning performance are detected thereafter, the training is halted. The
satisfaction score is based on the reward function applied when reinforcing the CarMaker
controller with reinforcement learning. During this process, an agent that performed well
in the interval from the steady state until a decline in scores is selected. For this research,
the following two termination conditions are defined:

• If the ego vehicle deviates from the intended path or angle by more than a specified
threshold: (|d| ≥ dmax or |θ| ≥ θmax).

• If there is a collision between the ego vehicle and surrounding vehicles or obstacles:
(i f Collision Signal = 1).

• If the learning score meets the satisfactory performance criterion and intervals of
performance decline are identified afterward.

Should either of these conditions be met, the ego vehicle within the simulation is
directed to return to the starting point and initiate a new episode.

4. Results

The objective of the proposed approach is to prevent accidents in the event of a camera
vision sensor failure by providing a fault-tolerant system for sensor malfunctions. To assess
the performance of lane-keeping control based on surrounding vehicle information without
the use of vision sensors for lane recognition, two scenarios are designed, and simulations
are conducted. In the simulation environment, elements such as the vehicle’s target speed,
the number of vehicles on the road, and road friction, are the same, but there are differences
in the movement of surrounding vehicles. The agent controls the vehicle by following the
steering values generated while maintaining the lane. The learning process is initiated at a
time step of 10 Hz. As shown in Figure 6, the two scenarios, with durations of 40 s and 60 s,
are implemented, corresponding to 400 and 600 steps, respectively.
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4.1. Simulation Scenario

The first validation scenario involves a single three-lane road, as shown in Figure 7,
with a driving scenario lasting approximately 40 s. In the RL process, the agent is trained
using observations of the relative positions, relative velocities, relative accelerations, and
relative heading angles of the surrounding vehicles.
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Figure 7. IPG movie displaying the first scenario road and surrounding vehicles.

The performance is validated through three tests: the basic case, which involves
only the surrounding object information; the guard rail case, which includes information
regarding guard rail distances; and the noise case, in which Gaussian sensor noise is
introduced. The ego vehicle operates at 50 kph using CarMaker internal PI controller and
functions with the ACC system. Additionally, the surrounding vehicles perform cut-in
and cut-out instead of maintaining their current lane. Cut-in and cut-out of surrounding
vehicles are made by autonomous settings of the traffic maneuver and occur randomly.

Figure 8 shows the increase in reward values as learning progresses and episodes
accumulate. The horizontal axis of the graph represents the episode count, where each
episode corresponds to the simulation starting and ending via termination conditions.
The vertical axis represents the rewards, indicating the cumulative reward values for
each episode. When compared to the basic case, the guardrail case with added guardrail
information showed the fastest and highest performance during learning. In contrast,
the Gaussian case demonstrated slower learning progress due to the noise. In the first
scenario, the basic, guard rail, and noise cases demonstrate successful completion of the
course without any collisions in the initial 40 s, starting from episodes 3415, 509, and
6185, respectively. Figure 9 shows the lane center tracking performance of the proposed
method for lane maintenance compared with those of three lateral control methods: the
pure pursuit controller, Stanley controller, and IPG driver. In the graph, the horizontal
axis represents simulation time, while the vertical axis represents lateral deviation. The
proposed method, which is based on RL learning using information from surrounding
vehicles, demonstrates performance similar to a traditional controller such as a pure pursuit
or Stanley controller that operates with knowledge of lane information. At a target speed
of 50 kph, maximum lateral errors of 0.2507 m, 0.2387 m, and 0.2850 m are observed in the
basic, guard rail, and noise cases, respectively. This result showcases that the proposed
approach can effectively perform lateral control for autonomous vehicles using information
from surrounding vehicles.

The second validation scenario involves a single four-lane road with a driving duration
of approximately 60 s, as shown in Figure 10. Similar to the previous scenario, the agent
learns from observations including the relative position, relative speed, relative acceleration,
and relative heading angle. The simulation cases are categorized into three scenarios: basic,
guard rail, and gaussian cases. The difference between the first and the second scenarios lies
in the fact that the second scenario features a single four-lane road, resulting in sparser traffic
within the perception range and a higher frequency of surrounding vehicles performing
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cut-ins and cut-outs. This scenario poses a more challenging problem for learning within
the training environment compared to the previous scenario.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17 
 

 

represents simulation time, while the vertical axis represents lateral deviation. The pro-

posed method, which is based on RL learning using information from surrounding vehi-

cles, demonstrates performance similar to a traditional controller such as a pure pursuit 

or Stanley controller that operates with knowledge of lane information. At a target speed 

of 50 kph, maximum lateral errors of 0.2507 m, 0.2387 m, and 0.2850 m are observed in the 

basic, guard rail, and noise cases, respectively. This result showcases that the proposed 

approach can effectively perform lateral control for autonomous vehicles using infor-

mation from surrounding vehicles. 

