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Abstract: Identifying terrain parameters is important for high-fidelity simulation and high-performance
control of planetary rovers. The wheel–terrain interaction classes (WTICs) are usually different for
rovers traversing various types of terrain. Every terramechanics model corresponds to its wheel–
terrain interaction class (WTIC). Therefore, for terrain parameter identification of the terramechanics
model when rovers traverse various terrains, terramechanics model switching corresponding to the
WTIC needs to be solved. This paper proposes a speed-independent vibration-based method for
WTIC recognition to switch the terramechanics model and then identify its terrain parameters. In
order to switch terramechanics models, wheel–terrain interactions are divided into three classes.
Three vibration models of wheels under three WTICs have been built and analyzed. Vibration
features in the models are extracted and non-dimensionalized to be independent of wheel speed. A
vibration-feature-based recognition method of the WTIC is proposed. Then, the terrain parameters
of the terramechanics model corresponding to the recognized WTIC are identified. Experiment
results obtained using a Planetary Rover Prototype show that the identification method of terrain
parameters is effective for rovers traversing various terrains. The relative errors of estimated wheel–
terrain interaction force with identified terrain parameters are less than 16%, 12%, and 9% for rovers
traversing hard, gravel, and sandy terrain, respectively.

Keywords: terrain parameter identification; wheel–terrain interaction classes; vibration features;
terrain classification; planetary rover

1. Introduction

Planetary rovers need to traverse rough terrains during planetary exploration missions.
Wheel–terrain interaction has substantial influence on the mobility of rovers [1,2]. The
typical surfaces of Mars consist of hard, sandy, and gravel surfaces [3]. Rovers can move
quickly on hard, flat, and non-slippery surfaces. However, they are typically required to
traverse over sandy areas, where they suffer from wheel sinkage, or over gravel surfaces
where violent vibrations may happen. Hazards originating from the terrain surface itself
are called non-geometric hazards. Knowledge of the terrain class and other properties can
help improve the mobility of the rover by adjusting its path or control strategy in advance.
Recognition of terrain class, terramechanics modeling, and terrain parameter identification
are essential to optimize the control of high-mobility rovers. Research progress and existing
problems related to terrain classification and parameter identification are discussed in
this section.

Sensors 2023, 23, 9752. https://doi.org/10.3390/s23249752 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23249752
https://doi.org/10.3390/s23249752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3556-1575
https://orcid.org/0000-0002-1304-3988
https://doi.org/10.3390/s23249752
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23249752?type=check_update&version=1


Sensors 2023, 23, 9752 2 of 32

Terrain classification can be divided into exteroceptive and proprioceptive terrain clas-
sification. Exteroceptive terrain classification mainly applies vision or range data [4–8]. For
example, Otsu et al. [4] used semi-supervised algorithms instead of supervised algorithms
for visual classification systems. Support vector machine (SVM) is used to classify data from
different sensors. For the excellent performance of deep learning in object classification and
recognition, some studies have utilized deep learning algorithms for terrain classification
of planetary rovers, achieving high classification accuracy [6,7]. However, the vision- or
laser-based classification methods are usually related to the topmost terrain surface, which
may not be the load-bearing surface. An example of this is the Mars terrain, which is
covered by a thin layer of drift sand.

Proprioceptive terrain classification has focused on vibration-based terrain classifica-
tion methods [9–14]. Brooks and Iagnemma [9] extracted the power spectral density (PSD)
of vibration acceleration to classify the terrain into gravel or sand. In a later work, vibration,
vision, and wheel–terrain interaction force were combined to construct a self-supervised
terrain classification framework for planetary rovers [10]. However, the terramechanics
model used in their paper is not suitable for calculating the interaction force of the wheel
and hard/gravel terrain. The terrain parameters used in the terramechanics model are
also unidentified. Vicente et al. [11] extracted eleven statistical features of vibration accom-
panied with the PSD of vibration acceleration to form a new feature vector. An extreme
learning machine was used to classify terrains based on the feature vector. Some studies
applied deep learning algorithms to classify planetary terrain based on proprioceptive
sensors [12,13]. Those methods can reduce classification accuracy caused by inappropriate
feature extraction and selection. These methods neglect that the variation of the wheel
speed (over a given terrain) changes the amplitude and frequency of the measured wheel
vibration signal. If rovers move on the same class of terrain at different speeds, the class
of terrain may be incorrectly classified. One solution is to increase the number of trained
speeds to obtain vibration features at various speeds [14]. However, there is a drawback
that numerous samples at the rover’s multiple moving speeds need to be obtained. Another
solution is to extract speed-independent vibration features of the wheel that are proposed
in this paper.

