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Abstract: Camera network design is a challenging task for many applications in photogrammetry,
biomedical engineering, robotics, and industrial metrology, among other fields. Many driving factors
are found in the camera network design including the camera specifications, object of interest,
and type of application. One of the interesting applications is 3D face modeling and recognition
which involves recognizing an individual based on facial attributes derived from the constructed
3D model. Developers and researchers still face difficulty in reaching the required high level of
accuracy and reliability needed for image-based 3D face models. This is caused among many
factors by the hardware limitations and imperfection of the cameras and the lack of proficiency in
designing the ideal camera-system configuration. Accordingly, for precise measurements, we still
need engineering-based techniques to ascertain the specific level of deliverables quality. In this
paper, an optimal geometric design methodology of the camera network is presented by investigating
different multi-camera system configurations composed of four up to eight cameras. A mathematical
nonlinear constrained optimization technique is applied to solve the problem and each camera system
configuration is tested for a facial 3D model where a quality assessment is applied to conclude the
best configuration. The optimal configuration is found to be a 7-camera array, comprising a pentagon
shape enclosing two additional cameras, offering high accuracy. For those who prioritize point
density, a 9-camera array with a pentagon and quadrilateral arrangement in the X-Z plane is a viable
choice. However, a 5-camera array offers a balance between accuracy and the number of cameras.

Keywords: camera network; photogrammetry; optimization; constrained minimization; 3D model;
face recognition

1. Introduction

Face recognition is a biometrics recognition approach that involves recognizing an
individual based on their facial characteristics or features. Interestingly, 3D face recognition
is a system that takes advantage of the human face’s 3D geometric information. It uses
data from 3D sensors to determine the shape of a person’s face and to validate his/her
stated identity by matching geometric features extracted from the 3D reconstructed faces to
recognize people against a dataset.

By utilizing features that are not susceptible to lighting conditions, head orientation,
varying facial expressions, and makeup, 3D face recognition has the potential to reach a
higher accuracy than its 2D equivalent [1]. However, collecting the 3D face depth data can
be achieved either using active sensors or passive sensors. Active sensing techniques can be
based on laser triangulation [2], structured light [3], and time-of-flight [4,5]. The structured
light technology (Figure 1) is based on using speckle images with particular coding to deter-
mine depth but some concerns such as sensitivity to ambient illumination and occlusions
are currently being researched. By using numerous cameras, laser triangulation achieves
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submillimeter precision and prevents occlusions. However, it claims to capture periods
of many seconds, like many other laser triangulation systems, rendering it inaccurate for
scanning the face of a moving person. Time-of-flight systems currently have insufficient
accuracy and information density to be used reliably for 3D face recognition [6].
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Figure 1. Face recognition using structured light technology [3].

On the other hand, passive sensors for 3D face recognition are currently thriving
because of the advancements in using deep learning to enable a reconstruction from a
single 2D image [7,8]. Still, the stereo vision using the camera array is the most reliable
for 3D face modeling and recognition since it provides a realistic occlusion-free model.
However, such a camera array system requires a sophisticated design to enable highly
accurate 3D face modeling. Table 1 summarizes the advantages and disadvantages of the
mentioned remote sensing techniques for 3D modeling.

Table 1. Existing passive and active sensing techniques for 3D face modeling.

Stereo Vision [9–12] Structured Light [13–15] Time-of-Flight (ToF)
[4,16,17] Depth Cameras [18–21]

Advantages

• Provide accurate depth
information from two
or more cameras.

• Provide high-resolution
depth maps.

• Direct measurement
of light travel time
allows for (Real-time).

• Real-time depth
information.

• Suitable for various
environments.

• Suitable for detailed
3D modeling

• Performs well in
low-light conditions.

• Suitable for various
applications.

• Preferred for high-
precision applications.

• Preferred for high-
precision applications.

Disadvantages

• Requires good
illumination
conditions besides
reliable geometric
conditions.

• Sensitive to ambient
lighting

• Limited accuracy at
longer distances.

• Affected by ambient
infrared light sources.

• Limited accuracy
• Performance can be

affected by
environmental
factors.

Building a camera array system is necessary to ensure simultaneous capture of the
face at the same instant to avoid any deformation in the reconstructed 3D model of such a
nonrigid body. Therefore, further research on camera arrays designed for 3D face recon-
struction is required to reach the high accuracy of active approaches as will be presented
in this paper. Accordingly, the question that arises is how many cameras are enough for
accurate facial 3D reconstruction? and in which reasonable configuration?
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Currently, several multiarray camera systems are designed for the gaming and film
industry, textile industry, medical industry, etc. like the examples in [22,23]. However, those
systems require high costs, and large space, and may not fit facial modeling which requires
a focused camera system. Using images for precise measurements and 3D modeling is a
major task in the fields of computer vision, photogrammetry, and robotics.