   
(a) (b) (c) 

Figure 8. (a) First scenario basic case training reward. (b) First scenario guard rail case training re-

ward. (c) First scenario noise case training reward. Training reward plots for the first scenario RL. 

   
(a) (b) (c) 

Figure 9. (a) First scenario basic case lateral deviation performance. (b) First scenario guard rail 

lateral deviation performance. (c) First scenario noise case lateral deviation performance. Compari-

son plots of model-based controller and proposed method for reinforcement learning-based lateral 

tracking performance. 

The second validation scenario involves a single four-lane road with a driving dura-

tion of approximately 60 s, as shown in Figure 10. Similar to the previous scenario, the 

agent learns from observations including the relative position, relative speed, relative ac-

celeration, and relative heading angle. The simulation cases are categorized into three sce-

narios: basic, guard rail, and gaussian cases. The difference between the first and the sec-

ond scenarios lies in the fact that the second scenario features a single four-lane road, re-

sulting in sparser traffic within the perception range and a higher frequency of surround-

ing vehicles performing cut-ins and cut-outs. This scenario poses a more challenging prob-

lem for learning within the training environment compared to the previous scenario. 

Figure 8. (a) First scenario basic case training reward. (b) First scenario guard rail case training
reward. (c) First scenario noise case training reward. Training reward plots for the first scenario RL.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17 
 

 

represents simulation time, while the vertical axis represents lateral deviation. The pro-
posed method, which is based on RL learning using information from surrounding vehi-
cles, demonstrates performance similar to a traditional controller such as a pure pursuit 
or Stanley controller that operates with knowledge of lane information. At a target speed 
of 50 kph, maximum lateral errors of 0.2507 m, 0.2387 m, and 0.2850 m are observed in the 
basic, guard rail, and noise cases, respectively. This result showcases that the proposed 
approach can effectively perform lateral control for autonomous vehicles using infor-
mation from surrounding vehicles. 

   
(a) (b) (c) 

Figure 8. (a) First scenario basic case training reward. (b) First scenario guard rail case training re-
ward. (c) First scenario noise case training reward. Training reward plots for the first scenario RL. 

   
(a) (b) (c) 

Figure 9. (a) First scenario basic case lateral deviation performance. (b) First scenario guard rail 
lateral deviation performance. (c) First scenario noise case lateral deviation performance. Compari-
son plots of model-based controller and proposed method for reinforcement learning-based lateral 
tracking performance. 

The second validation scenario involves a single four-lane road with a driving dura-
tion of approximately 60 s, as shown in Figure 10. Similar to the previous scenario, the 
agent learns from observations including the relative position, relative speed, relative ac-
celeration, and relative heading angle. The simulation cases are categorized into three sce-
narios: basic, guard rail, and gaussian cases. The difference between the first and the sec-
ond scenarios lies in the fact that the second scenario features a single four-lane road, re-
sulting in sparser traffic within the perception range and a higher frequency of surround-
ing vehicles performing cut-ins and cut-outs. This scenario poses a more challenging prob-
lem for learning within the training environment compared to the previous scenario. 

0 1,000 2,000 3,000 4,000 5,000

Episode
-2,000

0

2,000

4,000

6,000

8,000

10,000

12,000

Episode Reward
Average Reward

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

Episode
-2,000

0

2,000

4,000

6,000

8,000

10,000

12,000

Episode Reward
Average Reward

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Episode
-2,000

0

2,000

4,000

6,000

8,000

10,000

12,000

Episode Reward
Average Reward

Figure 9. (a) First scenario basic case lateral deviation performance. (b) First scenario guard rail
lateral deviation performance. (c) First scenario noise case lateral deviation performance. Comparison
plots of model-based controller and proposed method for reinforcement learning-based lateral
tracking performance.
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Figure 10. IPG movie displaying the second scenario road and surrounding vehicles.