Terrain parameters are useful for planetary rovers to maximize the wheel traction or
minimize the power consumption [15]. Several methods have been reported to estimate
terrain parameters [16–19]. Iagnemma et al. [16] presented a linearized terramechanics
model for estimating the internal cohesion and friction angle of soil. However, many other
important terrain parameters such as the cohesive modulus, friction modulus, and sinkage
exponent in terramechanics models have not been identified. Hutangkabodee et al. [17]
identified the parameters, including the internal friction angle, shearing deformation mod-
ulus, and lumped pressure sinkage coefficient, using the Newton–Raphson method based
on a simplified terramechanics model. Ding et al. presented an improved terramechanics
model with consideration of the slip–sinkage and lug effects. Soil parameters were divided
into three independent sets by decoupling a wheel–soil terramechanics model. This model
can be used to identify Lunar terrain parameters with the Yutu-2 rover [18]. However,
these methods cannot be applicable to rovers traversing firm soil because the assumed
terramechanics models do not cover interaction between the rover wheels and hard terrain
(HT). The soil of HT does not experience a shear deformation, and there is no shear stress
in the wheel–terrain interaction. The soil cohesion coefficient (c) or shearing deformation
modulus (K) is not part of the shear characteristic parameters in the shear terramechanics
model of the interaction between a wheel and HT. To address this problem, Yang et al. [19]
set parameters K and c equal to zero to make a terramechanics model of the interaction
between a wheel and soft terrain (ST) suitable for the interaction between the wheel and
HT. It is necessary to carry out terrain classification to determine parameters such as K and
c in a terramechanics model when calculating interaction force or torque.

Conventional terrain classification classifies terrain classes according to their com-
ponents to help rovers and mobile robots adjust their control strategy and path planning
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through which a qualitative judgment of the terrain properties is acceptable. However,
an autonomous planetary rover should “know” the terrain properties to calculate the
wheel–terrain interaction force to maximize the wheel traction or minimize the power
consumption and improve the traversability of the rover during its operational phase.
Despite efforts in this regard, the terrain parameter identification of various terrain classes
and terramechanics model switching for the interaction between the wheel and soft or hard
terrain are still issues to be researched for planetary rovers.

As mentioned above, the following problems are still associated with research works
on terrain classification and parameter identification for planetary rovers: (1) a suitable
terramechanics model needs to be switched to for rovers moving on various types of
terrain. The recognition of wheel–terrain interaction class (WTIC) has been rarely studied.
(2) Parameter identification of terramechanics models in various types of terrain (not
just sand) needs to be studied. And (3) reported vibration-based speed-independent
terrain classification methods require numerous training samples at multiple speeds, which
is not feasible for planetary rovers. To solve these problems, the following need to be
investigated: (1) how to extract speed-independent vibration features and recognize WTIC
to determine the corresponding terramechanics model, especially in the regions where
the terramechanics model needs to be switched, and (2) how to identify parameters in the
terramechanics model for a planetary rover traversing various types of terrain.

In this paper, the speed-independent vibration features are extracted to recognize
WTIC first. Terrain parameters in the terramechanics model that is switched to corre-
sponding to the recognized WTIC are then identified. This paper comprehensively utilizes
various sensors installed on the planetary rovers, including accelerometers, cameras, and
six-dimensional force/torque sensors, to achieve the recognition of WTIC and identification
of terrain parameters. The accelerometer is used to collect wheel vibration acceleration data.
Speed-independent vibration features are extracted from the acceleration data to recognize
WTIC and select the corresponding terramechanics model. The camera can obtain wheel–
terrain interaction images to realize the estimation of wheel sinkage and slip ratio using
machine vision technology. The wheel–terrain interaction force information of the rover
wheel is acquired using the six-dimensional force/torque sensor. Then, the wheel–terrain
interaction force, wheel sinkage and slip ratio are input into the terramechanics model to
identify terrain parameters.

