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Abstract: The explosive demand for wireless communications has intensified the complexity of spec-
trum dynamics, particularly within unlicensed bands. To promote efficient spectrum utilization and
minimize interference during communication, spectrum sensing needs to evolve to a stage capable
of detecting multidimensional spectrum states. Signal identification, which identifies each device’s
signal source, is a potent method for deriving the spectrum usage characteristics of wireless devices.
However, most existing signal identification methods mainly focus on signal classification or modula-
tion classification, thus offering limited spectrum information. In this paper, we propose DSINet, a
multitask learning-based deep signal identification network for advanced spectrum sensing systems.
DSINet addresses the deep signal identification problem, which involves not only classifying signals
but also deriving the spectrum usage characteristics of signals across various spectrum dimensions,
including time, frequency, power, and code. Comparative analyses reveal that DSINet outperforms
existing shallow signal identification models, with performance improvements of 3.3% for signal clas-
sification, 3.3% for hall detection, and 5.7% for modulation classification. In addition, DSINet solves
four different tasks with a 65.5% smaller model size and 230% improved computational performance
compared to single-task learning model sets, providing meaningful results in terms of practical use.

Keywords: deep signal identification; multitask learning; spectrum sensing; spectrum hyperspace;
5G-advanced

1. Introduction

The massive connectivity of wireless devices has caused a significant increase in spec-
trum demand, leading to a shortage in the available spectrum. To address this, wireless
devices tend to (1) share the spectrum for opportunistic spectrum utilization and (2) apply
various wireless technologies to densely use multidimensional spectrum space. The explo-
sive demand for the spectrum is expected to increase further, even in 5G-advanced and 6G
systems, and the network must accommodate heterogeneous devices and their complex
access methods [1–3].

Spectrum sensing (SS), serving as the cornerstone of cognitive radio, has played a
crucial role in mitigating spectrum scarcity by identifying unused resources within the
spectrum and promoting their use by wireless devices [4]. Nonetheless, as spectrum
dynamics become increasingly complex, wireless devices are demanding a more advanced
level of detection from SS. To enhance spectrum efficiency with minimal interference amidst
frequent spectrum sharing, it is essential for SS to not just detect ’empty holes’ but also
keep track of the activities of primary users [5]. Furthermore, to mitigate cross-technology
interference (CTI) among devices utilizing diverse wireless technologies, there is a need to
extract multidimensional spectrum state information, which is key in developing tailored
interference mitigation strategies [6]. Given the functional limitations of SS, if wireless
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devices are confined to receiving fragmented information about the spectrum state, they
may face frequent collisions and transmission delays [7]. Hence, it becomes critical for
SS to evolve in a manner that enables the derivation of comprehensive spectrum state
information, including time, frequency, power, and other relevant dimensions [8].

Signal identification [9] has the potential to be one of the key technologies facilitating
the SS into advanced SS systems. It works by identifying signals from received radio
frequency (RF) samples, enabling the SS system to infer spectrum usage characteristics
of the identified signal, such as the channel in use, signal strength level, and modulation
method. Numerous approaches have been explored for signal identification, including the
use of cyclostationarity [10], maximum likelihood estimation [11], and the received signal
strength indicator (RSSI) [12]. Recently, studies have focused on using machine learning or
deep learning models, which are capable of capturing the characteristics of a signal source,
and can replace static filters or statistical models that may not operate well in dynamic
communication environments [13–15].

However, most signal identification studies conducted so far tend to align more with
signal classification or modulation classification rather than the ’identification’, which is
defined as recognizing something and verifying its characteristics [16]. In other words, it is
challenging to obtain comprehensive spectrum state information based only on the limited
information about the presence of a specific signal within the spectrum. Of course, knowing
the existence of certain signals allows us to estimate their spectrum usage characteristics, but
it is difficult to derive their characteristics at the detected point. While the signal footprint
left by signals using the multidimensional spectrum space, spectrum hyperspace [8], can be
used for signal classification, leveraging it to derive used characteristics in each spectrum
dimension can be seen as a more beneficial strategy. For clarity, we distinguish between
deep signal identification, which adheres to the aforementioned definition, and shallow
signal identification, which identifies only a single characteristic, such as signal classification
or modulation classification.

The deep signal identification problem we are interested in is quite challenging,
as it requires simultaneous extraction of not only the signal’s classification but also its
multidimensional usage characteristics. Considering the high adaptability of deep learning
models, one might imagine creating multiple models for each individual identification task
and carrying out deep signal identification. However, it is not that simple. As the number
of signal properties to be identified increases, additional individual models need to be used,
which might be difficult to accommodate in communication systems with limited resources,
including access points and base stations [17]. Moreover, models biased towards individual
tasks can overlook the correlation between signal footprints from the same signal source,
making it difficult to capture multidimensional characteristics.

We posit that multitask learning (MTL), with its proven efficacy in computer vision [18],
speech recognition [19], and natural language processing [20], is a prime solution to these
challenges. Given MTL’s capability to sufficiently learn a diverse array of characteristics
from the signal source via a single model, it can yield substantial signal identification results.
In this paper, we present DSINet, a multitask learning-based deep signal identification
model. DSINet serves as a key component of an advanced spectrum sensing system for
forthcoming 5G-advanced and 6G networks. The main contributions of this paper can be
summarized as follows.

• We introduce an advanced spectrum sensing system designed to derive the multidi-
mensional spectrum usage characteristics of wireless devices. The extraction process
is formulated as a deep signal identification problem where each task derives usage
characteristics for individual dimensions, such as time, frequency, power, and code.

• We propose DSINet, a multitask learning model explicitly tailored to address the deep
signal identification problem. This model operates under the assumption that distinct
wireless devices leave identifiable ’footprints’ within a multidimensional spectrum
space. DSINet captures these ’footprints’ as common features that directly contribute
to the resolution of individual tasks.
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• The DSINet is designed as a modular architecture, composed of three distinct types
of blocks: hard sharing blocks, soft sharing blocks, and task-specific blocks. Hard
sharing blocks and soft sharing blocks concentrate on common and task-dependent
features, respectively, fostering effective information sharing. Conversely, task-specific
blocks target unique features inherent to each task. The integration of these blocks
enhances overall signal identification performance.

• We conduct three case studies to evaluate DSINet. Each study not only involves a
comparative evaluation with existing shallow signal identification technology, but
also includes a performance investigation based on task correlation and an evaluation
of model size and computational efficiency. The comprehensive results of these
studies emphasize DSINet’s potential and practical utility for solving deep signal
identification problems.

