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Abstract: In this paper, we propose a new cooperative method that improves the accuracy of Turn
Movement Count (TMC) under challenging conditions by introducing contextual observations from
the surrounding areas. The proposed method focuses on the correct identification of the movements
in conditions where current methods have difficulties. Existing vision-based TMC systems are limited
under heavy traffic conditions. The main problems for most existing methods are occlusions between
vehicles that prevent the correct detection and tracking of the vehicles through the entire intersection
and the assessment of the vehicle’s entry and exit points, incorrectly assigning the movement. The
proposed method intends to overcome this incapability by sharing information with other observation
systems located at neighboring intersections. Shared information is used in a cooperative scheme
to infer the missing data, thereby improving the assessment that would otherwise not be counted
or miscounted. Experimental evaluation of the system shows a clear improvement over related
reference methods.

Keywords: Turn Movement Count (TMC); cooperative vision; vehicle count; smart intersection;
traffic analysis

1. Introduction

Turn Movement Count (TMC) is the task of counting how many vehicles perform each of
the possible movements at an intersection in a specific time period. It has been widely used
in the applications of infrastructure planning, smart cities, and traffic optimization. Existing
automated traffic analysis systems often underperform compared to human annotators,
but they are able to annotate much larger datasets for extended periods of time. Despite
these systems’ successes, they tend to miscount turn movements in situations with many
simultaneously visible vehicles. These vehicles occlude each other, making it impossible to
correctly identify the origin or destination of the vehicle. If a vehicle is occluded for most of
its trajectory, current methods that rely on a single source of information cannot overcome
this problem.

More recently, systems that implement multiple cameras at a single intersection have
been introduced, with the goal of overcoming some of these problems in cases when a
vehicle can be seen by at least one camera at all times. However, to ensure that all vehicles
are in view, greater numbers of cameras are required and the computational cost is higher
due to the larger amount of data to be processed. Although increasing the number of
cameras observing a single intersection is not a cost-effective solution, traffic surveillance
systems that observe the entry and exit streets at most intersections are already deployed
in most cities. Other methods from the literature rely on information provided directly
from vehicles. The available information varies depending on the vehicle types transiting
through the area and the implemented technology. Information sources range from RFID
tags that simply inform the system that a certain vehicle is present, to highly sophisticated
systems common on autonomous vehicles. These latter systems obtain information on
traffic environments from onboard sensors such as cameras, radars, and LIDAR.

Sensors 2023, 23, 9772. https://doi.org/10.3390/s23249772 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23249772
https://doi.org/10.3390/s23249772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5031-636X
https://orcid.org/0000-0002-8225-2935
https://orcid.org/0000-0001-8790-1116
https://orcid.org/0000-0002-1666-5483
https://doi.org/10.3390/s23249772
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23249772?type=check_update&version=1


Sensors 2023, 23, 9772 2 of 16

In this work, we propose a system that utilizes existing camera infrastructure to
perform TMC cooperatively. This system consists of multiple independent observational
systems that collect and process local data at different locations in parallel and share relevant
information between nearby intersections. The shared data provides a broader context to
the observations at any given intersection, either by confirming previous motion estimations
or by providing information about the vehicle’s movements before entering and after
leaving the intersection. We postulate that with this additional information, a cooperative
system should be capable of correctly evaluating a vehicle’s movement under conditions in
which current systems would fail, given the same sensor configuration.

2. Related Work

Over the years, various innovative approaches have been proposed to solve the
turn movement count problem using video analysis. Most of the methods described
below employ a variation in the Detect-Track-Count paradigm, which consists of a set of
sequential processes.

2.1. Detection

The Detection step consists of determining the regions of interest (ROI) in the image
containing vehicles. Early methods used a variation in background subtraction to determine
the ROIs, such as those presented in [1,2], by removing parts of the image that have
not changed significantly over a certain number of frames. As these methods require
multiple steps to be performed in sequence, they are often slower and more computationally
expensive than more recent approaches.