The main contributions of this paper are as follows: (1) corresponding to the three
wheel–terrain interaction classes (WTICs), this paper proposes three vibration models of
lugged wheels and simplifies them to be approximated as periodic functions, showing the
difference in wheel vibration frequency and amplitude for different WTICs. Through the
dimensionless processing of the amplitude, frequency, mean, and mean square value of the
vibration acceleration, four speed-independent vibration features are extracted to reflect
the influence of the terrain on the vibration of the wheel. (2) A vibration-based WTIC recog-
nition method without requirement for training data is proposed. Results of single-wheel
test experiments show that the simple and effective method has recognized 292 samples
of 300 samples correctly, so the recognition accuracy is about 97%. (3) Corresponding to
the recognized WTIC, the terramechanics model is switched by determining whether the
parameters of the shearing deformation modulus (K) and soil cohesion coefficient © in the
model are 0. Terrain parameters in the terramechanics model are identified using the least
squares method for rovers traversing various types of terrain. Experiment results obtained
using a Planetary Rover Prototype moving on three terrain classes show that the proposed
vibration-based WTIC recognition method is effective and has recognized 411 samples
of 432 samples correctly, and the terrain parameter identification for various terrains is
also effective.

The remainder of this paper is organized as follows. Section 2 discusses the vibration
models of the wheel for different WTICs. Based on these models, speed-independent
features extracted from the vibration acceleration are described in Section 3. Section 4
presents a method for WTIC recognition by analyzing the range of vibration features for
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different WTICs. In Section 5, a method is proposed for identifying parameters of the
terramechanics model in various types of terrain. The method switches the corresponding
terramechanics model according to the recognized WTIC and then uses the model to iden-
tify terrain parameters. Section 6 discusses the experiment results of the WTIC recognition
and parameter identification for a Planetary Rover Prototype. Finally, some concluding
remarks are provided in Section 7.

2. Vertical Vibration for Lugged Wheels of Planetary Rovers
2.1. Vertical Dynamics Model of Wheel Motion

A lugged wheel can be modeled as a mass–spring–damper system shown in Fig-
ure 1 [20], which is composed of the mass mw that the wheels of the rover need to load, a
spring with a stiffness coefficient kw, and a damper with a damping coefficient cw. Here, y(t)
is the vertical output displacement, and q(t) is the base excitation, which is a time-varying
vertical displacement of the lowest point of the wheel rim. In addition, Y(jω) and Q(jω)
are the Fourier transforms of y(t) and q(t), respectively, where Y(jω) = H(jω)Q(jω). The
frequency response function H(jω) is as follows:

H(jω) = (cw jω + kw)

/(
−mwω2 + cw jω + kw

)
, (1)
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Figure 1. Model of a rigid lugged wheel traversing on any terrain.

The modulus of H(jω) can be expressed as:

|H(jω)| =

√(
1 + (2ξλ)2

)/(
(1− λ2)

2 + (2ξλ)2
)

, (2)

where ξ = cw/2
√

kwmw is the damping ratio, λ = fv/ωn is the frequency ratio, fv is
the frequency of base excitation q(t), and ωn =

√
kw/mw is the natural frequency of the

undamped free mass–spring–damper system. According to [20], |H(jω)| is approximately
equal to 1 when λ is less than 0.75.

For a lugged wheel on the rover, the spring stiffness kw is very big. The mass mw is
assumed as 29 kg, the same as the mass of Spirit rover equally distributed to each wheel. The
rover always travels at a low speed, for example, the speed of the Spirit rover is less than
50 mm/s. As a result, the natural frequency ωn is much bigger than the frequency fv of base
excitation that is an approximate periodic function for a lugged wheel, as shown later in this
paper. Therefore, λ is less than 0.75 and |H(jω)| is approximately equal to 1. Hence,

Y(jω) ≈ Q(jω), (3)

According to the properties of a Fourier transform, the following approximation can
be obtained.

y(t) ≈ q(t). (4)
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Therefore, the vertical output displacement and base excitation of the rigid lugged
wheel can be regarded as equal in value, i.e., y(t) = q(t). Thus, in the following section,
the vibration base excitations of the wheel moving on various terrain classes are analyzed
to obtain the wheel vibration output displacements.