2. Background and Motivation
2.1. Background

The primary focus of SS is to detect opportunities for the unused spectrum that
primary users (PUs) are not using in real time. To detect these gaps, various techniques,
such as filter-based [21] and statistical model-based [22] methods, have been studied.
However, given the inadequacies of static filters and statistical models in fully capturing
actual communication environments, there has been a shift towards machine learning-
and deep learning-based cognitive radio (CR) technologies [23,24]. These technologies
adeptly extract unique characteristics of different communication environments, leading to
significant performance improvements in terms of detection accuracy.

Recent studies have accorded considerable attention to estimating PU activity statistics
and occupancy patterns, given their substantial impact on detection performance. For in-
stance, one study [5] improved spectrum accuracy by detecting PU activity statistics in the
time domain. Another study [25] enhanced the precision of channel occupancy estimation
for wideband SS by considering the correlation between spectrum occupancy levels in
adjacent channels. Given the robust performance of these studies, SS has evolved from
mere hole detection [2] to a more nuanced concept that quantifies spectrum usage statistics
and identifies signal interference across frequency bands at a specific location. As spectrum
sharing expands into multidimensional spectral spaces, these new perspectives on spectral
sensing will gain further importance.

SS is also highly important in unlicensed bands. With the growing popularity of
unlicensed bands, wireless technologies such as WiFi, ZigBee, and Bluetooth are vying for
spectrum access, thereby leading to CTI [26]. To attenuate interference among wireless
devices in the spectrum, it is essential to consider the varying levels of interference among
them and apply appropriate mitigation techniques in each situation. However, energy
detectors [27] and simple filter-based detectors [28,29], which are extensively used in
unlicensed bands, furnish only limited spectrum state information, proving inadequate for
the application of appropriate mitigation methods [7].

In the impending 5G-advanced and 6G environments, scenarios of simultaneous
spectrum sharing and CTI are expected to be prevalent. The role of SS is set to become
increasingly important in these transitions. In essence, for more efficient utilization of the
spectrum, it is crucial that SS evolves to adeptly extract the multidimensional spectrum
usage characteristics of each signal within the spectrum.

2.2. Motivation
2.2.1. Deep Signal Identification

Signal identification is one of the technologies that can advance SS to function properly
in complex spectrum dynamics. In [9], authors stated that understanding the use of
spectrum resources to improve spectrum utilization would be an important asset for 5G,
with the identification of radio signals at the core. Ali Gorcin [8] articulates that effective
use of spectrum hyperspace dimensions demands more than just deciding the presence
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of primary users in the channel. It also necessitates the identification of primary user
waveforms, such as air interface parameters, burst structures, chip rates, cyclic prefix sizes,
preambles, and the radio access methods used, all without the need for demodulation.

Traditionally, signal identification has been explored through methods grounded in
statistical and probabilistic approaches, such as cyclostationarity [10] and likelihood [11].
However, due to the limitations of these conventional techniques, including low accuracy
and high computational complexity, research on feature-based signal identification methods
has become more prevalent. The central premise of these methods revolves around utilizing
the unique ’signal footprints’ left in the spectrum during communication. These are
treated as valuable features for discerning the corresponding signals. Some deep learning
models are employed to comprehend these signal characteristics, including the type of
modulation used and the frequency band occupied. Research evidence demonstrating the
precise identification of target signals in complex communication environments through
learning these features shows the superiority of feature-based methods over traditional
approaches [13–15].

Despite improvements in the accuracy of signal identification technologies, the realization
of advanced SS requires progress from different perspectives. The term ’Identification’ refers
to recognizing something and validation its properties [11], but in a strict sense, most studies
fall under signal classification [17] and modulation classification [16]. Classified signal types
or modulations can indicate the presence of specific signals in the current spectrum, but they
cannot infer the spectrum usage characteristics of each signal. In other words, most research
only performs shallow signal identification, which is insufficient information for executing
spectrum sharing and CTI migration in complex spectrum dynamics.

As an alternative, the construction of multiple independent shallow identification
models to derive multidimensional usage characteristics could be considered, but this
introduces new problems, including increased memory size, processing speed, and system
complexity. If shallow signal identification models are established for each dimension
to extract the multidimensional spectrum usage characteristics required in advanced SS,
the overall processing speed would increase linearly with each dimension to be detected,
which is undesirable. Moreover, if separate preprocessing modules are additionally needed
for each model, the complexity of chip configuration could significantly increase.

In the context of advanced SS, the importance of deep signal identification is prominent.
The primary challenge resides in overcoming the limitations of multiple model-based approaches.

2.2.2. Multitask Learning

Traditionally, neural networks have been primarily focused on processing individual
tasks. However, most of the problems around us are essentially multitasks, such as self-
driving cars [30], intelligent advertising systems [31], etc. MTL is a learning paradigm [32]
that aims to leverage useful information contained in multiple related tasks to help improve
the generalization performance of all the tasks. It has shown remarkable performance
compared to single-task learning in computer vision, speech recognition, and natural lan-
guage processing. MTL offers three primary benefits: reduced memory footprint, increased
inference speed, and most importantly, performance enhancement via complementary
information and mutual regularization of each task [33].

Signal identification for SS is also a type of multitasking, as it involves recognizing
signals and verifying their multiple attributes. The multidimensional spectrum utilization
characteristics of a signal could be considered a collection of tasks, each deriving signal
usage characteristics corresponding to individual dimensions, such as time, frequency, and
power. A proper configuration of multitasks for the dimensions to be identified, coupled
with the sophisticated design of an MTL model, can achieve ideal deep signal identification.

While the application of MTL for deep signal identification can be promising, it necessi-
tates careful consideration before implementation. Challenges that need addressing include
overall performance degradation due to an improperly configured multitasking setup, task
interference due to low correlations, and dependencies on specific tasks at different levels
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of task difficulty [31]. In advanced SS scenarios where deep signal identification is required,
there can be conflicting attributes among identification tasks, and an improper application
of MTL may lead to undesirable results. Please see Section 4 for more details. In this
paper, we aim to explore in depth the potential of MTL-based deep signal identification,
taking into account the interrelations among signal identification tasks, through various
case studies and experiments.

3. Deep Signal Identification in Advanced Spectrum Sensing Systems
3.1. Concept of Advanced Spectrum Sensing System

Figure 1 illustrates the operation of an advanced SS system. N wireless devices in
the same spectrum band use W wireless technologies to communicate with each other.
Some devices are secondary users performing spectrum sharing, which is considered one
of the wireless technologies. Signals with similar characteristics can be grouped to reduce
the number of types that need to be identified [34].

Figure 1. Advanced spectrum sensing scenario in the spectrum hyperspace.

The system comprises a down converter that lowers the signal band to the baseband,
an analog–digital converter that digitizes analog signals, and a deep signal identifica-
tion module that provides the spectrum usage characteristics of each signal to be sensed
within the spectrum. We use the raw I/Q sample set to avoid system complexity instead
of adding a preprocessing module, such as fast Fourier transform (FFT) or short-time
Fourier transform (STFT), to obtain the transformation value.