In most of the mentioned image-based applications, it is required to have high geo-
metric specifications including:

• Sufficient overlap percentage among an acceptable number of captured images.
• Suitable ray intersection geometry of the images defined by the base/height (B/H)

ratio. The B/H ratio is an expression of the acceptable base distance B between the
cameras themselves and the distance to the object H.

• Acceptable angles of incidence between the image rays and the object features.
• Pre-calibrated camera or pre-identified interior camera parameters.

Moreover, achieving optimal results necessitates favourable imaging conditions dur-
ing image captures, including adequate scene illumination, stable capture free from shaking,
and effective occlusion avoidance. These specified conditions collectively define the param-
eters of an optimal camera network.

The objective of having ideal or optimal camera networks is discussed several times in
the literature [24–27]. The design task is aimed to be automatically applied to construct a
robust network of overlapped images covering the required object and ensure reliability.

The method of the ‘next best view’ NBV represents the famous approach for the
strategy of growing a few images into many [28,29]. The NBV method assumes a robot
that only knows the position and the approximate dimensions of the object in question.
Accordingly, the NBV search-based method is applied by adding one view (camera) selected
among a set of candidate views and should fulfil some constraints related to visibility,
accessibility, angle of incidence, and overlap. This NBV approach is iteratively applied by
adding new views while the robot is navigating. However, the NBV methods pay more
attention to the uncertainty at the robot positioning waypoints compared to the uncertainty
at the object in the question itself.

Other research work was applied to find the ideal camera network based on the
strategy of filtering many initial images to a minimum [30]. The filtering approach is based
on an initial design of a very dense camera network around the rough point cloud of the
object. This dens camera network is examined iteratively to indicate redundant images. In
more detail, this filtering technique is based on the concept of having at least three images
viewing the object points instantaneously. Hence, the redundant images are filtered out if
they exclusively image only points that are covered by more than three cameras and then
followed by an optimization step using the nonlinear-constrained minimization.

In this paper, we aim to find the best configuration of a camera array system for 3D
face modeling using optimization techniques and recommend the most suitable one.

The paper sections are sequenced as follows: in Section 2, the proposed methodology
will be explained in detail. In Section 3, 3D face modeling through optimized camera
arrays will be presented. In Section 4, we will discuss the results and end up with the
research conclusion.

2. Methodology

As mentioned in the previous section, we propose a novel approach to a computerized
camera network design that will conclude the optimal configuration of a camera array
system for 3D face recognition. This will be applied by following the strategy of initializing
a specific number of cameras and followed by mathematical optimization computations
to fulfil the setup constraints against the required accuracy at the object space and stop-
ping when required limits are reached. Therefore, a nonlinear constrained optimization
starts from initial orientation values which are expected to converge rapidly to the global
minimum solution. Figure 2 illustrates the proposed conceptual framework.
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The developed optimization workflow as shown in Figure 2 will be designed to
minimize the total error in the object points (Section 2.3.1). However, different constraints
must be satisfied during the optimization as will be shown in detail in Section 2.3.2.

Mostly, the optimal camera network is constrained to different design requirements
like the allowed B/H ratio which is highly contributing to getting an effective dense 3D
reconstruction and accurate ray intersection. B/H is associated with the required ground
sampling distance GSD, scale, camera angular field of view, and the required accuracy. It’s
worth mentioning that the final aim of the imaging task will have a direct impact on the
designed constraints of the optimization algorithm. For 3D face modeling, a short baseline
network design is preferred where the B/H should be in the range of 15–30% [31,32]. On
the other hand, wide baseline networks are designed for applications that require a high
positional quality like structural deformation monitoring or laboratory camera calibration.
Therefore, a B/H ratio of about 60% or greater is recommended. Another optimization
constraint is the camera viewing angle or the angle of incidence which is of comparable
importance to the B/H ratio as will be illustrated in Section 2.3.2.

2.1. Automated Initial Camera Network Design

To design an initial camera network, it is efficient to downsample the dense point
cloud of the object. A uniform sampling approach is applied by the division of the dense
point cloud into a regular grid of voxels. The size of voxels is determined by a specified
sampling density or point spacing. All points falling within each voxel are considered as
one group. The average of point positions (or center of mass) of the points within each
voxel is computed. Then downsampled point cloud is formed by using these average
points within each voxel (Figure 3). This uniform sampling method is intended to reduce
the density of point clouds while preserving the structure of the face.

The rough point cloud of the object is then clustered into a specific number of clusters
using k-means clustering where the points are partitioned in such a way that they are as
close to one other as possible while being as far apart as possible from points in other
clusters. This is done by minimizing the sum of distances between the cluster’s centroid
and all of its points in each cluster. Accordingly, the total number of cameras required will
be used to specify the number of point clusters.