Figure 11 depicts the reward graph based on episodes for the second scenario. The
horizontal axis represents the episode count, while the vertical axis represents the rewards,
signifying the cumulative reward values at each episode. Similar to the previous first
scenario, the guard rail case demonstrated the fastest and highest performance, whereas
the Gaussian case exhibited lower performance. In the driving scenarios, the vehicle speed
varies according to the curvature of the road, deviating from a constant speed profile.
Starting from episodes 2377, 1585, and 11,236 for the basic case, guard rail case, and noise
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case, respectively, the course is successfully completed over 60 s without any collisions. The
maximum lateral deviation for the basic case, guard rail case, and noise case are 0.4641 m,
0.3617 m, and 0.4764 m, and the RMS errors are 0.1121, 0.1067, and 0.1412, respectively.
Figure 12 compares the performance of the proposed method with three other lateral control
methods, highlighting the lane center tracking performance of the proposed method for
lane maintenance. The horizontal axis of the graph represents time, while the vertical axis
shows the lateral deviation. In the second scenario, the proposed method demonstrates
performance similar to a traditional controller such as a pure pursuit controller.
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4.2. Proposed Method for Fault-Tolerant System Using RL

We have developed a fault-tolerant system that allows autonomous vehicles (AVs)
to perform a lane-keeping system (LKS) based on LiDAR sensor-derived surrounding
object recognition information in the event of camera sensor failures in lane recognition.
Table 8 demonstrates the control performance through reinforcement learning based on
the observation space information explained in Section 3.6. The scenarios are divided
into two categories, and each scenario underwent testing under three different cases:
basic, guard rail, and Gaussian. The basic case relies on surrounding vehicle information,
excluding guard rail distances, as presented in Table 5, for navigation. The guard rail case
involves adding guard rail information to the basic case. The Gaussian case maintains
the same observation configuration as the basic case but introduces Gaussian noise to the
surrounding object information. The objective of our research is to evaluate the performance
in terms of the lateral deviation of the control vehicle for the implementation of the LKS
driving within the fault-tolerant system (FTS). As seen in Table 8, the performance appears
to be better in the order of guard rail, basic, and Gaussian noise cases. Additionally, scenario
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1 outperformed scenario 2, which presents a more challenging problem. Nevertheless, all
three cases demonstrated the ability to safely maintain the lane without collisions or lane
departures during the simulation period. In addition, to ensure the safety of the system, we
conducted additional testing with 100 different starting positions for the Ego vehicle in each
simulation. In all 100 cases, the vehicle successfully completed the scenarios without any
collisions. The scenarios were designed to include challenging conditions such as various
curves, stationary vehicles, and lane-changing vehicles, demonstrating the robustness of
the system in adverse environments. The successful completion of these additional 100 tests
further confirms the safety assurance of the FTS.

Table 8. Lane centering performance in terms of maximum lateral deviation and RMS error for the
entire segment.

Proposed Method
RL Controller

Scenario 1 Scenario 2

Max_Deviation [m] Deviation RMS Max_Deviation [m] Deviation RMS

Basic 0.2507 0.0904 0.4641 0.1121
Guard rail 0.2387 0.0889 0.3617 0.1067

Gaussian noise 0.2850 0.0908 0.4764 0.1412

4.3. Comparison with Traditional Controllers

We conducted a comparative analysis of the performance of the proposed method,
which is based on lane information for lateral control, with the pure pursuit, Stanley con-
troller, and IPG Driver. Pure pursuit and Stanley controllers are widely used in autonomous
driving control and have proven performance. The chosen criteria for comparison are
lateral deviation and heading angle error. These two factors play a crucial role in optimal
lateral control for autonomous driving. Traditional optimal control aims to minimize the
errors in these two factors, making a comparison of their performance meaningful in the
context of this study as shown in Tables 9 and 10. The IPG Driver is a control method
provided by CarMaker, based on the pure pursuit model, and it reflects human driving
characteristics. When comparing the performance of the proposed method with the guard
rail case, in scenario 1, it exhibited better performance in terms of maximum deviation and
RMS for the entire segment, outperforming pure pursuit and IPG Driver. In scenario 2, it
showed lower maximum deviation and better overall performance than the IPG Driver. As
shown in Tables 9 and 10, the proposed method demonstrated performance similar to that
of traditional controllers, indicating its ability to reliably establish a fault-tolerant System.
When comparing the results of learning the guard rail scenario using TD3, a more recent
algorithm, the target score was achieved. Although there is a difference in the tendency of
reward, it was confirmed that a similar performance is demonstrated once the steady state
is reached.