As wireless devices communicate, they leave different footprints in the spectrum
hyperspace, including time, frequency, and power footprints, as well as others [8]. This is
formulated as follows:

S←
N

∑
i=1

hi(gi(si)). (1)

where S is the spectrum hyperspace, s is the signal source of a wireless device, g is a function
of the wireless technology used by the wireless device, and h is the wireless channel of
each device. Since wireless devices can use the same wireless technology, N and W are not
the same.

The goal of advanced SS is to derive the spectrum usage characteristics of wireless
devices from S. Specifically, it aims to identify a set of properties for signal sources that
use a specific wireless technology within the spectrum band. By sensing the target band,
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advanced SS can obtain sample x and derive the spectrum usage characteristics through
these samples, which can be expressed as follows:

Ŷ = F(x), ∀x ∈ S. (2)

where Ŷ =
{

ŷp
}

p∈P is the set of P pieces of spectrum state information to be estimated;

x denotes the received RF signal samples, i.e., I/Q pairs; and F =
{
fp
}

p∈P is a set of
functions for estimating the P pieces of spectrum state information in SS.

3.2. Deep Signal Identification with Multitask Learning

Deep signal identification refers to the set of functions F that estimate Ŷ. One possible
approach for estimating Ŷ using F is to use individual machine learning model sets
(independent shallow signal identification models), as shown below:

Ŷ =


ŷ1 = f1(x; θ1)

...
ŷp = fp(x; θp)

(3)

where θ is the weight parameter for each corresponding function f.
However, this approach is not optimal in terms of its system complexity, development

costs, and dependence on a preprocessing module. Our proposed multitask learning-based
deep signal identification approach derives Ŷ from the same sample of x as that used by a
single MTL model:

Ŷ = fMTL(x; θMTL) (4)
This approach not only overcomes the limitations of individual model sets but also

learns the correlations of each task.

3.3. MTL-Based Deep Signal Identification Network
3.3.1. Design Principles

Principle 1. Hybrid Shared Network Structure
MTL models have more weight parameters to be tuned during training than single-

task learning models [35]. To establish effective learning strategies, we consider a hybrid
network structure that combines hard sharing blocks (HBs) and soft sharing blocks (SBs).
HBs extract common features shared by tasks through tightly coupled sharing layers, while
an SB has a different layer for each task and shares information through a unit called a
cross-stitch [36]. An HB uses unified shared layers, resulting in less memory usage and
faster inference, but this may cause competition among tasks. In contrast, an SB consists
of individual layers for each task, including the shared part, resulting in relatively less
competition for each task.
Principle 2. Task-Specific Network Structure

In MTL, certain tasks may have different levels of difficulty or exhibit opposite char-
acteristics compared to those of other tasks. These gaps and conflicts between tasks can
impede the entire learning process, including specific tasks. To address this issue, we
employ task-specific blocks (TBs).

3.3.2. Joint Optimization of Multiple Tasks

In multitask learning, MTL model training is performed by minimizing the losses of
all tasks. In other words, the joint optimization of all tasks is completed as follows:

LMTL =
1
M

M

∑
t=1

βtLt (5)
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where M is the number of tasks, Lt is the single loss associated with task t, and βt is the
weight for loss Lt.

As we consider heterogeneous MTL, which consists of different types of supervised
tasks, including classification and regression problems, the loss function for each individual
task is one of the binary cross-entropy loss (LBCE), the cross-entropy loss (LCE), and the
mean squared error loss (LMSE).

The binary cross-entropy is formulated as follows:

LBCE =
1
K

K

∑
i=1

y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)) (6)

where K represents the number of binary labels, and y and ŷ are the vectors of ground truth
and predicted probabilities, respectively; each vector consists of K elements with values
between 0 and 1. When K is 1, it is used for binary classification tasks, such as determining
the presence of a specific signal or the use of a single channel. When K > 1, the function is
used for multilabel classification.

The LCE is defined as

LCE = − 1
C

C

∑
i=1

y(i)log(ŷ(i)) (7)

The cross-entropy loss is used for multiclass classification tasks, where C represents
the number of classes. In this case, y denotes the ground truth vector in a one-hot encoded
format, and ŷ is the predicted probability distribution across C classes.

Due to the presence of complex spectrum states, advanced SS frequently encounters
heterogeneous MTL problems in which both classification and regression tasks must be
solved simultaneously. The loss function used for the regression task is as follows:

LMSE = − 1
R

R

∑
i=1

(y(i) − ŷ(i))
2

(8)

where R represents the number of regression targets, and y and ŷ are the vectors of the
ground truth target and the model’s prediction, respectively; each vector consists of R
elements with continuous values. When R is 1, it is used for a single regression, and when
R > 1, it is used for multiple regression.

3.3.3. Model Architecture

A set of tasks to be solved by DSINet is T = {T1, T2, ..., Ti}M
i=1, which can include

signal classification, modulation classification, channel classification, and power estimation.
The number of tasks, M, is determined based on the desired information, P, for specific
spectrum states. The training dataset consisting of K training samples for DSINet is
D = {(xi, yi)}K

i=1, where ∀x ∈ S. The data sample x is obtained by the advanced SS system
when it senses the spectrum at a specific time, and the sample xi ∈ Rv×2 represents the I/Q
samples as a vector of size v× 2. The output yi = (y(1)i , y(2)i , ..., y(M)

i ) corresponds to the
labels for each of the M tasks.

Figure 2 illustrates that DSINet consists of three building blocks: HBs, SBs, and TBs,
as we mentioned in the Section 3.3.1. The core aspect of multitask learning is acquiring
shared representations from each signal identification task. We explain how each block
learns essential shared features below.

Hard Sharing Blocks HBs are located at the front of DSINet, close to the input layer.
They consist of weight parameters that are shared between all tasks. The HBs capture
common features for all tasks, significantly reducing the risk of overfitting for each task.
Since all tasks share weight parameters, the use of HBs can minimize the increase in
memory usage and inference speed due to the increase in the number of tasks.
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Figure 2. Structure of the DSINet.

There are two feature extraction units: a plain unit and a residual unit. The plain
unit consists of two consecutive 1D convolutional (1D Conv) layers followed by a 1D max
pooling (1D MaxPool) layer, as illustrated in Figure 3a. The parameters k, f , and /n
represent the kernel size, number of filters, and stride of the 1D Conv layers, respectively.

Figure 3. Structure of the (a) plain unit and (b) residual unit.