Then for every cluster of points, the mean normal direction is calculated to define
the optical axis of a viewing camera at an initial distance. Then the vector direction of the
camera optical axis is converted into the rotation matrix M to complete the set of the six
exterior orientation elements of each viewing camera.
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To compute the rotation matrix M, first, we calculate the direction angle α of the

initialized camera optical axis by using the dot product between two vectors
⇀
a and

⇀
N as in

Equation (1):

cos α =
⇀
a ·

⇀
N (1)

The angles between the initial camera axis and the adopted XYZ coordinate system
can be calculated using the cross-product between the mentioned normalized vectors as in
Equation (2):

θXYZ =
⇀
a ×

⇀
N (2)

The described geometry is shown in Figure 4 where
⇀
a : The camera orientation in a nadir viewing

[
0 0 −1

]
.

⇀
N: The normal direction vector of a cluster

[
n1 n2 n3

]
.

θXYZ: The angles enclosed between the normal vector and the three axes as [θx θy θz].
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Then, the rotation matrix defining the camera orientation in space can be derived using
the following Equation (3) which is based on using Rodrigues’ Rotation formula [33,34].

M =

 (1− cos α)θx2 + cos α (1− cos α)θx θy− sin α θz (1− cos α)θx θz + sin α θy

(1− cos α)θx θy + sin α θz (1− cos α)θy2 + cos α (1− cos α)θy θz− sin α θx

(1− cos α)θx θz− sin α θy (1− cos α)θy θz + sin α θx (1− cos α)θz2 + cos α

 (3)



Sensors 2023, 23, 9776 6 of 24

Figure 5 illustrates a four-camera network initialization using four clusters of points.
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2.2. Elements of the Mathematical Optimization

After the camera network initialization, optimization techniques will be followed.
Optimization is generally formulated to compute a set of unknown parameters in a mathe-
matical model x = (x1, x2, . . . xn) that can be defined as optimal. The optimization problem
can be unconstrained in a simple case, this might be a minimization or a maximization
problem. A more challenging optimization problem is found when the objective (cost)
function f (x) to be minimized or maximized is subject to constraints in the form of equality
constraints, hi(x) = 0 (i = 1, . . . ., me), inequality constraints, gi(x) ≤ 0 (i = me + 1, . . . , m);
and lower xl to upper xu parameter bounds.

The solution of the nonlinear unconstrained minimization problem or nonlinear
least-squares problem with redundant observations is either to be solved by Levenberg–
Marquardt or by Gauss-Newton methods [35]. However, when the system of equations
is constrained then it is harder to solve. Typically, the constrained minimization problem
is solved by introducing the LaGrange multipliers λ composed of both quality λh and
inequality constraints λg as follows in Equation (4):

L(x, λ) = f (x) + ∑ λg,igi(x) + ∑ λh,ihi(x) (4)

The Karush-Kuhn-Tucker (KKT) conditions must be met to discover the optimal
solution and ensure a global optimum for complicated minimization conditions [36].

It is worth mentioning that LaGrange multipliers λ convert the inequality constraints
formulation into equality formulation in order to establish a stationary point where the
partial derivatives are zero. As a result, in limited situations, generates a required condition
for optimality.

Solving a large-scale nonlinear constrained minimization problem, as in the case
of camera network optimization, is a difficult task. Trust region, sequential quadratic
programming (SQP), and interior-point algorithms can be employed to address nonlinear-
constrained optimization problems [36–38].

According to the literature, the interior-point technique has had a lot of success and
has proven to be useful for a wide range of problem classes because of its regularization
effects on the constraints. Because of their Newton-like properties in terms of scalability and
convergence performance, interior-point methods have become the trusted solution method
for large-scale optimization problems, according to [39,40]. As a result, the interior-point
optimization technique will be used to tackle the camera network optimization problem in
this research study.
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2.3. The Formulation of the Camera Network Optimization Problem

The mathematical model that represents the core of the camera network design and re-
lates the interior and exterior camera parameters to the object coordinates is the collinearity
equations model as illustrated in Equation (5). It should be noted that the bundle adjust-
ment method which is based on the collinearity equations is widely used when estimating
the adjusted camera parameters and the object coordinates [41].

FxA = − f
m11(Xj−Tx)+m12(Yj−Ty)+m13(Zj−Tz)
m31(Xj−Tx)+m32(Yj−Ty)+m33(Zj−Tz)

− x

FyA = − f
m21(Xj−Tx)+m22(Yj−Ty)+m23(Zj−Tz)
m31(Xj−Tx)+m32(Yj−Ty)+m33(Zj−Tz)

− y

 (5)

where
FxA and FyA represent the differences between the observed image coordinates x and y

and their computed values.
f : focal length.
x, y: image coordinates.
Tx, Ty, Tz: camera coordinates.
Xj, Yj, Zj: object point coordinates.
m’s: rotation matrix element derived from three angles (ω, ϕ, k) and based on a right-

handed system.
As mentioned in the previous section, the most costly computational step is to solve

the large-scale mathematical constrained minimization problem especially if the 3D face
is represented by a large number of n points and with a very small tolerance for stop-
ping criterion.