2.2. Vibration Models for Wheels Moving on Different Terrains in Wheels’ Center Plane

Wheels with lugs parallel to the wheel axis are usually used on planetary rovers, such
as Spirit rover’s wheels. This type of wheel is studied in this paper. The vibrations of this
type of wheel result from lug motion and terrain roughness/hardness. Terrains are mainly
divided into soft and hard terrain. Both of them can be divided into low-unevenness and
high-unevenness terrain. When the planetary rover travels on different classes of terrain,
the terramechanics model is different and needs to be switched by setting the values of
terrain parameters K and c in the model. In order to determine the values of K and c, wheel–
terrain interactions are divided into three classes as shown in Figure 2: lugs entering into
soil (LEIS), all lugs contacting terrain surface (ALCT), some lugs contacting terrain surface
(SLCT). When the wheel moves on low-unevenness soft terrain and high-unevenness soft
terrain, every lug can enter into the soil. When the wheel moves on low-unevenness
hard terrain, every lug can contact the terrain surface. When the wheel moves on high-
unevenness hard terrain, the same lugs can contact the terrain surface while other lugs
cannot contact with the terrain for a wheel rotating 360◦. The terrain is classified into three
groups: the first class of terrain (T1), which corresponds to WTIC 1: ALCT, prevents each
lug from entering the soil during wheel movement, although each lug can be in contact
with the terrain. The second class of terrain (T2), which corresponds to WTIC 2: SLCT,
makes it impossible for the lugs to enter the soil during the wheel movement, and some
lugs cannot be in contact with the terrain. The third class of terrain (T3), which corresponds
to WTIC 3: LEIS, refers to the terrain when the wheels transverse it, and where the lugs
can enter the soil. The correspondence between terrain classes and the WTICs is shown in
Table 1.
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Figure 2. Wheel–terrain interaction classes (WTICs), with (a) all lugs contacting terrain surface
(ALCT), (b) some lugs contacting terrain surface (SLCT), and (c) lugs entering into soil (LEIS).

Table 1. Correspondence between terrain classes and the WTICs.

Terrain Class WTIC

T1 all lugs contacting terrain surface (ALCT)
T2 some lugs contacting terrain surface (SLCT)
T3 lugs entering into soil (LEIS)

The origin of coordinate system Σo-xy is located at the wheel center when the wheel is
stationary. The x-axis is parallel to the horizontal direction, and the y-axis is opposite the
gravity direction. Σo-xy does not move with the wheel. The angle velocity of the wheel is
ωw, l is the lug height, nl is the number of lugs, and αnl (αnl = 2π/nl) is the angle between
two adjacent lugs.
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According to the number of lugs on the wheel, the wheel can be divided into two
classes: olig-lugged and multi-lugged wheels. An olig-lugged wheel is defined as the
lugged wheel whose rim can contact the terrain surface when traversing hard terrain (HT).
A multi-lugged wheel, which is often used on rovers, is defined as the wheel equipped
with a large number of lugs that keep its rim from making contact with the terrain surface
when traversing HT.

2.2.1. Vibration Model of Wheels Moving on Flat Hard Terrain

Flat hard terrain is regarded as the reference terrain. The vertical vibration of a wheel
traversing the reference terrain is defined as the vertical reference vibration.

Figure 3 shows the movement phases for a wheel rotating around a supporting lug
on a reference terrain. Here, θ (−αnl/2 < θ ≤ αnl/2) is the angle from the direction of the
support lug to the gravity direction at the initial time when the wheel starts to move in
the anticlockwise direction, which is taken as the positive direction of the angle. At any
time, there is no more than one lug in contact with the terrain when an olig-lugged wheel
traverses the reference terrain. Assume θ is equal to αnl/2 at the initial time t1 when the
wheel starts to move. The movement of the olig-lugged wheel rotating around the support
lug can be divided into three phases. (1) Wheel center rising phase: this phase starts at
moment t1, when the support lug starts to be in contact with the terrain, until moment
t2 when the support lug is perpendicular to the terrain. The wheel center moves from
the lowest point to the highest point along the y-axis. (2) Wheel center dropping phase:
this phase starts at moment t2 until moment t3 when the wheel rim starts to be in contact
with the terrain. During this phase, the wheel center moves from the highest point to the
lowest point along the y-axis. (3) Wheel center height unchanging phase: this phase is from
moment t3 to moment t4 when the next adjacent lug starts to be in contact with the terrain.
The height of the wheel center maintains the lowest invariance.
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The wheel repeats the above movement phases with the lugs contacting the terrain in
turn. The distance hrt(t) between the lowest point of the wheel rim and the reference terrain
surface can be expressed as follows:

hrt(t) = max(0, (r + l) cos(ϕrt(t))− r). (5)
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where r is the wheel radius, l is the lug height, and ϕrt(t) is the angle between the support
lug and gravity direction at the moment t. It can be expressed as

ϕrt(t) = θ −ωwt + αnl × INT
(
(ωwt + αnl/2− θ)

/
αnl

)
. (6)

The wheel base excitation is qrt(t) = hrt(t)−min(hrt(t)) = (t). Based on
Equation (5), the vertical output displacement of the wheel is

yrt(t) = qrt(t) = max(0, (r + l) cos(ϕrt(t))− r).
(7)