As the depths of deep neural networks increase, performance improvements are
achieved, as has been proven in various fields, such as image processing, natural language
processing, and signal processing [37]. However, deeper networks tend to suffer from
vanishing gradient problems, leading to slow training. To mitigate this problem, we use the
residual unit shown in Figure 3b as the second consideration for feature extraction. In the
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residual unit, two residual connections are employed to mitigate the effects of vanishing
gradients and facilitate faster training processes [37].

Soft Sharing Blocks The use of HBs has some advantages in MTL, as mentioned above,
but the overall performance may degrade due to competition issues. If the relatedness
between tasks is low, each task trains the shared parameters of the HBs to improve its own
performance, which results in performance degradations for other tasks. SBs mitigate this
task competition problem by exploiting loosely coupled information sharing. In SBs, each
task has its own weight parameters to capture independent features per task. In addition,
each independent layer shares its information with the other layers by using the cross-stitch
unit, as shown in Figure 4.

Figure 4. Structure of the cross-stitch unit.

The cross-stitch unit [36] is a transformation applied between independent layers, and
it describes the relationships between different tasks with a linear combination of their
activations, which is formulated by:

o(T1)
l+1
...

o(Tn)
l+1

 =

α11 · · · α1n
...

...
...

αn1 · · · αnn




o(T1)
l
...

o(Tn)
l

 (9)

where
{

o(Ti)
l+1

}n

i=1
is the transformed output associated with tasks T1 to Tn, αij is a trainable

parameter associated with tasks Ti and Tj, and
{

o(Ti)
l

}n

i=1
is the input of the cross-stitch

unit. By jointly training the parameters αij, the cross-stitch unit learns the relationship
between tasks by itself.

Task-Specific Blocks In the MTL settings, the outputs corresponding to each task are
highly heterogeneous. For example, the output of the classification task is discrete, while
the output of the regression task is continuous. In this case, the cross-stitch unit in the SBs
may result in undesired training effects due to the use of a linear combination of features in
which one is related to a discrete output, while the other is related to a continuous output.
In addition, it may be more difficult to learn features for some tasks than others, which may
require more feature extraction layers. To mitigate these problems, we employ TBs, which
have independent weight parameters without information-sharing mechanisms, such as
cross-stitch units.

4. Case Studies
4.1. Methodology

In this section, we present three case studies to analyze the performance of DSINet: ac-
tive primary user signal identification, CTI identification, and signal identification for
5G-advanced and 6G. For each case study, we evaluate the overall performance of DSINet
by constructing realistic simulation scenarios that do not assume homogeneous devices,
static access methods, or nearly noise-free environments. To ensure the objectivity of
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DSINet’s evaluations across multiple tasks, we compare its performance with that of other
models for each task. The details of case studies are shown in Table 1.

Table 1. Details of Case Studies.

Case Study 1 (CS-1)
Active PU Signal Identification

Case Study 2 (CS-2)
CTI Identification

Case Study 3 (CS-3)
Signal Identification for 5G-A/6G

Purpose Derive spectrum usage characteristics ofPrimary user in sub-6 GHz Wireless devices in 2.4 GHz unlicensed band Wireless devices in complex networks

Wireless
Tech’ W = {LTE, 5G, Wi-Fi} W = {Wi-Fi, Bluetooth, Zigbee}

Two or more wireless tech’ can coexist
W = {Wi-Fi, Bluetooth, Zigbee}
Two or more wireless tech’ can coexist

Tasks
Tsc : x → y(1) ∈ {0, 1}|W|
Thd : x → y(2) ∈ {0, 1}|hd|

Tmc : x → y(3) ∈ {0, 1}|mc|

Tsc : x → y(1) ∈ {0, 1}|W|
Tpe : x → y(2) ∈ [0, 1]|W|

Tmc : x → y(3) ∈ {0, 1}|mc|

Tsc : x → y(1) ∈ {0, 1}|W|
Tcc : x → y(2) ∈ {0, 1}|cc|

Tpe : x → y(3) ∈ [0, 1]|W|

Tmc : x → y(4) ∈ {0, 1}|mc|

Data
Gen’

K = 6, 881, 175, each with an SNR ∈ [−20, 20]
Training/validation/test set are randomly
sampled at 80%, 10%, and 10% ratios
sc = W
|hd| = 16
mc = {BPSK, QPSK, 16QAM, 64QAM,

256QAM, 1024QAM, 4096QAM}
x ∈ {IQ, RSSI, STFT},
(4096,2), (128,2), and (1024,2) I/Q vectors
are generated for each task,
(256,1) RSSI sample and (64,64) STFT image
are generated for Tsc

y(1)i,c ∈ {0, 1} for c ∈ sc, ∑
c∈sc

y(1)i,c = 1, ∀i

y(2)i,c ∈ {0, 1} for c ∈ hd, ∑
c∈hd

y(2)i,c ≤ |hd|, ∀i

y(3)i,c ∈ {0, 1} for c ∈ mc, ∑
c∈mc

y(3)i,c = 1, ∀i

K = 6, 300, 000, each with an SNR ∈ [−20, 20]
Training/validation/test set are randomly
sampled at 80%, 10%, and 10% ratios
sc ={Wi-Fi, BT, ZB, Wi-Fi + BT, Wi-Fi+ZB,

ZB + BT, Wi-Fi + BT + ZB}
mc = {GFSK, BPSK, QPSK, OQPSK, 16QAM,

64QAM, 256QAM, 1024QAM, 4096QAM}
x ∈ IQ, (1024,2) I/Q vectors are generated
y(1)i,c ∈ {0, 1} for c ∈ sc, ∑

c∈sc
y(1)i,c = 1, ∀i

y(2)i,c ∈ [0, 1] for c ∈W, ∀i
y(3)i,c ∈ {0, 1} for c ∈ mc, ∑

c∈mc
y(3)i,c ≤ |W|, ∀i

K = 6, 300, 000, each with an SNR ∈ [−20, 20]
Training/validation/test set are randomly
sampled at 80%, 10%, and 10% ratios
sc ={Wi-Fi, BT, ZB, Wi-Fi+BT, Wi-Fi + ZB,

ZB + BT, Wi-Fi + BT + ZB}
|cc| = 20
mc = {GFSK, BPSK, QPSK, OQPSK, 16QAM,

64QAM, 256QAM, 1024QAM, 4096QAM}
x ∈ IQ, (1024,2) I/Q vectors are generated
y(1)i,c ∈ {0, 1} for c ∈ sc, ∑

c∈sc
y(1)i,c = 1, ∀i

y(2)i,c ∈ {0, 1} for c ∈ cc, ∑
c∈cc

y(2)i,c ≤ |cc|, ∀i

y(3)i,c ∈ [0, 1] for c ∈W, ∀i
y(4)i,c ∈ {0, 1} for c ∈ mc, ∑

c∈mc
y(4)i,c ≤ |W|, ∀i

Sense 20 MHz wideband spectrum
Hole size: 1 MHz
AWGN and Rayleigh fading

Sense 20 MHz wideband spectrum
AWGN
Pathloss model [38] with distance from 5 to 20