More recent approaches rely on deep learning techniques to detect vehicles in the scene,
such as in the works of [3–5]. These techniques have demonstrated better performance in
detecting vehicles. In addition, these approaches are able to process algorithms such as
YOLO [6] faster, a technique that provides accurate regions of interest from a single pass
over the image. While improvements in detection speed and accuracy have contributed to
a better TMC performance, they do not address high occlusion scenarios.

2.2. Tracking

The Tracking step of the process obtains the trajectories of previously detected vehicles
as they move across the intersection. The most naive tracking methods, such as those
presented by [7,8], extract the distances between the current and previously detected object
positions. The trajectory is therefore described as a series of points in a sequence of images
in which the vehicle has been detected. As these systems are frame-to-frame based, they
require a high frame rate to track vehicles, given that the association of trajectory to a
specific vehicle becomes inaccurate at low frame rates.

More sophisticated methods rely on a combination of visual features’ re-identification
(described further below in Section 2.4) and the current position, to associate a trajectory
to a vehicle. Such methods can correctly determine the location of an identified vehicle
in a new frame, instead of relying on the proximity of detected positions to associate the
tracks. Therefore, they allow for more robust trajectory assignment. This can be seen in
the works of Liang et al. and Wojke et al. [9,10]. This approach reduces the uncertainty
of the tracker while allowing for lower frame rates to be used, at the expense of higher
computational complexity.

Other tracking systems, such as the one presented by Li et al. [11], essentially merge
detection and tracking into a single process. This tracker passes a prediction of probable
ROIs based on the current trajectory, providing the detector algorithm with a distribution
of probable ROIs on which to perform detection. While this solution is the most complex of
those discussed here, it is also the most reliable for continuous tracking, once a vehicle has
been detected and tracking has started.
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2.3. Movement Assignment and Counting

Movement assignment and counting is the last step taken via existing TMC methods.
Based on the trajectory obtained from the tracking system, a turn movement is selected
and counted based on a preexisting list of possible moves. Two main approaches exist for
selecting the turn movement.

The first method consists of determining the entry and exit points of the vehicle by
performing an intersection test between the vehicle’s trajectory and a predefined region of
the intersection; the entry point is defined as the first region where the vehicle was detected,
and the exit point corresponds to the last tracked position. This type of TMC can be seen in
works such as [1,12–14]. When the detection algorithm is slow, this type of TMC becomes
unreliable—the entry point will be incorrectly identified, and in cases where the vehicle is
occluded while in the exit region, missed assignments will occur.

The second method consists of comparing the entire trajectory with previously known
trajectories from the annotated data. These methods, as presented in [15–17], tend to
be computationally expensive, since comparing whole trajectories is more complex than
performing point-region intersection tests. The biggest issue in trajectory comparison is the
precision of the tracker and the accuracy of the reference trajectory, since minor tracking
deviations can generate confusion during evaluation.

2.4. Re-Identification

Re-identification consists of determining if an object of interest is detected—in this
case a vehicle—and if it is the same as a previously detected vehicle. When an object has
been detected, a series of identifying features are collected and compared to all previously
collected feature sets. If the similarities between the features surpass a certain threshold,
the object is considered the same as the one generating the initial feature set. While re-
identification is not an essential part of TMC, some methods use it to increase the precision
of assigning a trajectory to a vehicle. The main limitation of current vehicle re-identification
methods is that the similarities of different vehicles tend to surpass the threshold for
positive ID. That is, the feature set used to describe a previously observed vehicle may be
similar enough to that of a different vehicle and cause incorrect identification, confusing
the second vehicle for the first one.

This problem can be partially solved by increasing the similarity threshold required
to match a newly detected vehicle to an existing ID. However, this comes with the main
drawback of decreasing the number of vehicles correctly identified.

2.5. Other Data Sources

Although in this work we focus on conducting TMC using camera-based systems,
other methods perform traffic analysis using data collected from different sources. These
methods include systems based on radar, such as in [18,19], while others use 3D data
captured via LIDAR, such as [20,21]. In recent years, a new concept has emerged to combine
existing roadside sensors, such as those already described, with vehicle-mounted sensors
such as LIDAR. Since autonomous driving vehicles already include such technologies, as
described in [22], this integration would deliver more relevant information to the traffic
system without increasing the cost of the infrastructure. The inclusion of these additional
traffic data sources presents a great opportunity for research. However, a main limitation
barring a wider application of these concepts is the limited types of data used in existing
public infrastructure, where these kinds of systems are to be deployed.