For a multi-lugged wheel, the movement of the wheel rotating around the supporting
lug can be divided into wheel center rising phase and dropping phase. The wheel center
height unchanging phase, in which the wheel rim can be in contact with the terrain, does
not exist. The distance hrt(t) is as follows:

hrt(t) = (r + l) cos(ϕrt(t))− r. (8)

The output displacement of the wheel is:

yrt(t) = qrt(t) = (r + l) cos(ϕrt(t))− cos(αnl/2)(r + l). (9)

When the multi-lugged wheel traverses the reference terrain, there are no more than
two lugs in contact with the terrain, and the wheel rim cannot be in contact with the
terrain surface. Thus, (r + l) cos(ϕrt(t))− r is bigger than zero. The hrt(t) calculated using
Equation (8) is equal to hrt(t) calculated using Equation (5). Equation (8) can be regarded
as a special case of Equation (5). Whether the lugs on the wheel are olig or multi, the
output displacement for a lugged wheel traversing the reference terrain can be expressed
uniformly as follows:

yrt(t) = qrt(t) = hrt(t)−min(hrt(t)) = max(0, (r + l) cos(ϕrt(t))− r)−max(0, cos(αnl/2)(r + l)− r). (10)

2.2.2. Vibration Model of Wheels with All Lugs Contacting Terrain Surface

In an actual situation, the surface of HT is rugged, as shown in Figure 4. The class
of wheel–HT interaction is ALCT. The wheel movement on the terrain is similar to the
wheel movement on a reference terrain. The characteristics of the wheel movement are
irrelative to the state of the wheel at the initial time. Thus, this paper assumes that the lug
starts to contact the terrain at the initial moment t1. The terrain coordinate system O-XY
is located at the terrain surface. The X-axis is parallel to the horizontal direction, and the
Y-axis coincides with the y-axis. The roughness function of the terrain is expressed as g(X).
The distance h(t) between the lowest point of the wheel rim and the terrain surface is

h(t) = max(g(Sx(t)), (r + l) cos(ϕ(t)) + g(Xn)). (11)

Sx(t) = Xn − (r + l) sin(ϕ(t)). (12)

ϕ(t) = θ −ωwt + (n(t)− 1)αnl . (13)

where Sx(t) is the wheel displacement along the x-axis, n is the number of times the lugs
contact the terrain from t1 to the moment t, Xn is the position of the supporting lug on the
x-axis. {

X1 = (r + l) cos θ
Xn+1 = Xn + a1(r + l) + ωwr(ten − tsn)

. (14)

a1 = (sin(ϕ(tsn)) + sin(ϕ(ten) + αnl)). (15)
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where tsn is the moment when the supporting lug starts to depart from the terrain, and ten
is the moment when the next lug starts to contact the terrain.
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During the movement of the wheel, the position of the lug adjacent to the supporting
lug on the X-axis is

Xnl(t) =
{

Xn + (r + l)× η1(t) te(n−1) ≤ t ≤ tsn
Xn + a1(r + l) + ωwr(t− tsn) tsn ≤ t ≤ ten

. (16)

η1(t) = sin(ϕ(t))(cos αnl − 1) + cos(ϕ(t)) sin αnl . (17)

The distance between the lug adjacent to the supporting lug and the terrain surface is

h̃(t) = h(t)− h′(t). (18)

h′(t) = (r + l) cos(ϕ(t) + αnl) + g(Xnl(t)). (19)

where h′(t) is the sum of the distance between the lug adjacent to the supporting lug and
wheel center and terrain roughness of position Xnl(t) on the x-axis.

Then, n can be expressed as follows:

n(t+) =
{

INT(α(t)/αnl)× INT(h′/h) α(t) ≥ (n + 1)αnl
INT(α(t)/αnl) + INT(h′/h) α(t) < (n + 1)αnl

. (20)

α(t) = ωwt + αnl/2− θ. (21)

where t+ is the moment next to t, and n(0) is equal to 1. The vertical displacement of the
wheel is

y(t) = q(t) = h(t)−min(h(t)). (22)

For a multi-lugged wheel,

Xnl(t) = Xn + (r + l)× η1(t). (23)

h(t) = (r + l) cos(ϕ(t)) + g(Xn). (24)

hrt(t) = (r + l) cos(ϕrt(t))− r. (25)
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When a multi-lugged wheel traverses HT, since the wheel rim does not contact the
terrain, tsn is equal to ten and (r + l) cos(ϕ(t))+ g(Xn) is bigger than g(Sx(t)). Thus, the h(t)
calculated using Equation (24) is equal to h(t) calculated using Equation (11). Equation (24)
can be regarded as a case of Equation (11). Whether the lugs on the wheel are olig or multi,
the output displacement for a lugged wheel traversing HT can be expressed uniformly
using Equation (22) with h(t) in Equation (11).