In summary, the optimization problem of the camera network design needs a precise
definition of the input and output parameters which can be listed as follows:

The input data parameters:
Point coordinates defining the object (Xj, Yj, Zj, j = 1:n).
For every initial camera i, there are six initial exterior orientation parameters

x0 = (ωi
◦, ϕi

◦, κi
◦, Txi

◦, Tyi
◦, Tzi

◦). The parameters vector x0 represents the initial guess
of unknowns for running the subsequent optimization step.

The output parameters:
The optimal exterior orientation parameters x̂ = ω̂i, ϕ̂i, k̂i, T̂xi, T̂yi, T̂zi for each de-

signed camera i in the whole camera array network.
It should be noted that between the mentioned input and output steps, there are many

processing formulations regarding the cost function and the optimization constraints as
will be discussed in the following sections.

2.3.1. Cost Function

As mentioned, the objective of the optimization is to build a strong camera network
that ensures minimum errors or higher accuracies at the object points. Accordingly, the cost
function is formulated by computing the covariance matrix of the object points Qs using
the least-squares adjustment method as shown in Equation (6) [21].

Qs =
(

BtWB
)−1

=

σ2
X

σ2
Y

σ2
Z

 (6)

where
B : the matrix of the partial derivatives of the collinearity equations concerning the

object coordinates (X, Y, Z).
W : the weighting matrix.
σ2

X ,σ2
Y,σ2

Z: variances at XYZ coordinates respectively.
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Accordingly, the cost function G is designed to minimize the norm of the eigenvalues
(λ1, λ2, λ3) of the covariance matrix Qs as shown in Equation (7).

G = min(|eigen Qs|) = min|λ1, λ2, λ3| (7)

where | | refers to the norm.
Since the eigenvalues represent the error ellipsoid axes lengths at each object point, this

cost function of Equation (7) is meant to improve the accuracy of the whole camera network.
As mentioned, the camera optimization problem is nonlinear and needs to be con-

strained to obtain realistic results that satisfy the final goal of the imaging. In the next
Section 2.3.2, an explanation is given about the necessary constraints involved in camera
network optimization.

2.3.2. Network Design Constraints

The camera network design problem is influenced by specific geometric constraints,
which can be listed as follows:

The lower and upper bounds of the estimated parameters for each designed camera
(Equation (8))

−90◦ < ωi < 90◦

−90◦ < ϕi < 90◦

−180◦ < ki < 180◦

Txi − Dx < Txi < Txi + Dx

Tyi − Dy < Tyi < Tyi + Dy

Tzi − Dz < Tzi < Tzi + Dz


(8)

The allowed movement in the camera position Dx, Dy, and Dz depends on the design
problem and the available space that can be occupied around or inside the object. Ground
sample distance GSD is usually defined in the design requirements, and it has a direct
relation with the scale and the camera bounds of Tx, Ty, and Tz. As shown in Equation (8),
angles ω and ϕ have rotation bounds within ±90◦ while k bound is designed in the range
±180◦. The bounding limits are illustrated clearly in Figure 6 where the initial camera is
colored orange.
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Nonequality constraint of the B/H ratio: The B/H ratio between the designed cameras
and the object can be formulated as follows in Equation (9):

MinB/H < B/H < MaxB/H (9)

where
MinB/H , MaxB/H : The minimum and maximum allowed B/H ratio (Figure 7).

B =
√

Dxik
2 + Dyik

2 + Dzik
2 the base distance between camera i and k.

H =
√

∆xij
2 + ∆yij

2 + ∆zij
2 the distance between the camera i and the object point j.

A graphical illustration of the B/H constraint is shown in Figure 7 which shows the
allowed B/H ratio within the upper and lower bounds while the camera orientation is
changing during the optimization run.
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Nonequality constraint of the Incident angle: This constraint is formulated by com-
puting the angle δ (Figure 8) between the object point normal and the designed camera
optical axis as in Equation (10). The threshold angle can be 45◦ as an example regarding
the network design’s final aim.