Sense 20 MHz wideband spectrum
Min channel BW: 1 MHz
AWGN and Rayleigh fading
Pathloss model [38] with distance from 5 to 20

Models

Tsc :WTC-{CNNIQ, CNNRSSI, CNNSTFT}
Thd :DeepSense
Tmc :RSC-{VGGNet, ResNet}

SSINet (sc)
SSINet (mc)
SSINet (pe)

* Comparison of DSINet’s block configuration
DSINet-HB3:TBall1
DSINet-HB3:SB1
DSINet-HB3:SB1 + TBpe
DSINet-HBx:SBy + TBpe

Tsc :DSINet-IQ4096
Thd :DSINet-IQ128
Tmc :DSINet-IQ1024

* Task ablation study
DSINet(all)
DSINet(sc+pe)
DSINet(sc+mc)
DSINet(mc+pe)

* Details of parameter settings. Adam optimizer (β1 = 0.9, β2 = 0.999, ε = 10(−7)) with a learning rate of 0.0005.
Alpha dropout [39] in fully connected (fc) layer. Scaled exponential linear unit (SELU) [39] activation function is
used to activate the functions of all hidden layers, including the 1D convolution, HB, SB, and fully connected layers.

In Case Study 1 (CS-1), we evaluate the performance of DSINet in spectrum shar-
ing scenarios and compare it with the existing shallow signal identification approaches,
WTC [40], DeepSense [41], RSC [42]. To ensure a fair comparison, we implement the DSINet
variants with input shapes that match those of the compared methods. In Case Study 2
(CS-2), we investigate CTI scenarios by comparing DSINet with a single network (SSINet)
that has the same architectural style as that of DSINet but with a single task. In both CS-1
and CS-2, we conduct task ablation studies to investigate the associations between the tasks
and how each task affects DSINet. In Case Study 3 (CS-3), we consider complex heteroge-
neous network scenarios in 6G where both CS-1 and CS-2 co-occur. We study the effects
of different DSINet configurations, including the selection of the feature extraction block,
the proportions of HBs and SBs, and the addition of TBs. We also analyze the efficiency of
DSINet in terms of memory usage and the number of operations. CS-1 and CS-2 focus on
comparative evaluations, while CS-3 focuses on a performance evaluation to extract our
best DSINet model.
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4.2. Case Study 1: Active PU Signal Identification

The wireless technologies of primary users considered in CS-1 are LTE (LTE-U),
5G (NR-U), and Wi-Fi (Wireless LAN) operating in the sub-6 GHz frequency band. The
fundamental concern in CS-1 is hole detection, Thd, and we consider a wideband spectrum
as DeepSense [41]. The waveforms of LTE, 5G, and Wi-Fi are generated using MATLAB’s
LTE Toolbox, 5G Toolbox, and WLAN Toolbox, respectively. We created 16 holes with
approximately 1 MHz bandwidth, which is sufficient for wireless communication technolo-
gies, such as Bluetooth, ZigBee, and LoRa, while leaving room for guard bands. In this
case, the LTE signals have a 180 kHz resource block size, while the 5G NR-U signals can
have a resource block size of either 180 kHz, 360 kHz, or 720 kHz. The Wi-Fi signals, which
can be generated based on either the IEEE 802.11ax or IEEE 802.11be standard , consist of
a resource unit composed of multiple subcarriers, each with a bandwidth of 78.125 kHz.
The comparison models in signal classification have different shapes and even different
features, using a 256-size RSSI [40] and a 64 × 64-size STFT image [40]. For each task, the
input vector size of the comparison models is different, so we constructed the models as
follows for fair comparison.

• DSINet-IQ128:
For the hole detection task Thd, DSINet-IQ128, which is a DSINet variant, is imple-
mented for comparison with DeepSense, which takes an input shape of (128, 2).
DSINet-IQ128 has only one SB with the number of filters, kernel size, and stride equal
to (32, 3, 2). For the task ablation study, DSINet-IQ128 (all), DSINet-IQ128 (hd + sc),
and DSINet-IQ128 (hd + mc) are compared.

• DSINet-IQ1024:
In the modulation classification task, the input of the comparison methods, including
RSC-VGGNet and RSC-ResNet, is an IQ vector with a shape of (1024, 2). There-
fore, DSINet-IQ1024 with a task combination of (all, mc + sc, mc + hd) is implemented
with the same input as that of the comparison targets.

• DSINet-IQ4096:
To conduct a comparison in the signal classification task, we implement DSINet-
IQ4096, which has the same input shape as WTC-CNNIQ. DSINet-IQ4096 consists of
five HBs and one SB. For the task ablation study, DSINet-IQ4096 variants with task
combinations of (all, sc + hd, sc + mc) are implemented.

4.3. Case Study 2: CTI Identification

The purpose of models in CS-2 is an identification scheme that enables adaptive
CCA to mitigate interference by varying the power levels assigned to different wireless
technologies. So, we consider Tpe, estimating the average power of each signal, as the main
task in CS-2. The waveforms of Bluetooth and Zigbee are generated using MATLAB’s
Bluetooth Toolbox and Communication Toolbox. The configuration of Wi-Fi signals is
based on various WLAN standards, such as IEEE 802.11g (both 5 MHz and 20 MHz),
IEEE 802.11n, IEEE 802.11ac, IEEE 802.11ax, and IEEE 802.11be, adding complexity to CTI
identification.

In CS-2, DSINet is composed of three HBs, one SB, and one TB(pe). The TB(pe) is only
applied for the power estimation task Tpe because task Tpe deals with a regression problem
in which the outputs have different characteristics from those of other classification tasks.
For the task ablation study, the four DSINet variants are implemented, which are related
to the task combinations of (all, sc + mc, sc + pr, mc + pr). Note that even though Tsc is
considered a multilabel classification task due to the mix of signals, we assigned a label of
y(1) to multiclass classification for better performance through one-hot labeling.

4.4. Case Study 3: Signal Identification for 5G-A/6G

In this study, we leverage DSINet to estimate four tasks: the signals present in the
spectrum, the channels in use, the average power utilized by each signal, and the modu-
lations in use. The T for CS-3 involves adding a used channel classification task, Tcc, to
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CS-2, which aims to identify PU behaviors for spectrum sharing while identifying CTI.
The minimum channel size of wireless technology, Bluetooth, is 1 MHz within 20 MHz
bandwidth. In CS-3, we implement a DSINet variant consisting of a block combination of
{HB + TB, HB + SB, HB + SB + TB} to evaluate the effects of HBs, SBs, and TBs, which are
the core components of DSINet. In addition, we implement and comparatively analyze five
DSINet variants with HB:SB proportions of {0:4, 1:3, 2:2, 3:1, 4:0} to analyze the effect of
this proportion.