3. Methodology

We propose a cooperative feedback approach to address the vehicle occlusion problem
affecting traffic analysis systems. Our approach gathers information from multiple points
in surrounding areas. This information is used to assign a turn movement to a vehicle in
cases where the assignment could not be made using information obtained only locally.
We propose this approach based on the fact that the movement of a vehicle through an
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intersection is not an isolated event limited to the intersection, but rather part of a complex
series of movements through an environment of interconnected roads, observed via traffic
monitoring systems at multiple intersections. We represent the interconnections of roads as
a directed multigraph, where each intersection is considered a node and each of the lanes
connecting these intersections is an edge, as shown in Figure 1 where the main intersection
C is connected to A, B, D using directional edges representing the traffic flow. We also
consider all possible combinations of incoming and outgoing edges as the list of possible
turn movements at that node, without considering the legality of such moves.

Figure 1. Visual representation of an intersection as a node C in a connected graph, with neighboring
intersections A, B, D. Intersection C is connected with entry points w3, w4, and exit points a1, a2.
Dotted lines represent possible movements through the node, representing the legal turn movements
at that intersection.

To determine how the information provided by the other intersections influences a
TMC system, we propose a method formally described in Section 3.1. In Section 3.2, we
describe the software implemented to test this system.

3.1. Formalization

Given the previously described assumptions, the problem can be formalized as follows:

• U = {uv|v = 1, . . . , V}, a set of objects of interest uv (vehicles in this case) where V
denotes the cardinality of the set.

• Ω = {ωj|j = 1, . . . , J}, a set of incoming edges’ ends ωj (entry points to intersections
in this case), where J denotes the cardinality of the set.

• A = {αk|k = 1, . . . , K}, a set of outgoing edges’ ends αk (exit points to intersections in
this case) where K denotes the cardinality of the set.

• Γ = {γi|γi ∈ Ω
⋃

A}, the set of edges’ ends γi (accesses, whether entries or exits, to
intersections in this case).

• A crossing P(cl) : Ω→ A is a function linking entries to exits according to the rule of
association P(cl) = {(ωj, αk)|ωj ∈ Ω, αk ∈ A}, where a set of ordered pairs between
entries ωj and αk exits on a crossing. Note that this allows us to model most types of
intersections. We enforce the constraint that any given access γi can only be part of, at
most, one crossing p(cl), noted γl

i , but within that intersection, it may participate in
several ordered pairs, i.e., we assume free ends. We refer to an ordered pair (ωl

j , αl
k) as

a pathlink pl
jk; hence, a crossing is a set of intranodal pathlinks.

• C = {P(cl)|l = 1, . . . , L}, the set of intersections as described by its pathlinks P(cl),
with L as the cardinality of the set.

• A road network can be represented by a directed multigraph G = (C, E) of intersec-
tions and E = C × C and streets. Now, the incoming edges to a node form Ω, and
the outgoing edges are in A. In other words, an edge is an ordered pair e = (αk, ωj),
with Γ as all the edges’ endpoints. Not all intersections will be monitored, but this
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is circumstantial. Furthermore, it is not critical to know the whole network G, and it
suffices to know C.

• S = {si
r|r = 1, . . . , R, i : γi ∈ Γ}, a set of observations obtained from the video analysis

(acquired with some corresponding camera) si
r looking at some intersection access

γi, with R denoting the cardinality of the set. If a camera can monitor more than one
access in one or more intersections, this can be represented by as many si

r instances as
required. If any camera does not monitor some access, there will not be a data source
for that access. An access γi may be observed via none, one, or more cameras. These
observations will be noted as si

r[tn] with n = 1, . . . , T set of timestamps.