δ = cos−1 Ndir·Camdir
|Ndir||Camdir|

≤ threshold (10)

where
Ndir = normal direction of one object point.
Camdir = the camera axis direction
|| refers to vector length and ‘·’ refers to the dot product.
Nonequality constraint of the image coordinates: Every image point j is constrained

to remain observed from the same camera i during the optimization (Equation (11)).

abs(xi) ≤ width/2
abs(yi) ≤ height/2

}
(11)

where height and width represent the image format height and width respectively (Figure 9).
Equality constraint of the image coordinate: This is intended to constrain the average of

the image coordinates xp, yp (in p.p. system) to equal zero (Equation (12)). This constraint
is aimed at modifying the camera orientation to distribute the points evenly around the
image center.
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xp = 0
yp = 0

(12)

The effect of this constraint is shown in the illustration of Figure 10 where the camera
during the optimization can be rotated and/or translated to centralize the object points in
the viewing image.
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Equality constraint of the separation distances: This constraint is intended to maintain
the predefined distance between the cameras. This is applied by running a Delaunay
triangulation in the 3D space and constraining the length of the edges to the design
separating distance (Equation (13)).



Sensors 2023, 23, 9776 11 of 24

mean(edge_length) = design distance (13)

Equality constraint of the symmetry pattern: This constraint is intended to have a
semi-symmetrical pattern of the camera network. This is expected to comply with the
manufacturing of a camera array system in a grid-like configuration especially knowing
that the human face is almost symmetrical. The constraint is formulated to optimize the
distribution of the cameras to ensure that the mean of their coordinates equals the median
around the centroid of the object points (Equation (14)).

mean (Tx)−median (Tx) = 0

mean
(
Ty
)
−median

(
Ty
)
= 0

mean (Tz)−median (Tz) = 0

(14)

Furthermore, the negative values of the camera coordinate are constrained to equal
the positive values as shown in Equation (15).

abs ∑ (Tx < 0)− abs ∑ (Tx > 0) = 0 (15)

A final worthy to mention remark is that it can happen in the nonlinear-constrained
minimization that the solution is well converged, and the step length is smaller than
its threshold value while the constraints are not fully satisfied. We will consider this, if
occurred, as an acceptable result since getting very close to the numbers we aimed for in
the constraints meets our design requirements as well.

2.4. Pseudocode

To summarize the proposed minimal optimal camera network design workflow, a
pseudo-code is given in Algorithms 1–3 (Pseudocode: summary of the proposed minimal
optimal camera network design workflow) as follows:

Algorithm 1: Main program includes the input and output and call the optimization.

functions of both: cost function and nonlinear constraints.
Input:
– object points P(X, Y, Z)
– camera parameters: focal length, frame size, pixel size, lens distortion.
– initial camera orientation (ω◦, ϕ◦, k◦, Tx◦, Ty◦, Tz◦) for 1:num. of cameras
call Algorithm 2
call Algorithm 3
run nonlinear constrained minimzation using the interior-point method.

Output: optimal camera orientation
(

ω̂, ϕ̂, k̂, T̂x, T̂y, T̂z
)

Print results.

Algorithm 2: Compute the cost function of minimizing the Q matrix of the object points.

Input: initial camera orientation and parameters, object points P and their normal directions.
Output: cost function F min.eigen (Q covariance matrix)
For j = 1:P
For i = 1:no. of cameras
compute rotation matrix M
compute image coordinates.
end
check visibility of Pj in camera i
compute covariance matrix Qj
end
cost function F = |eig(Q)|
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Algorithm 3: Compute the nonlinear constraints function of the camera design.

Input: initial camera orientation and parameters, object points P and their normal directions.
Output: nonlinear constraints [c,ceq]
For j = 1:P
For i = 1:no. of cameras

compute rotation matrix M.
compute angle of incidence ij.
compute image coordinates.
end

check visibility of Pj in camera i
end
For h = 1:no. of cameras
compute B/H ratio

nonequality constraints c =

[
abs(xpj) < width/2
abs(ypj) < height/2

}
, MinBD < B/D < MaxBD

]
equality constraints ceq =

[
xp = 0
yp = 0

]
optional equality constraints ceq = mean (T) − median (T) = 0
optional equality constraints ceq = mean (edge_length) = design distance

nonequality constraints δ = cos−1 Ndir . Camdir
|Ndir||Camdir|

< threshold

end

2.5. Evaluation of the Optimization Algorithm

To further illustrate the camera network optimization implementation, an example is
given of a wall object (Figure 11) where nine well-distributed coded targets are placed on
the wall where their coordinates are given in Table 2.
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Figure 11. Nine coded targets are fixed on a wall.

The example is designed to show the reader how a camera network consisting of
four images will be optimized to ideal locations (Figure 12) that satisfy the following
design constraints:

1- nonequality constraint of the image coordinates (Equation (11)).
2- equality constraint of the image coordinates (Equation (12)).
3- average B/H ≥ 0.6 and minimum B/H ≥ 0.2.
4- average incident angles ≤ 30◦.
5- The lb and ub will be selected for angles in the range of ±45◦ from the initial values

while in the range of ±15 m for Tx and Ty from the initial values.

The optimization started from a challenging initial camera orientation (Table 2 and
Figure 12d) but robustly converged to the ideal configuration (Figure 12c) which meets the
designed optimization constraints of minimizing the error ellipsoids at the coded target
points (Figure 12d).
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Table 2. The results of optimization example.