• DSINet-HB3:TBall1:
DSINet-HB3:TBall1 consists of three HBs and one TBall . TBall indicates that all TBs
are connected to each task so that DSINet-HB3:TBall1 has exactly the same setting as
traditional MTL approaches (hard parameter sharing) [33].

• DSINet-HB3:SB1:
DSINet-HB3:SB1 is composed of three HBs and one SB. The SB is employed to maxi-
mize the information sharing between tasks by using the cross-stitch unit.

• DSINet-HB3:SB1 + TBpe:
DSINet-HB3:SB1 + TBpe has three HBs and one SB, similar to DSINet-HB3:SB1, but
additionally uses a TBpe connected to the regression task Tpe.

• DSINet-HBx:SBy + TBpe variants for proportion analysis:
To analyze the proportion of HB and SB, we implement DSINet-HBx:SBy + TBpe
variants with HB:SB proportions of {0:4, 1:3, 2:2, 3:1, 4:0} are utilized.

5. Experimental Results and Analysis
5.1. Analysis of Case Study 1
5.1.1. Hole Detection Performance

Figure 5 presents the hole detection accuracies of four models: DeepSense [41] and
three DSINet models. Our model, DSINet-IQ128(hd+sc), outperforms DeepSense by ap-
proximately 3.3% at an SNR of −4 dB, exhibiting the largest accuracy difference. No-
tably, the section with the most significant performance improvement due to MTL is from
an SNR of −8 dB to −2 dB. Conversely, MTL’s effect is relatively insignificant in sections
where holes can be easily detected or where detection is almost impossible. All three of our
models show promising results compared to DeepSense, which is a single-hole detection
model, by sharing task features through MTL.

Figure 5. The hole detection accuracies achieved under different SNRs.
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Interestingly, the model considering Thd + Tsc demonstrates better performance than
the model with all tasks. Upon closer inspection of Table 2, the accuracy gap between our
models is approximately 1% at −4 dB. Similarly, the F1score ranks in descending order
are as follows: DSINet-IQ128(hd+sc), DSINet-IQ128(all), and DSINet-IQ128(hd+mc). Our
results indicate that Tsc has the most significant impact on Thd performance.

Table 2. Performance comparison between DSINet-IQ128 and DeepSense (SNR: −4 dB).

Methods Accuracy Recall Precision F1 score

DeepSense 0.8202 0.8161 0.8767 0.8452
DSINet-IQ128(all) 0.8447 0.8459 0.8906 0.8675

DSINet-IQ128(hd+mc) 0.8369 0.8264 0.8947 0.8590
DSINet-IQ128(hd+sc) 0.8531 0.8601 0.8919 0.8756

5.1.2. Signal Classification Performance

It can be seen that WTC-CNNRSSI and WTC-CNNSTFT have relatively poor results
compared not only to those of our models but also to those of WTC-CNNIQ, as shown in
Figure 6. Such results were also shown in the single-task dataset in their original paper.
WTC-STFT does not perform particularly well, and it is estimated that most information
is lost in the process of resizing to a 64 × 64 image. Our three models as well as WTC-
CNNIQ all achieve approximately 100% accuracy above −6 dB. The effect of MTL appears
below an SNR of −8 dB, which is the starting point of the performance difference between
WTC-CNNIQ and our models.

Figure 6. The signal classification accuracies achieved under different SNRs.

Table 3 shows that all our models perform signal classification with similar perfor-
mance to each other. Because the task is easy, the performance differences between our
models are insignificant, up to 0.4% (we do not consider the case where two or more signals
exist simultaneously, so the task is easy to solve).
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Table 3. Performance comparison between DSINet-IQ4096 and WTC (SNR: −6 dB).

Methods Accuracy Recall Precision F1 score

WTC-CNNIQ 0.9539 0.9309 0.9314 0.9265
WTC-CNNRSSI 0.9235 0.8811 0.8964 0.8769
WTC-CNNSTFT 0.6149 0.4200 0.5093 0.4199

DSINet-IQ4096(all) 0.9839 0.9769 0.9741 0.9750
DSINet-IQ4096(sc+hd) 0.9870 0.9801 0.9791 0.9791
DSINet-IQ4096(sc+mc) 0.9851 0.9832 0.9757 0.9793

5.1.3. Modulation Classification Performance

The modulation classification task compares our three models with RSC models [42].
Figure 7 shows that Tmc is much more difficult than Tsc. Even at an SNR of 4 dB, only
90% accuracy is achieved. In addition, the performance of DSINet-1024, especially DSINet-
1024(mc+sc), is better than that of the other models in the SNR range from−18 dB to−8 dB.
DSINet-1024(mc+sc) exhibits an accuracy difference of 19% at −12 dB from RSC-VGGNet,
which is the model with the lowest performance.

Figure 7. The modulation classification accuracies achieved under different SNRs.

What is unusual is that RSC-ResNet, a single modulation model, achieves better per-
formance than our DSINet-1024(all). Sharing information about all tasks actually interrupts
the MC performance improvement. In other words, there is competition among tasks.
However, it can be said that our model is relatively stable, given that DSINet-1024(all)
has lower accuracy than RSC-ResNet but high recall (the correct identification percentage
attained for a certain class), as shown in Table 4. The best model is DSINet-1024(mc+sc),
which only shares two hole detection tasks, and it is better than RSC-ResNet.

Table 4. Performance comparison between DSINet-1024 and RSC (SNR: −12 dB).

Methods Accuracy Recall Precision F1 score

RSC-VGGNet 0.4818 0.3944 0.5022 0.4719
RSC-ResNet 0.6194 0.4949 0.5968 0.5149

DSINet-1024(all) 0.5986 0.5395 0.5827 0.5501
DSINet-1024(mc+hd) 0.5721 0.5074 0.5492 0.5181
DSINet-1024(mc+sc) 0.6765 0.6481 0.6487 0.6454
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5.1.4. Model Performance in Terms of Execution Time

At the end of CS-1, we examine the model size and FLOPs, as described in Table 5.
As emphasized in the DeepSense paper, DeepSense can perform hole detection with a very
small model size and high speed. Our model also exhibits high computational performance
on the order of three decimal places in GFLOPs. Although the model size is twice as large,
increasing the amount of memory is not a major problem in terms of cost and system
complexity. The fact that it produces results for three tasks simultaneously with almost the
same size and speed can be considered a remarkable performance. Furthermore, it may be
even better when only two tasks are considered, e.g., DSINet(hd+sc).