2.2.3. Vibration Model of Wheels with Some Lugs Contacting Terrain Surface

In WTIC 2, SLCT, for example, when the wheel moves on gravel terrain (GT), as shown
in Figure 5, the lugs will contact gravel during the movement of the wheel. This leads to
some of the lugs hanging in the air without contact with the terrain surface or gravel. The
angle between two adjacent supporting lugs is no greater than 90◦. The distance between
the top point of the i-th lug (lui), which will be in contact with the terrain, and the terrain
surface is determined as follows:

h̃n+i(t) = h(t)− h′n+i(t) + r. (26)

h′n+i(t) = (r + l) cos(ϕ(t) + iαnl) + g
(

X(n+i)l(t)
)

. (27)

where X(n+i)l(t) is the position of the i-th lug (lui), which will be in contact with the terrain
on the X-axis.
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Moreover, the wheel rim may contact the gravel and no lug will be in contact with the
terrain some of the time. The minimum distance between the wheel rim and terrain surface
is as follows:

h̃w(t) = h(t)− h′w(t) + r. (28)

h′w(t) = max
−r≤xw≤r

(√
r2 − xw2 + g(Sx(t)− xw)

)
. (29)

where Sx(t) is the displacement of the wheel center along the X-axis, xw is the position of a
point on the wheel rim relative to the wheel center along the x-axis. X(n+i)l(t) and Sx(t)
can be calculated using the following equations.

X(n+i)l(t) =
{

Xw + xli(t) h′max = h′w(t) = h(t)
Xn + ηi(t)(r + l) h′max 6= h′w(t) or h′max = h′w(t) 6= h(t)

. (30)
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Sx(t) =
{
−r sin(ϕ(t)− αw(t)modαnl) + Xw h′max = h′w(t) = h(t)
Xn − (r + l) sin(ϕ(t)) h′max 6= h′w (t)or h′max = h′w(t) 6= h(t)

. (31)

h′max = max
(
h(t), h′n+1(t), h′n+2(t), . . . , h′n+m/4(t), h′w(t)

)
. (32)

ηi(t) = sin(ϕ(t))(cos iαnl − 1) + cos(ϕ(t)) sin iαnl . (33)

xli(t) = (r + l) sin(ϕ(t) + iαnl)− r sin(ϕ(t) + αw(t)modαnl). (34){
X0 = (r + l) cos θ
Xn+1 = Xnl(ten)

. (35)

αw(t) = arcsin(xwmax0/r)− arcsin((Xn − Sx(t))/(r + l)). (36)

Xw = Sx(t) + xwmax0. (37)

xwmax0 = argmax
xw

(
h′w(t)

)
. (38)

where xwmax0 is the value of xw that maximizes h′w(t) at moment t. The number of wheel
lugs in contact with the terrain can be expressed as{

iff INT(max(h′n+1(t), h′n+2(t), . . . , h′n+m/4(t), h′w(t))/h(t)) = 1∨
max(h′n+1(t), h′n+2(t), . . . , h′n+m/4(t), h′w(t)) = h′n+i(t)

⇒ n(t+) = n(t) + i{
iff INT(max(h′n+1(t), h′n+2(t), . . . , h′n+m/4(t), h′w(t))/h(t)) = 1∨
max(h′n+1(t), h′n+2(t), . . . , h′n+m/4(t), h′w(t)) = h′w(t)

⇒ n(t+) = n(t) + INT(αw(t)/αnl)

. (39)

where t+ is the moment next to t, h′n+i(t) is the sum of the distance between the i-th lug
(lui) and wheel center and terrain roughness of position X(n+i)l(t) on the x-axis, and m is
the number of lugs. The distance h(t+) is

h
(
t+
)
=

{
r cos(ϕ(t+)− αw(t+)modαnl) + g(Xw)− r h′max = h′w(t) = h(t)
(r + l) cos(ϕ(t+)) + g(Xn)− r h′max 6= h′w(t) or h′max = h′w(t) 6= h(t)

. (40)

The distance h(0) between the wheel rim and terrain surface at the initial moment
t = 0 is equal to max(g(Sx(0)), (r + l) cos(ϕ(0)) + g(X0)). The vertical displacement of the
vibration output is

y(t) = q(t) = h(t)−min(h(t)). (41)

When a multi-lugged wheel moves on GT, some lugs will not be in contact with the
surface. Thus, the vertical displacement of the multi-lugged wheel can also be expressed as
Equation (41).