Initial computed image coordinates [mm]
omega [deg] phi [deg] kappa [deg] X [m] Y [m] Z [m] x-coordinates y-coordinates

90.12 5.51 0.00 1.00 −24.23 4.82 coded target cam 1 cam 2 cam 3 cam4 cam 1 cam2 cam3 cam 4
91.00 0.48 0.00 0.40 −35.74 5.80 point 1 −11.15 −9.42 −10.82 −8.49 4.79 3.01 4.80 3.05
90.49 5.22 0.00 −0.82 −33.74 −0.85 point 2 9.51 11.15 8.27 10.90 3.08 4.94 3.00 4.89
90.16 4.98 0.00 0.58 −36.45 1.15 point 3 8.72 10.85 9.45 11.15 −3.10 −4.81 −2.96 −5.00

point 4 −10.84 −8.43 −11.15 −9.33 −4.70 −3.04 −4.95 −3.02
Given targes coordinates point 5 1.18 −1.29 1.32 −1.32 −0.11 −0.13 0.15 0.11

X [m] Y [m] Z [m] point 6 −4.25 −6.05 −4.33 −5.25 4.22 3.32 4.19 3.36
point 1 −19.50 1.20 12.00 point 7 5.97 4.03 5.07 4.30 3.37 4.27 3.30 4.26
point 2 19.50 1.20 12.00 point 8 5.29 4.33 6.13 4.04 −3.38 −4.21 −3.28 −4.31
point 3 19.50 1.20 −2.00 point 9 −4.43 −5.17 −3.94 −5.99 −4.18 −3.34 −4.26 −3.35
point 4 −19.50 1.20 −2.00 sum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
point 5 0.00 1.20 5.00 computed angular deviation [deg]
point 6 −10.00 1.20 12.00 point 1 point 2 point 3 point 4 point 5 polnt 6 point 7 point 8 point 9
polnt 7 10.00 1.20 12.00 cam 1 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78 21.78
point 8 10.00 1.20 −2.00 cam 2 24.58 24.58 24.58 24.58 24.58 24.58 24.58 24.58 24.58
point 9 −10.00 1.20 −2.00 cam 3 24.54 24.54 24.54 24.54 24.54 24.54 24.54 24.54 24.54

cam 4 23.90 23.90 23.90 23.90 23.90 23.90 23.90 23.90 23.90
computed optimal orientataion max(Ab) = 24 deg. < 30

omega [deg] phi [deg] kappa [deg] X [m] Y [m] Z [m]
81.21 −21.09 0.00 −14.00 −28.64 5.82 results
79.12 23.49 0.00 15.40 −27.69 7.93 B/H constraint is min (B_H) > 0.2

102.99 −24.20 0.00 −15.82 −27.25 −0.44 0.88 0.20 0.90 0.97 0.20 0.95
99.15 23.85 0.00 15.58 −27.66 1.32 mean B_D = 0.69
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the cameras are still oriented adequately (Figure 14a) and the optimization succeeded in 
converging to the global minimal where all the constraints are satisfied as shown in Figure 
14b. However, when looking at Figure 14c we can notice how the target points are not any 
more well-distributed universally in the images as when the constraint is considered. Nev-
ertheless, upon observing Figure 14c, it becomes evident that the target points no longer 
exhibit a uniform distribution pattern across the images. 

Figure 12. (a) the target image projections after optimization. (b) optimization solution run illustra-
tion. (c) optimal camera network. (d) exaggerated error ellipsoid at the target points after the initial
cameras (cyan) oriented to their optimal orientation (magenta).

The image projections of the coded targets after optimization will appear as illustrated
in Figure 11a while the optimization functional values are converged until all the constraints
are satisfied and stopped when the step length becomes less than 1 × 10−5 (Figure 12b).
The spatial distribution of targets across the entire image should reflect the favourable
geometry of the camera array configuration, as illustrated in Figure 12a.

To illustrate further the impact of the constraints on the network design, we started to
neglect some constraints in the optimization pipeline. First, the inequality constraint of the
image coordinates of Equation (11) is neglected. Figure 13a shows the orientation result
of the optimization where the cameras are wrongly moved closer to the wall and missed
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viewing most of the target points although the local minimum of the cost function is found
(Figure 13b). The uneven spatial distribution of targets across the entire image coupled
with one image missing displaying most of the target points highlights suboptimal results
following optimization as depicted in Figure 13c.
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When neglecting the equality constraints of the image coordinates (Equation (12)),
the cameras are still oriented adequately (Figure 14a) and the optimization succeeded
in converging to the global minimal where all the constraints are satisfied as shown in
Figure 14b. However, when looking at Figure 14c we can notice how the target points
are not any more well-distributed universally in the images as when the constraint is
considered. Nevertheless, upon observing Figure 14c, it becomes evident that the target
points no longer exhibit a uniform distribution pattern across the images.
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Finally, when the minimum B/H ratio constraint is neglected, the optimization suc-
ceeds in converging to an optimal minimum, and the constraints are satisfied (Figure 15b).
However, we can see how every pair of cameras are clustered close to each other (Figure 15a).