Table 9. Comparison of lane centering performance between the proposed method and tradi-
tional controller.

Controller
Scenario 1 Scenario 2

Max_Deviation [m] RMS Error Max_Deviation [m] RMS Error

Traditional
Control

Pure
pursuit 0.3154 0.1487 0.3149 0.1398

Stanley 0.2716 0.1151 0.1308 0.0494
IPG Driver 0.4646 0.2376 0.7095 0.3398

RL Control
TD3 0.2421 0.0903 0.3648 0.1147
Ours 0.2387 0.0889 0.3617 0.1067
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Table 10. Comparison of heading error between the proposed method and traditional controller.

Controller
Scenario 1 Scenario 2

Max_Heading [deg] RMS Error Max_Heading [deg] RMS Error

Traditional
Control

Pure pursuit 3.9086 3.1578 4.7712 1.9117
Stanley 2.3507 2.2792 3.1480 1.7052

IPG Driver 4.7928 3.2544 6.7176 2.1671

RL Control
TD3 2.3418 2.1798 4.8529 1.8653
Ours 2.2531 2.1546 4.7953 1.8295

5. Conclusions and Future Work

In this paper, we have presented research on a reinforcement learning (RL)-based fault-
tolerant system. The agent’s input observation includes information on a maximum of
five surrounding vehicles within the perception range, and in specific cases, the distance to
guardrails is also added. The output is steering commands. The key aspect of this approach
lies in its ability to address situations not only involving the failure of vision sensors, such as
cameras for lane recognition, but also situations involving lane damage. The reward function
of the proposed method is composed of elements for vehicle lane center tracking to facilitate
LKS. Additionally, elements related to steering oscillation are included to enhance steering
safety and reduce the computational cost of actions. Even when comparing the performance of
learning in scenarios where lane information is known to traditional control methods like pure
pursuit and Stanley, our method demonstrates sufficient performance for LKS functionality.
While the research presented in this paper has shown promising results, there is room for
improvement in terms of learning performance and safety. In this study, we employed
the deep deterministic policy gradient (DDPG) reinforcement learning algorithm, which is
widely used in lateral control. To address the limitations of the DDPG algorithm, which is
advantageous for continuous control, new algorithms like twin delayed deep deterministic
policy gradient (TD3) and soft actor-critic (SAC) have been developed to provide more stable
learning. Currently, efforts are underway to establish the SAC environment to assess the
learning trends. Furthermore, it is important to note that autonomous driving using deep
learning faces challenges in terms of debugging, and there is an ongoing need to establish
methods to achieve safety standards, as regulations like Safety Of The Intended Functionality
(SOTIF): ISO/PAS 21448:2019 are not yet fully established. In future research, we plan to
apply state-of-the-art reinforcement learning algorithms that take into account dynamic factors
such as lateral acceleration, jerk, and side-slip angle. We intend to train an agent capable of
simultaneous lateral and longitudinal control of the vehicle.

Author Contributions: Conceptualization and formal analysis, J.K. (Jihun Kim); investigation and
validation, S.P.; methodology and software J.K. (Jeesu Kim); software and writing, J.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded
by the Korean government (MSIT) (NRF-2021R1A5A1032937).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Biggi, G.; Stilgoe, J. Artificial intelligence in self-driving cars research and innovation: A scientometric and bibliometric analysis.

SSRN Electron. J. 2021. [CrossRef]
2. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.

2020, 37, 362–386. [CrossRef]

https://doi.org/10.2139/ssrn.3829897
https://doi.org/10.1002/rob.21918


Sensors 2023, 23, 9843 16 of 17

3. Behringer, R.; Sundareswaran, S.; Gregory, B.; Elsley, R.; Addison, B.; Guthmiller, W.; Daily, R.; Bevly, D. The DARPA grand
challenge-development of an autonomous vehicle. In Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy,
14–17 June 2004; IEEE: Piscataway, NJ, USA, 2004.