At any given time tn of {T}, a vehicle uv may be detected using an observation
algorithm si

r. A function fdetect in Equation (1):

fdetect :{T} × S×U → Bool = {True, False, NA}
b = fdetect(tn, si

r, uv)
(1)

indicates when the vehicle uv is being detected via some observer si
r at the time tn, si

r[tn].
If the status of the detection b is True, this indicates that the vehicle is being detected.
The outcome False indicates that the object is not being detected, while NA indicates
that the detection cannot be confirmed (e.g., due to occlusions). Naturally, because si

r
monitors access γi and given the constraint that one access can only be part of, at most, one
intersection p(cl), if fdetect(tn, si

r, uv) = True, we also know that object uv was at node p(cl)
at time tn.

The problem can be stated as follows: Given a time t, an object uv, an entry access ωj

at intersection p(cl), noted ωl
j , and knowledge of the situation at the intersection C and

observation S, determine the (most likely) exit access αk in the same crossing p(cl), noted αl
k

t with g as the node traversing function, which is unknown.

argmax
αl

k

Pr(g(tn, uv, ωj; C, S) = αk) (2)

In other words, determine the most likely outgoing end of the pathlink (ωl
j , αl

k),
followed by the vehicle uv traveling road network G at time tn exploiting the info in S.
This is solved using the Nelder–Mead algorithm [23] by iteratively adjusting the shape of
a graph to find the lowest or highest point, depending on the goal. Shape optimization
continues until passing a convergence threshold or reaching a stopping condition.

3.2. The Algorithm

The proposed solution is organized as a modular platform that executes different
algorithms in parallel. Each algorithm is implemented as an independent plugin, sharing
information using a shared memory whiteboard model. An illustration of the proposed
algorithm is shown in Figure 2.

3.2.1. Data Acquisition

This module obtains the most recent unprocessed video frame from the device and
associates a timestamp to it, then saves the frame to memory and shares it with the other
plugins using the shared whiteboard. The protocols supported by this plugin are RTSP [24],
TrafiSense2 Dual thermal camera, iDS uEye camera, and local video files or image sequences.

3.2.2. Detection

This plugin relies on the YOLO version 4 implementation provided by OpenCV, [25]
using the parameters shown in Table 1 trained on the COCO dataset [26] and considering
only the traffic-related objects from its multi-class output. The algorithm determines the
position and bounding boxes of the vehicles in the scene, as illustrated in Figure 3. Once the
bounding box is determined, it is cropped and shared along with its view space coordinates.
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Figure 2. Illustrative data exchange among different modules of the architecture proposed. All
modules are executed in parallel and data exchange is bidirectional and asynchronous.

Table 1. Parameters used in the training of YOLO using the COCO dataset.

Parameter Value Parameter Value Parameter Value
batch 64 momentum 0.9 learning_rate 0.001
subdivisions 16 decay 0.0005 burn_in 1000
width 608 saturation 1.5 max_batches 500,200
height 608 exposure 1.5 policy steps
channels 3 hue 0.1 steps 400,000, 450,000

Figure 3. Visual representation of resulting bounding boxes defined by the detection algorithm.
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3.2.3. Feature Collection and Re-Identification

This plugin extracts recognizable features from the bounding box using the ORB
algorithm [27]. A sample of the feature match progress is shown in Figure 4. A set of
newly extracted features are compared to either the previously known features collected
via this processing node, or to those received from other locations via the network, using
the Hamming distance defined in Equation (3) where the features a from the current camera
image are compared to features b stored from previously collected features, as well as
where ai and bi are the individual features.

dhamming(a, b) =
n−1

∑
i=0

(ai ⊕ bi) (3)

Figure 4. Feature matching during the re-identification process. Red circles features detected via the
ORB algorithm. Green lines matching features.

If there is a match, the vehicle is considered re-identified and the known ID is assigned.
If the comparison does not pass the threshold, the vehicle is regarded as unknown and a
new ID is assigned. Once the ID is assigned, the system shares it, appending its features to
the existing feature set.