Accordingly, every suggested constraint mentioned in Section 2.3.2 is considered to be
worthwhile in the camera network optimization algorithm.
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Figure 15. The optimization result when neglecting the minimum B/H ratio constraint. (a) camera
orientations before (cyan) and after optimization (magenta). (b) Cost function value iterations plot.
(c) Targets image projections.

3. Face 3D Modeling for Recognition

The following experiment is applied to assess the proposed optimal camera array
design for 3D face modeling. A regular point cloud of a human head is used to design the
proper camera network for a 3D image-based model.

To find the optimal configuration for a multi-camera system aimed at 3D face recog-
nition, it has experimented to have four up to nine cameras mounted in a system that
is supposed to capture instantaneously the images of an intended human face. All the
mentioned optimization constraints will be implemented to minimize the error at the face
object of interest.

The face model of the human head of average dimensions 15 × 21 cm is freely shared
in [42] as shown in Figures 16 and 17. The experiment is applied on the head-derived point
cloud and the camera array is designed for the optimization step.
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The initial camera array has been shown (cyan) where the optical axis of each camera is
initiated by the average normal direction (red lines) of every cluster of points. In Figure 15,
seven cameras are initialized to view the facial cluster points. Those initial cameras will be
reoriented using the nonlinear-constrained optimization algorithm described in Section 2.3.

In the following Figure 16, the optimal camera system configuration using a 20, 30,
and 40 cm baseline respectively is shown. As mentioned, the optimal array configuration
is computed for each number of cameras ranging from four up to nine cameras. Then
after image capture, the 3D point cloud for each configuration is reconstructed. Worth
noting that the imaging distance between the face and the camera array system will change
according to the camera focal length setup.

The optimization algorithm will run to satisfy the objective function of minimizing
the errors at the object points while satisfying the equality and nonequality constraints
mentioned in Section 2.3.2.

In Figure 18, the optimization graph is shown when applied using a camera array
composed of 5 cameras and it stops when the size of the step is less than the value of the
step size tolerance of 1 × 10−5.
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Figure 18. Optimization plot of the objective function for the 3D face reconstruction and recognition.

The accuracy improvement expected after the optimization is visualized in Figure 19 by
the ellipsoid of errors derived by adding a normally distributed noise of 1 cm to the image
coordinates of the face points in the viewing cameras. As expected, the error ellipsoids are
elongated in the depth direction (Figure 19a). The reason is the restricted small baseline
of the camera array system (20–40 cm) compared to the wide baseline initiated from the
clusters (Figure 16). On the other hand, the smaller baseline will ensure fewer occlusions
and successful depth map reconstruction. Furthermore, in the initial camera design, some
points may not be visible by at least two cameras while after optimization all the face points
will be viewed by all the cameras.
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(b) after camera network optimization.

After finishing the optimization computations and the best configuration of the mul-
ticamera arrays is potentially found, experimentation is applied using a simulated envi-
ronment in the blender tool. Figure 20 shows the image-based 3D modeling reconstruc-
tion steps.
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Figure 20. The image-based 3D modeling outputs using the Metashape tool [43]. (a) Automated
image orientation. (b) Sparse point cloud. (c) Dense point cloud. (d) 3D mesh.

Worth mentioning that some referencing coded targets are placed close to the face
to guarantee the correct orientation and scale concerning the ground truth model and
to enable reliable comparison between all the produced 3D face models. In Figure 21,
a summary of the experiment results is shown where two types of baselines of 20 and
30 cm are selected in the camera array design. The experiments started with four cameras
and increased to nine cameras. The developed optimization algorithm can handle more
cameras, however, we stopped at nine since we believe that having more cameras will
increase the camera array size which we try to avoid and to have a compact system. In
Figure 21, the distance between the created point cloud and the ground truth model is
computed and visualized in a colour scale ranging from blue (−) to red (+). Furthermore,
the number of points is also shown to indicate the sufficiency of the number of cameras
when considered together with the distance measure.
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For validation, 4, 5, and 6 camera arrays are tested using conventional image array
capturing a strip is utilized to generate a 3D face point cloud (Figure 22). Subsequently, this
point cloud is compared to the one produced by our optimal camera array algorithm using
an equivalent number of cameras. The reliability of the resulting 3D face models is assessed
by comparing them against the ground truth model of our simulation as visualized in
(Figure 22). This comparative analysis aims to validate the effectiveness of our optimal
camera array configuration against the conventional imaging setup.
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Figure 22. Comparison of 3D face point clouds obtained from a conventional image array capturing
a strip and those generated by our optimal camera array algorithm. The colors indicate the error
distance (C2M) from the reference model.