2.2.4. Vibration Model of Wheels with Lugs Entering the Soil

In WTIC 3: LEIS, the lugs enter into the soil during wheel movement, for example,
when a wheel traverses through sandy terrain (ST), as shown in Figure 6. To facilitate an
analysis of the vertical output displacement, assume that a lug starts to enter the soil at the
initial moment of the wheel movement. The distance h(t) between the lowest point of the
wheel rim and the terrain surface can be expressed as follows:

h(t) = r− (r + l) cos(β−ωwt)− yl(t)− (r + l) cos(β). (42)

where yl(t) is the position of the top point on the lug starting to enter the soil on the
y-axis, β is the angle between the lug starting to enter the soil and gravity direction. The
positions of the top points on two adjacent lugs on the y-axis are expressed as yl1(t)
and yl2(t), respectively. They have the relationship yl2(t) = yl1(t − αnl/ωw) when the
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wheel–terrain interaction condition, including the terrain properties, slip ratio of the wheel,
angular velocity of the wheel, load of the wheel, and so on, remains unchanged. Thus,
the position of the top points on the frontmost lug in soil on the y-axis at moment t is
y f l(t) = yl(t− INT((ωwt)/αnl)× αnl/ωw). It can be used to calculate the distance h(t) at
moment t. Therefore,

h(t) = r− (r + l) cos(β−ωwt + INT((ωwt)/αnl)× αnl)− yl(t− INT((ωwt)/αnl)× αnl/ωw)− (r + l) cos(β). (43)
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According to Equation (43), h(t) is a periodic function with the period αnl/ωw. The
value of h(t) (shown in Figure 7a) for an olig-lugged wheel moving on ST varies as follows
during the entire process. When the lug starts to contact the terrain at moment t1, it
decreases until moment t2 when the lug is parallel to the y-axis and reduces to the minimum.
Subsequently, h(t) increases until moment t3 when the lug departs from the soil and reaches
the maximum. Then, it remains constant until the next lug contacts the terrain at moment
t4. For a multi-lugged wheel, there is more than one lug excavating the soil at the same
time. The value of h(t) varies as shown in Figure 7b during the wheel movement. When the
lug starts to contact the terrain at moment t1, h(t) decreases until moment t2 when there
is one lug in the soil along the y-axis direction and reduces to minimum. Subsequently,
h(t) increases until moment t′3 when there are two adjacent lugs symmetrically about the
gravity direction and reaches the maximum. Then, it decreases again until the next lug
contacts the terrain at moment t4.
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Figure 7. The distance h(t) between wheel rim’s lowest point and terrain surface, (a) when an
olig-lugged wheel moves on ST, (b) when a multi-lugged wheel moves on ST. The black solid line
represents the acceleration signal, the red dashed line represents the time point, and the black dashed
line represents the coordinate grid.
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The output displacement of the wheel is

y(t) = q(t) = h(t)−min(h(t)). (44)

2.3. Simplification of Vibration Outputs for Wheels Traversing Different Terrains

The vibration models built in Equations (22), (41), and (44) are too complex to analyze
the vibration characteristics, thus they need to be simplified. For ALCT, it is known from
Equation (20) that the amounts of time each lug contacts the terrain surface is not equal and
is influenced by the waves of the terrain. The amplitude of y(t) is slightly larger than that
for the wheel traversing the reference terrain surface. However, when the wheel rotates
360◦ on T1 and reference terrain with the same angular velocity, the amount of time and
the number of times of the lugs contact the terrain are the same. Therefore, the time of each
lug contacting the terrain can be regarded as approximately the same. In addition, y(t) can
be regarded as a periodic function whose amplitude is variable. Compared with the output
yrt(t) of the reference vibration, y(t) can be expressed as follows:

y(t) = C1
M(t)×max(0, (r + l) cos(ϕrt(t))− r)− C1

M(t)×max(0, cos(αnl/2)(r + l)− r). (45)

where C1
M(t) (C1

M ≥ 1) indicates the increase in the amplitude of y(t) caused by the terrain
roughness compared to the amplitude of yrt(t).