3.2.4. Tracking

This module follows the vehicle through the scene. The position obtained via the
detector is projected to a top-view representation. In addition, the position of each detected
object is tracked using a Kalman tracker in combination with the ID provided by the re-
identification algorithm. Once the top-view trajectory has been determined for all cameras,
the trajectories are merged based on their associated ID, using the Frechet distance as
shown in Algorithm 1 and in Figure 5. This algorithm measures the similarity between two
curves that maintain a certain proximity by recursively calculating the Euclidean distance
of the points that belong to the curves. If the resulting distance is below a certain threshold,
the trajectories are merged using point averaging. Thus, the resulting trajectory is stored
as an observation S for the intersection C. The stored trajectories are then used by the
turn movement assignment algorithm to select both the most probable route taken and the
appropriate TMC.

3.2.5. Turn Movement Assignment

The system determines the most probable trajectory (ωl
j , αl

k) for a vehicle uv based on
its entry point ωj and the observations collected via the tracking module using Equation (2).
This is performed by comparing the observed trajectory, aligning the sequences in a non-
linear manner to a series of predefined turn movements, as shown in Figure 6, and finding
the optimal match by stretching or compressing one of the trajectories to match the other,
as described in Algorithm 2. The trajectory that requires the smallest change is considered
the best match to the known legal turn movement.
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Algorithm 1 MergeTrajectories

function MERGETRAJECTORIES (splines, threshold)
trajectory← ∅
if splines is not empty then

for i← 0 to length(splines)− 1 do
for j← i + 1 to length(splines) do

distance← CalculateEuclideanDistance(splines[i], splines[j])
if distance < threshold then

mergedSpline← AveragePoints(splines[i], splines[j])
trajectory← trajectory∪ {mergedSpline}

end if
end for

end for
end if
return trajectory

end function

Figure 5. Tracking and smoothing process. Image-space trajectories projected to top-view blue and
green lines and combined to obtain the final trajectory in top-view space red line.

Algorithm 2 TrajectorySimilarityEvaluation

1: function TSS(A, B): float
2: n← length of A
3: m← length of B
4: DP← a 2D array of size (n + 1)× (m + 1)
5: for i← 1 to n do
6: for j← 1 to m do
7: cost← distance between A[i] and B[j]
8: DP[i][j]← cost + min(DP[i− 1][j], DP[i][j− 1], DP[i− 1][j− 1])
9: end for

10: end for
11: return DP[n][m]
12: end function
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Figure 6. Visual representation of the proposed scene model at one intersection. Blue arrows indicate
three legal turn movements at this specific intersection starting from A1: left (A1→B2), straight
(A1→B3), and right (A1→B4).

Once the most probable trajectory is assigned, it is stored along with the vehicle ID
and used for future comparisons with the trajectories obtained by human observers. In
addition, the computed TMC is communicated to other nodes on the road network G to be
used in further computations.

3.2.6. Communication

This module collects all available information shared by the other modules of its
node and sends it to other nodes on the network. It also receives incoming data from
other nodes and integrates it into the node’s shared whiteboard. As the main component
of the cooperative system, this module allows the node access to information about the
environment that the locally connected sensors cannot collect. The information exchange
uses a low-latency broadcasting messaging protocol that sends messages to all the other
nodes simultaneously. In addition, the communication system also sends messages at each
vehicle entry event, when a vehicle has been re-identified via a new node, and vehicle exit
event, when the vehicle has left an intersection. The data communicated is user-defined;
to reduce the amount of data exchange in our experiments, data sharing was limited to:
originating node, timestamp, re-identification ORB features, vehicle IDs, and entry/exit point.

In addition, this module continuously reviews the events provided by the other sys-
tems and compares the entry/exit events to determine if the vehicle has been re-identified
via another node. If re-identification occurs, the turn movement assignment is confirmed,
thereby giving a higher certainty of a correct assessment.