RSSI and STFT are small and fast models but require additional modules, such as a
preprocessing module for calculating RSSIs or STFTs. In particular, it can be expected that
the inference speed of the system equipped with WTC-STFT might be very slow because
I/Q samples must be transformed with the STFT and even converted to images.

Table 5. Comparison between the model sizes and FLOPs of DSINet and DeepSense, RSCs, WTCs.

Methods Model Size (K) FLOPs (G)

DeepSense 65.040 0.00119
RSC-VGGNet 159.431 0.0262
RSC-ResNet 166.791 0.053

WTC-IQ 212.935 0.113
WTC-RSSI 43.747 0.00175
WTC-STFT 55.430 0.0184

DSINet-IQ128 136.796 0.00216
DSINet-IQ1024 180.284 0.0123
DSINet-IQ4096 207.228 0.0464

5.2. Analysis of Case Study 2

In CS-2, since only the path loss and AWGN channels are applied as the average power
estimation task; the performance differences between the models are not clearly revealed.
Therefore, we analyze the average performance of each model across the entire test dataset
(all SNRs).

5.2.1. Task Ablation Study for Signal Classification

As seen in Table 6, all models classify signals well, even when the signals have mixed
data samples (the Accuracy, Recall, Precision, and F1score values all exceed 90%). In partic-
ular, as in CS-1, DSINet(sc+mc) achieves the highest performance. Since not much noise is
contained in the data sample, there are almost no performance differences between the mod-
els, but the single model performs slightly better than DSINet(all). However, DSINet(all)
estimates two additional tasks with little performance degradation. Even in this case study,
the results show that to improve the performance of a task, only task information related to
that task should be shared.

Table 6. Signal classification performance comparison according to a task ablation study.

Methods Accuracy Recall Precision F1 score

SSINet(sc) 0.9430 0.9228 0.9227 0.9222
DSINet(all) 0.9422 0.9218 0.9219 0.9215

DSINet(sc+pe) 0.9446 0.9252 0.9248 0.9245
DSINet(sc+mc) 0.9454 0.9260 0.9259 0.9257

5.2.2. Task Ablation Study for Power Estimation

The average power levels estimated by the models are shown in Table 7. It can be seen
that almost all models estimate the average power well, around plus or minus 2.75 (the
mean absolute error). When the evaluation metric is the R2score, DSINet(pe+sc), which
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achieves the best performance, produces a score of 94.2%. The power estimation yielded
by a model with a resolution of 3 dBm is sufficient for performing adaptive CCA. DSINet
provides very useful information for developing a CTI mitigation strategy by classifying
signals while estimating the power of each signal.

Table 7. Power estimation performance comparison according to a task ablation study.

Methods Mean Absolute Error R2 score

SSINet(pe) 2.7512 0.9356
DSINet(all) 2.7495 0.9407

DSINet(pe+sc) 2.7509 0.9419
DSINet(pe+mc) 2.7646 0.9374

5.2.3. Task Ablation Study for Modulation Classification

Unlike CS-1, in this study, the difficulty of modulation classification is increased by
mixing signals. In particular, the recall values of all models are low, as shown in Table 8,
which means that the probability of being correct is low. In modulation classification,
when signals are mixed simultaneously, the I/Q values are mixed and distorted in the time
domain, so a low value is obtained.

Table 8. Modulation classification performance comparison according to a task ablation study.

Methods Accuracy Recall Precision F1 score

SSINet (mc) 0.9377 0.5530 0.6994 0.5693
DSINet (all) 0.9367 0.5344 0.6620 0.5461

DSINet (mc + sc) 0.9369 0.5324 0.6616 0.5428
DSINet (mc + pe) 0.9377 0.5554 0.7097 0.5711

We can see that signal classification is not helpful for modulation classification. How-
ever, the power values that exist in different spectrum spaces are helpful to some extent, as
shown in the performance of DSINet (mc + pe).

In summary, it is confirmed that DSINet achieves better performance than the single-
task learning model (when specific tasks are considered) and that it solves many tasks
simultaneously with just one model. This means that DSINet can provide abundant
spectrum information, which is necessary for establishing a strategy corresponding to each
wireless technology in a scenario where CTI frequently occurs.

5.3. Analysis of Case Study 3
5.3.1. Residual Unit vs. Plain Unit

DSINet’s performance is significantly affected by how it utilizes the feature extraction
units within a block, as with all other AI models. As described in Section 3.3, we consider
two feature extraction units, a residual unit and a plain unit, and the performance achieved
on each task when these units are applied to DSINet is shown in Figure 8. The scores
obtained for the classification tasks, including Tsc,Tcc and Tmc, represent accuracy, while
the scores obtained for the regression task, which is Tpe, represent R2scores. The residual
unit achieves good performance in terms of deep signal identification as well as in various
fields. The residual unit solves the vanishing problem, and the network depth is relatively
deep compared to the plain unit, so it achieves scores of 0.908, 0.975, 0.894, and 0.930 for
each task.
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Figure 8. Comparison between the residual unit and plain unit.

5.3.2. Analysis of the Proportions of HBs and SBs

As mentioned in design principle 1, our model has a hybrid shared network structure
with HBs and SBs. To investigate how the proportions of HBs and SBs affect the perfor-
mance of DSINet, we evaluate DSINet-HBx:SBy + TBpe variants in which the proportions
of x and y are set as 0:4, 1:3, 2:2, 3:1, 4:0.

Figure 9 shows the performance of the DSINet-HBx:SBy + TBpe variants, in which the
y-axis indicates the score, and the x-axis is the ratio of HBs to SBs. For classification tasks
including Tsc,Tcc, and Tmc, the accuracy metric is used for the scoring function. For Tpe,
which is the regression task, we use the R2score as the scoring function.

Figure 9. Score comparison according to the proportions of HBs and SBs (SNR: −4 dB).

As depicted in Figure 9, the DSINet variant with HB4:SB0 achieves the worst perfor-
mance among all the variants. HB4:SB0 means that all feature extraction layers (weight
parameters) are fully shared between all tasks. Therefore, each task cannot learn its own fea-
tures, leading to the task competition problem, which frequently occurs in heterogeneous
multitask learning settings, such as CS-3.