4. Chan, C.-Y. Advancements, prospects, and impacts of automated driving systems. Int. J. Transp. Sci. Technol. 2017, 6, 208–216.
[CrossRef]

5. Hemphill, T.A. Autonomous vehicles: US regulatory policy challenges. Technol. Soc. 2020, 61, 101232. [CrossRef]
6. ISO 26262-10:2012; Road Vehicles—Functional Safety—Part 10: Guideline on ISO 26262. ISO: Geneva, Switzerland, 2012.
7. Chen, J.; Zhang, S.; Zhou, S. Analysis of automatic emergency braking system performance insufficiency based on system theory

process analysis. In Proceedings of the 2023 IEEE International Conference on Industrial Technology (ICIT), Orlando, FL, USA,
4–6 April 2023; IEEE: Piscataway, NJ, USA, 2023.

8. ISO DIS 11270; Intelligent Transport Systems–Lane Keeping Assistance Systems (LKAS)–Performance Requirements and Test
Procedures. ISO: Geneva, Switzerland, 2013.

9. Son, W.-I.; Oh, T.-Y.; Park, K.-H. Development of Lidar-based MRM algorithm for LKS systems. Korean ITS J. 2021, 20, 174–192.
[CrossRef]

10. UNECE. Available online: http://www.unece.org/trans/main/wp29/faq.html (accessed on 15 December 2023).
11. GRVA-06-02-Rev.4 Proposal for a New UN Regulation on ALKS; GRVA: Geneva, Switzerland, 2020; pp. 3–10.
12. Kim, H.J.; Yang, J.H. Takeover requests in simulated partially autonomous vehicles considering human factors. IEEE Trans.

Hum.-Mach. Syst. 2017, 47, 735–740. [CrossRef]
13. Magdici, S.; Matthias, A. Fail-safe motion planning of autonomous vehicles. In Proceedings of the 2016 IEEE 19th International

Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; IEEE: Piscataway, NJ, USA, 2016.
14. Heo, J.; Lee, H.; Yoon, S.; Kim, K. Responses to take-over request in autonomous vehicles: Effects of environmental conditions

and cues. IEEE Trans. Intell. Transp. Syst. 2022, 23, 23573–23582. [CrossRef]
15. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
16. Wasala, A.; Byrne, D.; Miesbauer, P.; O’Hanlon, J.; Heraty, P.; Barry, P. Trajectory based lateral control: A reinforcement learning

case study. Eng. Appl. Artif. Intell. 2020, 94, 103799. [CrossRef]
17. Fehér, Á.; Aradi, S.; Bécsi, T. Online trajectory planning with reinforcement learning for pedestrian avoidance. Electronics 2022,

11, 2346. [CrossRef]
18. Elmquist, A.; Negrut, D. Methods and models for simulating autonomous vehicle sensors. IEEE Trans. Intell. Veh. 2020, 5, 684–692.

[CrossRef]
19. Pérez-Gil, Ó.; Barea, R.; López-Guillén, E.; Bergasa, L.M.; Gomez-Huelamo, C.; Gutiérrez, R.; Diaz-Diaz, A. Deep reinforcement

learning based control for Autonomous Vehicles in CARLA. Multimed. Tools Appl. 2022, 81, 3553–3576. [CrossRef]
20. Lee, H.; Kim, T.; Yu, D.; Hwang, S.H. Path-following correction control algorithm using vehicle state errors. Trans. Korean Soc.

Automot. Eng. 2022, 30, 123–131. [CrossRef]
21. Samuel, M.; Hussein, M.; Mohamad, M.B. A review of some pure-pursuit based path tracking techniques for control of

autonomous vehicle. Int. J. Comput. Appl. 2016, 135, 35–38. [CrossRef]
22. Rokonuzzaman, M.; Mohajer, N.; Nahavandi, S.; Mohamed, S. Review and performance evaluation of path tracking controllers of

autonomous vehicles. IET Intell. Transp. Syst. 2021, 15, 646–670. [CrossRef]
23. Isermann, R. Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and

Fault-tolerant Systems; Springer: Berlin/Heidelberg, Germany, 2011.
24. Realpe, M.; Vintimilla, B.X.; Vlacic, L. A fault tolerant perception system for autonomous vehicles. In Proceedings of the 2016