4. Experiments

To evaluate the influence the proposed cooperation scheme has on the overall perfor-
mance of a TMC system, we conducted a comparison between four scenarios, using the
same dataset. The scenarios were a no-cooperation setup, a partial TMC confirmation, a
complete TMC confirmation, and a partial blackout setup. We assessed the accuracy of
TMC assignments compared to the ground truth manual annotations. We hypothesized
that the TMC system would have the highest performance when maximum information
was shared between the different nodes.
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4.1. Experimental Setup

To correctly assess how the knowledge of its surroundings affects the result of a TMC
algorithm, the dataset used should provide the context of surrounding intersections. To
the best of our knowledge, no such dataset was available. A new dataset was captured
using publicly accessible traffic cameras provided by the Lexington-Fayette Urban County
Government in Lexington, KY, USA. The dataset was recorded from a total of 90 intersec-
tions, each equipped with four cameras pointing in the general direction of the legs of
the intersection. Recordings were 1280 × 720 pixels, collected for 30 min at 25 frames per
second. One issue we had to address is that the cameras in this system were destined for
human traffic monitoring. Therefore, these cameras have not been calibrated or configured
for software analysis. Sample images captured at one of the intersections used in this
dataset can be seen in Figure 7. To overcome the problem of calibrations, the views were
manually projected to align with the observable ground plane.

Figure 7. Illustrative frames of video captured at one of the intersections and approximated locations
of all the cameras recorded.

Since the full context was not available for all intersections, a subset was selected.
We chose intersections whose adjacent intersections were also recorded. The videos from
these intersections were manually labeled by assigning an identifier to each leg of the
intersection, enumerating each possible movement to be performed, and finally, assigning
one of the possible movements to each vehicle in the scene. The data from the adjacent
intersections were labeled and assigned the same unique ID to each vehicle in all scenes. As
the experiment did not allow for on-site analysis, the experiments were performed offline on
a single computer. To best replicate real-world conditions where each intersection would be
processed via a single edge device such as an Intel NUC or a similar low-power unit, each
node was executed on a single thread of the host unit, limiting the RAM available to 1 GB
and with no GPU acceleration. Meanwhile, the network connection was set to 10 Mbps
with an average simulated latency of 100–150 ms, which is similar to the latency found on
low-cost public infrastructure solutions. For each experiment, the system simulated five
processing nodes simultaneously, i.e., one main central node and four secondary nodes. The
results reported in Section 4.3 only consider the results of the central node. The secondary
nodes are used to provide context to the main node to increase its accuracy, but are not used
directly for the evaluation. In this way, the systems are compared under the most similar
conditions possible.

4.2. Experimental Scenarios

These scenarios were designed to test our hypothesis that “A cooperative system will
surpass a non-cooperative system under the same conditions”. Specifically, we selected the
three most circulated intersections, each in a traditional crossroad configuration (i.e., four-legged
symmetric intersection). For each intersection, the central intersection area acted as the main
point of interest, and the four surrounding nodes served as cooperative inputs. An illustration of
a typical four-legged intersection can be seen in Figure 8. The four scenarios are described next.



Sensors 2023, 23, 9772 11 of 16

Main
node

Figure 8. Illustrative distribution of a common four-legged intersection with one central node and
four secondary nodes that communicate.

Scenario 1: No cooperation. Cooperation is entirely disabled. Information provided
by other nodes is not used to determine the vehicle’s movement. To maintain a similar
workload of the system, we left communication enabled, but configured the main node
to ignore any information provided by the other nodes of the network. This reflects the
basic scenario of how most TMC systems are tested. That is, a standalone system that is
only capable of using locally collected data. This also reflects the fundamental behavior
of non-cooperative systems typically found in the literature. Therefore, we consider this
scenario as a baseline for the comparison of a cooperative system, as all other conditions
remain equal.

Scenario 2: Partial TMC confirmation. In this scenario, the data from other nodes is
only used if the entry/exit points cannot be determined using local data. This scenario
represents the main cases where the vehicle is occluded during the initial or final parts of
its trajectory. This can be reduced to the following steps:

(1) If entry and exit points are defined:

• Store trajectory and exit.

(2) If no entry point is defined:

• Request re-identification.
• If the re-identification is positive:

– Assign the vehicle entry point based on the location where the vehicle was
initially identified.

• If the re-identification is negative:

– Assign the vehicle entry point based on the closest available point.