Then, the produced point clouds are processed for the face recognition task according
to the approach presented by Spreeuwers [44]. The applied 3D face recognition is highly
successful in building the depth maps necessary for the recognition task in all the given
camera configuration results. Accordingly, more challenging cases of using underexposed
(dark) images and overexposed images are tested. An illustration is given in Figure 23
showing a sample of two sets of images. The reconstructed point clouds from the images in
the two scenarios are shown in Figure 24.
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Figure 24. (Left) point cloud produced from the over-exposed images. (Right) point cloud produced
from underexposed images.

The 3D face recognition approach is working successfully with a maximum score
using the point clouds produced from overexposed images in all the camera configurations.
However, the recognition approach fails with the point clouds produced from dark images
due to the significance of missing parts.

Accordingly, the number of cameras does not affect the recognition results while
illumination conditions do have a large impact on the reconstruction and recognition.

4. Discussion and Conclusions

In this paper, a novel approach is presented to find the optimal camera array suitable
for 3D face recognition. The approach is based on a mathematical optimization technique
where several design constraints are considered.

Based on the optimization results, we can figure out what the camera array systems
should look like using four cameras increasing up to nine cameras. Of course, increasing
the number of cameras has advantages in terms of density and accuracy improvement
and disadvantages in terms of being more susceptible to self-occlusions and expensive
computations. As the number of cameras increases, the density of captured points and
accuracy in the 3D face model tends to improve as illustrated in Figure 25.
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Figure 25. Performance comparison chart displaying accuracy and point density across various
optimized camera array configurations.

The camera dimensions are selected to be compact similar to the GoPro camera of
6.2 × 4.5 × 3.2 cm and with a camera field of view of 26◦ at a 50 mm focal length to end
up with a cost-effective system. As mentioned, the longer focal length will allow for a
reasonable distance between the human face and the camera system while preserving the
face to span the whole image frame. A summary of findings is listed below as:

When the camera baseline increased from 20 cm to 30 cm, the accuracy was slightly
improved while the point density decreased. On average, a decrease of 10% to 30% in
the point density was indicated while the accuracy remained generally at similar levels.
If we consider having a more compact camera array system, then a 20 cm baseline is the
preferred option.

In the optimization run, the stopping criteria are based on the selected tolerance
threshold. Whenever the step size is smaller, the constraints will be better satisfied but
a longer processing time is expected. However, if the constraint is satisfied to 0.01 mm
using a threshold of 1 × 10−5 then it’s logical to prefer a threshold of 1 × 10−6 to satisfy
the constraint to 0.001 mm since they both satisfy the required quality outcome.

Worth mentioning that all the shown designed camera arrays have reasonable dimen-
sions of around 50 m2.

The best constellation is found when using a 7-camera array which shows a high accu-
racy compared to the ground truth model in both baselines of 20 and 30 cm. This 7-camera
array will be composed of a pentagon shape of five cameras enclosing the remaining two
cameras (Figure 26d). More cameras will increase the density of points if preferred and
then the best choice will be the 9-camera array which will be composed in the X-Z plane of
a pentagon in front and a quadrilateral behind it (Figure 26f). Still, the 5-camera array is a
good choice with a fewer number of cameras and high accuracy (Figure 26b).

It’s worth noting that illumination has a big impact on the success of face 3D reconstruc-
tion and recognition. Proper illumination ensures that facial features are well-illuminated
and visible without shadows, highlights, or uneven lighting. This enables reliable and
accurate reconstruction of the 3D face geometry. Accordingly, the proposed camera config-
urations will not be effective without having typical illumination conditions.

This research has important implications that will help 3D face recognition technology
progress and be used in real-world applications. Our findings support cost-effective system
design employing compact cameras, improve the accuracy and density of 3D points, and
improve biometric verification and facial analysis performance. A framework is presented
for camera system optimization in various applications as well as decision-making guidance
for choosing appropriate camera array configurations. Several research drawbacks can be
covered in future work, such as the lack of real-world experimentation, and the limited
comparison with existing methods. Future work will investigate different conditions like
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varying illumination, skin tones, and facial expressions. Additionally, statistical analysis
between the computed camera arrays and other conventional camera array approaches
will be investigated.
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Figure 26. The concluded optimal camera array ranges from four to nine cameras for 3D face
reconstruction and recognition. (a) optimal 4-camera array. (b) optimal 5-camera array. (c) optimal
6-camera array. (d) optimal 7-camera array. (e) optimal 8-camera array. (f) optimal 9-camera array.

Taking care of these issues will increase the practical application of our study’s findings.
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