The overall performance of DSINet increases sharply at the HB3:SB1 point on the
x-axis, and thereafter, the performance tends to increase slightly as the proportion of
SBs increases. Since the SBs allow each task to learn its own features through independent
weight parameters, the overall performance is enhanced. However, the use of too many
SBs results in high memory usage and a slow inference speed. Figures 10 and 11 show the
number of parameters (memory usage) and the number of floating point operations (FLOPs)
according to the increase in the SB proportion, respectively. The number of parameters
indicates a small memory usage level of approximately 199.4K in SB0, but this usage
gradually increases as SB increases, and in SB4, the memory usage of 356.6K exceeds that of
four single models (gray box). The number of FLOPs also increases gradually, similar to the
number of parameters, and it increases sharply, especially starting from SB2. The numbers
of parameters and FLOPs can increase more rapidly as the number of tasks increases.
Therefore, we select the DSINet variant with HB3:SB1 as the best model, as it exhibits rapid
performance improvement without significantly increasing the numbers of parameters
and FLOPs.
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Figure 10. Memory usage comparison according to the proportions of HBs and SBs.

Figure 11. FLOPs comparison according to the proportions of HBs and SBs.

5.3.3. Analysis of the Effects of the TBs

According to design principle 2, we employ TBs as additional building blocks for
DSINet. In this subsection, DSINet-HB3:SB1 + TBpe, which is the best model selected in the
previous subsection, is compared with DSINet-HB3:SB1 and DSINet-HB3:TBall1 to evaluate
the effect of the TB on DSINet. DSINet-HB3:SB1 has only HBs and SBs but no TBs. On the
other hand, DSINet-HB3:TBall1 consists only of HBs and TBs. TBall means that all tasks
have a specific TB, while TBpe means that only task Tpe has a TB.

On average, as described in Table 9, DSINet-HB3:SB1 + TBpe outperforms the other
models with scores of 0.9084, 0.9752, 0.8935, and 0.9296. Among DSINet-HB3:SB1 and
DSINet-HB3:TBall1, DSINet-HB3:TBall1 achieves better performance.

Table 9. Performance comparison according to the block combinations of DSINet.

Methods Tsc
Acc Score

Tcc
Acc Score

Tpe
R2Score

Tmc
Acc Score

DSINet-HB3:TBall1 0.8804 0.9551 0.8668 0.9250
DSINet-HB3 + SB1 0.8701 0.9452 0.8445 0.9238

DSINet-HB3+SB1 + TBpe 0.9084 0.9752 0.8935 0.9296

This trend appears similarly in the SNR-based performance comparison. Figure 12
shows the performance of DSINet-HB3:SB1+TBpe, DSINet-HB3:SB1 and DSINet-HB3:TBall1
by SNR and by task. In a high-SNR environment, the performances of all DSINets are
similar to each other, but as the SNR decreases, the performance of each model is signifi-
cantly different. Even at SNRs of −5 or lower, DSINet-HB3:SB1 + TBpe achieves the highest
performance by a large margin. Among the other two models, DSINet-HB3:TBall1 exhibits
slightly better performance than DSINet-HB3:SB1, at approximately 4%. This indicates
that even if an independent layer is provided for each task through the use of SBs, the
performance is not improved without TBs.
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(a) (b)

(c) (d)

Figure 12. Performance comparison among the DSINet variants according to the block combi-
nations in (a) Tsc, Accuracy of signal classification; (b) Tcc, Accuracy of used channel detection;
(c) Tpe, R2score of power estimation; and (d) Tmc, Accuracy of modulation classification.

Again, CS-3 contains highly heterogeneous tasks, including the classification tasks Tsc,
Tcc, and Tmc and the regression task Tpe. In a classification task, the output is a discrete value
of 0 or 1, whereas in a regression task, the output has a continuous value between 0 and 1.
In this case, the cross-stitch unit of the SBs shares information between task layers through
the linear transformation of discrete features and continuous features, so the performance
between tasks may degrade. On the other hand, if a TB is used for a specific task (Tpe in our
case), task-specific layers near the output are additionally employed, so the SB features are
not significantly affected by the output characteristics. Therefore, DSINet-HB3:SB1 + TBpe
can accommodate the advantages of SBs without compromising performance due to the
output characteristics.

5.3.4. Analysis of the Model Size and FLOPs with a Task Size Increase

To see the model size and FLOPs more clearly, we generalize the task to a task with the
same one-hot labels and derive the results. In Figure 13, the optimal combination of DSINet
solves four tasks with less than 30% of the parameters used by a single model set, for which
the model size is 344.1K. In terms of computational performance, our model does not slow
down because its FLOPs increase almost insignificantly, unlike the single model set that
is slowed by n times every time the task increases, as shown in Figure 14. Although the
results are not shown in the figure, our model performs well with a model size of 271.6K
vs. 430.2K and FLOPs of 0.014 GFLOPs vs. 0.053 GFLOPs, even when the number of tasks
is 5. We believe that it is desirable to apply multitask learning to our DSINet to derive rich
spectrum state information while maintaining acceptable model size and speed levels in
wireless systems.
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Figure 13. Memory usage comparison between DSINet and the single models.

Figure 14. FLOPs comparison between DSINet and the single models.

6. Conclusions

In this paper, we proposed DSINet, a multitask learning-based deep signal identifica-
tion network for advanced spectrum sensing systems, with a focus on preparing for the
upcoming 5G-advanced and 6G systems. We presented three important types of blocks
within DSINet, hard sharing blocks, soft sharing blocks, and task-specific blocks, that
maximize the effect of sharing characteristics in multitask learning and support the deep
identification of signal footprints in multidimensional spectrum spaces.

We evaluated DSINet in three challenging case studies where heterogeneous devices
used the spectrum with complex dynamics. In Case Study 1, we compared DSINets with
three other model types, including DeepSense, WTCs, and RSCs, in different tasks, such as
hole detection, signal classification, and modulation classification. Our results showed that
DSINet outperformed these models, with performance improvements of 3.3%, 3.3%, and
5.7%, respectively. In Case Study 2, we conducted task ablation studies to understand the
contributions of tasks and found that DSINet provided rich information while exhibiting
better performance than single models in all tasks. Through experiments, we discovered
that sharing only related tasks is better than sharing all identification tasks unilaterally
in terms of performance. The block-based model structure makes it easy to consider this
factor in the model design stage. In the last case study, we analyzed DSINets designed with
different numbers of HBs, SBs, and TBs under the model design principles to determine
the performance differences yielded for each task and derived the best model. The best
DSINet achieved 98%, 99%, and 94% accuracy and an R2score of 0.96 in signal classification,
channel classification, modulation classification, and power estimation, respectively, even
at a relatively low SNR of –4 dB. This performance is significant in practical use, as it came
from a model with 225.2 K model parameters and 0.013 GFLOPs (the individual model sets
required 344.1 K model parameters and 0.043 GFLOPs).

We expect that DSINet will play a crucial role in supporting seamless spectrum sharing
and resource management in the future network environments of 5G-advanced and 6G,
where dynamic spectrum sharing and cross-technology interference frequently occur.
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