35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; IEEE: Piscataway, NJ, USA, 2016.
25. Kang, C.M.; Lee, S.H.; Kee, S.C.; Chung, C.C. Kinematics-based fault-tolerant techniques: Lane prediction for an autonomous

lane keeping system. Int. J. Control. Autom. Syst. 2018, 16, 1293–1302. [CrossRef]
26. Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A survey of deep learning applications to autonomous vehicle control. IEEE

Trans. Intell. Transp. Syst. 2020, 22, 712–733. [CrossRef]
27. Kuutti, S.; Bowden, R.; Fallah, S. Weakly supervised reinforcement learning for autonomous highway driving via virtual safety

cages. Sensors 2021, 21, 2032. [CrossRef]
28. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A survey of deep learning-based object detection. IEEE Access 2019,

7, 128837–128868. [CrossRef]
29. Alaba, S.Y.; Ball, J.E. Ball. A survey on deep-learning-based lidar 3d object detection for autonomous driving. Sensors 2022,

22, 9577. [CrossRef]
30. Mock, J.W.; Muknahallipatna, S.S. A comparison of ppo, td3 and sac reinforcement algorithms for quadruped walking gait

generation. J. Intell. Learn. Syst. Appl. 2023, 15, 36–56. [CrossRef]
31. Riedmiller, M.; Montemerlo, M.; Dahlkamp, H. Learning to drive a real car in 20 minutes. In Proceedings of the 2007 Frontiers in

the Convergence of Bioscience and Information Technologies, Jeju, Republic of Korea, 11–13 October 2007; IEEE: Piscataway, NJ,
USA, 2007.

32. IPG Automotive GmbH. Carmaker: Virtual Testing of Automobiles and Light-Duty Vehicles. 2017. Available online: https:
//ipg-automotive.com/en/products-solutions/software/carmaker/#driver%20 (accessed on 13 March 2019).

https://doi.org/10.1016/j.ijtst.2017.07.008
https://doi.org/10.1016/j.techsoc.2020.101232
https://doi.org/10.12815/kits.2021.20.1.174
http://www.unece.org/trans/main/wp29/faq.html
https://doi.org/10.1109/THMS.2017.2674998
https://doi.org/10.1109/TITS.2022.3201074
https://doi.org/10.1016/j.engappai.2020.103799
https://doi.org/10.3390/electronics11152346
https://doi.org/10.1109/TIV.2020.3003524
https://doi.org/10.1007/s11042-021-11437-3
https://doi.org/10.7467/KSAE.2022.30.2.123
https://doi.org/10.5120/ijca2016908314
https://doi.org/10.1049/itr2.12051
https://doi.org/10.1007/s12555-017-0449-8
https://doi.org/10.1109/TITS.2019.2962338
https://doi.org/10.3390/s21062032
https://doi.org/10.1109/ACCESS.2019.2939201
https://doi.org/10.3390/s22249577
https://doi.org/10.4236/jilsa.2023.151003
https://ipg-automotive.com/en/products-solutions/software/carmaker/#driver%20
https://ipg-automotive.com/en/products-solutions/software/carmaker/#driver%20


Sensors 2023, 23, 9843 17 of 17

33. Cao, Y.; Ni, K.; Jiang, X.; Kuroiwa, T.; Zhang, H.; Kawaguchi, T.; Hashimoto, S.; Jiang, W. Path following for Autonomous Ground
Vehicle Using DDPG Algorithm: A Reinforcement Learning Approach. Appl. Sci. 2023, 13, 6847. [CrossRef]

34. DDPG Agents—MATLAB & Simulink. MathWorks. 2023. Available online: https://kr.mathworks.com/help/reinforcement-
learning/ug/ddpg-agents.html?lang=en (accessed on 11 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app13116847
https://kr.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html?lang=en
https://kr.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html?lang=en

	Introduction 
	Related Work 
	Traditional Lateral Controller for Autonomous Vehicle 
	Autonomous Fault-Tolerant System 
	Application of Deep Learning Technology in AVs 
	Object Detection Using Deep Learning 
	Vehicle Control Technology Using RL 


	LKS Method Based on DDPG 
	Proposed Method for LKS Using RL 
	Training Environment 
	DDPG Algorithm 
	DDPG Actor–Critic Network 
	State Space 
	Observation Space 
	Action Space 
	Reward Function 
	Termination States 

	Results 
	Simulation Scenario 
	Proposed Method for Fault-Tolerant System Using RL 
	Comparison with Traditional Controllers 

	Conclusions and Future Work 
	References