(3) If no exit point is defined:

• Await a positive re-identification reported by another node.
• If the re-identification is positive:

– Assign the exit point to the leg of the intersection connected to that node.

• If the re-identification is negative:

– Assign the vehicle exit point based on the closest available point.

We limit the cooperation in this scenario to undetermined cases. Therefore, the system
will not perform any correction to incorrectly assessed movements. Consequently, incorrect
assignments made on the central node, not related to an incomplete trajectory, will remain
incorrect even if other nodes perform correct re-identification.

Scenario 3: Complete TMC confirmation. In this scenario, we take full advantage of
the cooperative mode of the system. Each node performs the turn movement assignment
using the local data, while also confirming with other nodes following the steps listed below:

(1) Each node performs the turn movement assignment using the local data.
(2) Confirm the entry point by:
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• Performing a re-identification of the vehicle.
• Determining if the assigned entry point coincides with the previously identified

node.

(3) Confirm the exit point by:

• Awaiting a positive re-identification reported by another node.
• Determining if the assigned exit point coincides with the subsequently identified

node.

(4) If more than one node presents an entry/exit:

• Maintain the locally obtained trajectory and exit as probable misidentification
occurred.

(5) In case of any discrepancy between local and remote ID:

• Re-assign the points if the re-identification confidence level is above the threshold.
• Maintain original points if the re-identification confidence level is below the

threshold (assumed misidentification).

In addition, the node also adds vehicle IDs with a turn movement when two neighbor-
ing nodes indicate the route to the intersection as the exit point and entry point, respectively.
Therefore, the node manages to assign probable turn movements even to occluded vehicles,
based on the information provided by its peers.

Scenario 4: Partial blackout. In this scenario, the system is configured with the same
cooperative capabilities as in scenario 3—Complete. However, the locally obtained data is
blocked in order to simulate a failure of the cameras. This is a common situation when
traffic accidents damage the sensing infrastructure. Traffic behavior analysis becomes more
important in these cases, as the conditions at the intersection produce unexpected traffic
flows. In order to make its turn movement assignment with these limiting conditions, the
node depends entirely on the cooperative aspect of the system and the data provided by
the surrounding nodes. Under this scenario, the system should be able to correctly assess
those cases where a vehicle is identified by two of the adjacent nodes and assign the turn
movement based on this. While this scenario represents an extreme case where a system
that only uses local information is completely incapable of performing correctly, it presents
an opportunity to determine if cooperation is beneficial in cases of technical failures, such
as the one illustrated in Figure 9.

Figure 9. Illustrative example of the cooperation of the system. In this scenario, it is possible to infer
the trajectory of the vehicle across the middle intersection (red) from the information provided by the
neighboring nodes (green, blue), even if the camera at the central intersection was obstructed.
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The architecture is configured in such a way that the plugins of the platform can be
activated based on the cooperative level being used in each tested scenario, which can be
seen in Algorithm 3. This is used to dynamically change how each node of the network
uses the context provided by the other nodes and what information is to be shared using
the communication plugin.

Algorithm 3 Simplified plugin call pseudocode

1: trajectory← GET_REDUCED_TRAJECTORY()
2: if cooperationlevel = 1 then
3: if not EntryPoint then
4: Assign closest entry point to trajectory
5: end if
6: if not ExitPoint then
7: Assign closest exit point to trajectory
8: end if
9: end if

10: if cooperationlevel = 2 then
11: if not EntryPoint then
12: trajectory.Entry← REIDENTIFYENTRY(features)
13: end if
14: if not ExitPoint then
15: trajectory.Exit← REIDENTIFYEXIT(features)
16: end if
17: end if
18: if cooperationlevel = 3 then
19: if REIDENTIFYENTRY(features) > threshold then
20: trajectory.Entry← NewEntry
21: end if
22: if REIDENTIFYEXIT(features) > threshold then
23: trajectory.Exit← NewExit
24: end if
25: end if
26: TM← TRAJECTORYSIMILARITYEVALUATION(trajectory)
27: ASSIGNTMC(TM)

4.3. Experimental Results

The system was applied to three intersections, with a total of 890 manually labeled
turn movements.

As shown in Table 2 and in Figure 10, Scenario 3—Complete—achieved the highest
average at 95.65%± 1.55 correctly identified movements and reached a performance of 97%
on Intersection 3, outperforming the other scenarios by 4% to 70%. On scenario 4—Partial
Blackout, the system was capable of correctly assigning on average 30.67% ± 4.04 of the
turn movements. Systems without a cooperative feature would be incapable of this task
because the local data has been blocked, where such systems would identify zero vehicles.

Table 2. Percentage of Correctly Assigned Turn Movements for the three intersections under the
four scenarios.

Intersection
A

Intersection
B

Intersection
C Average STD

No-Coop 87% 82% 91% 86.67% 4.51
Partial 91% 86% 93% 90.00% 3.61

Complete 94% 96% 97% 95.65% 1.55
P-Blackout 30% 35% 27% 30.67% 4.04
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Figure 10. Correctly assigned turn movements in different scenarios.

Table 2 also shows that the standard deviation (STD) is smaller in more cooperative
scenarios. This shows a clear tendency for an overall higher performance when the system
shares more information.

These results can also be contrasted in Table 3, showing a clear increase in the F1 score
when the system uses cooperative mode. The clear advantage of the use of cooperation in
scenario 4 P-Blackout can also be seen, in contrast to a standard system, where the score
without cooperation would be zero. It should also be noted that in scenarios 2 Partial and
3 Complete, cooperation reduces the false negative rate without inducing a large increase
in the false positive rate, demonstrating that cooperation does not increase incorrect turn
movement assignments.

IDF1 =
2× TP

2× TP + FP + FN
(4)

Table 3. IDF1 score of the TMC under different scenarios on a total of 890 different turn movements.
IDF1 score obtained using Equation (4); TP true positive; FP false positive; FN false negative.

IDF1 TP FP FN

No-Coop 0.7120 55.28 24.49 20.22
Partial 0.7464 59.55 21.01 19.43

Complete 0.7799 63.93 21.91 14.15
P-Blackout 0.4786 31.46 9.77 58.76

Further testing is required due to the relatively small dataset used in these experiments.
Nevertheless, we note a tendency for performance improvements when using cooperative
methods compared to non-comparative ones. Moreover, this system is capable of correctly
inferring the information of an intersection without directly observing it.

5. Conclusions

While the TMC results of the proposed system, when functioning in non-cooperative
mode, are similar to the published results in the literature, the integration of coopera-
tion significantly improves the TMC performance. Additionally, it is noteworthy that
by integrating a cooperative scheme into the algorithm, it is possible to perform TMC
under adverse conditions where one part of the system is incapable of collecting data
on its own. This system will be more robust and reliable in conditions where the correct
assessment of movements is the most important factor when making decisions about
infrastructure improvements.



Sensors 2023, 23, 9772 15 of 16

The main contribution of a cooperative system, compared to non-cooperative systems,
is that the proposed system is capable of determining the movements of vehicles even
when no direct observation of the intersection is possible. As the cooperation of the system
does not depend on any particular detection or tracking algorithm, the proposed system
can be integrated with other existing TMC methods, providing additional certainty. The
experiments described here demonstrate that the system is highly scalable, as each node
is only required to both analyze the data provided by the cameras at one intersection
and communicate with the directly neighboring intersection, e.g., 3–5 neighbors in most
common urban scenarios. This scalability at a relatively low cost, compared with a cen-
tralized solution, allows for ad hoc expansion of the system. We expect to expand this
research to evaluate the system in real-world scenarios using real edge hardware solutions.
We also plan to integrate additional sensing capabilities such as thermal cameras, radar,
and LIDAR, as these sensors provide additional information, expanding the possibilities
of better infrastructure planning. We are also exploring the possibility of expanding the
system to observe larger areas, such as highways and interstates, to perform long-term
vehicle tracking. Once these sensing technologies have been integrated into the system, we
plan to deploy the complete system in real-world scenarios to improve the local capabilities
of traffic analysis.
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