For SLCT, the amplitude of y(t) is much bigger than yrt(t) for the wheel traversing
reference terrain. The number of contact times between wheel and terrain will be less than
the number of lugs when the wheel rotates 360◦. So, the frequency of y(t) is lower than
nlωw/2π. The output displacement y(t) of the wheel can be expressed as follows:

y(t) = C2
M(t)×max(0, (r + l) cos(ϕ(t))− r)− C2

M(t)×max(0, cos(αnl/2)(r + l)− r) (46)

ϕ(t) = θ −ωwt + αnl × INT((ωwt + αnl/2− θ)/αnl)× C f (t). (47)

where Cf(t) (Cf(t) > 1) indicates the frequency reduction of y(t) incurred by the terrain
roughness when compared to the frequency of yrt(t) for the reference terrain. In addition,
C2

M(t) (C2
M � 1) indicates the increase in the amplitude of y(t) caused by the terrain

roughness compared to the amplitude of yrt(t).
For LEIS, every lug can contact the terrain. According to Equations (43) and (44),

the frequency of y(t) is nlωw/2π, equal to the frequency of yrt(t). The amplitude of y(t) is
smaller than yrt(t) for the wheel traversing reference terrain. Compared with the output
yrt(t) of the reference vibration, y(t) can be expressed as

y(t) = C3
M(t)×max(0, (r + l) cos(ϕrt(t))− r)− C3

M(t)×max(0, cos(αnl/2)(r + l)− r). (48)

where C3
M(t) (C3

M(t) < 1) indicates the decrease in the amplitude of y(t) incurred from the
lug entering the soil when compared to the amplitude of yrt(t).

Equations (45), (46), and (48) show that the amplitude of y(t) is independent of the
angular velocity of the wheel. The value of y(t), which can be approximated as a periodic
function, can be expressed as follows:

y(t) = ỹ(t) + Cy = Cy0 +
∞

∑
i=1

Cyi cos(i fat− ϕi) + Cy. (49)

where fa is the frequency of output displacement for the vertical vibration, ϕi is the phase
angle of the i-th harmonic, and Cy is the constant of y(t) and is equal to −min(h(t)).

3. Analysis and Extraction of Statistical Vibration Features Independent of the
Wheel Velocity

It is difficult to measure vertical displacement of a wheel during movement, whereas
vertical acceleration of the wheel is easy to obtain. Therefore, the vibration features of the
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wheels are extracted from the vertical acceleration signal. The vibration acceleration signal
is often described by its statistical features such as mean square value, maximum value,
kurtosis, and so on. These statistical features are proportional to wheel speed. If a rover
moves on low-unevenness terrain at a high speed, the values of statistical features may be
close to that for a rover moving on high-unevenness terrain at a low speed. This can cause
low-unevenness terrain to be classified as high-unevenness terrain. In order to solve this
problem, new speed-independent features are proposed in this paper.

3.1. Extraction of Vibration Features Independent of Wheel Velocity

According to the wheel’s vertical vibration displacement y(t) in Equation (49),
its vertical vibration acceleration can be expressed as ay(t) =

..
y(t) = ωw

2(Cy − y
)
=

−ωw
2
(

Cy0 +
∞
∑

i=1
Cyi cos(i fat− ϕi)

)
(where Cy is a constant component of y). The vertical

vibration acceleration of the wheel can be regard as an approximate period signal, for
example, the vertical acceleration of the wheel is an approximate period signal as shown
in Figure 8 when the wheel moves on ST. The Fourier-series expansion of a periodic
acceleration signal is described as follows:

ay(t) = C0 +
∞

∑
i=1

Ci cos(i fat− ϕi). (50)

where Ci is the amplitude of the i-th harmonic.
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Figure 8. Sample of vibration acceleration when a wheel moves on ST.

According to the analysis in Section 2, the changing of wheel–terrain interaction class
changes the frequency and amplitude of the vertical vibration acceleration signals of a
wheel. The vertical reference acceleration is defined as the vertical acceleration of a wheel
when it traverses the reference terrain. Therefore, the vertical reference acceleration can be

expressed as ayrt(t) =
..
yrt(t) = −ωw

2
(

Cyrt0 +
∞
∑

i=1
Cyrti cos(i fartt− ϕi)

)
.

Four statistical features are dimensionlessly processed to be independent of wheel
speed. They are as follows:

(1) The frequency ratio of the vertical vibration acceleration for a wheel traversing an
actual terrain and the reference terrain is described as

κ f = fa
/

fart =
(
2π
/

nLωw
)/(

2π
/

nLωw

/
C f (t)

)
= C f (t). (51)

where fa is the frequency of the vertical vibration acceleration for wheels traversing ac-
tual terrains with angular velocity ωw, and fart is the frequency of the vertical vibration
acceleration for wheels traversing reference terrain with the same angular velocity ωw.

The value of κf is equal to the average value of Cf(t). It is independent of the angular
velocity, velocity, and slip ratio of the wheel since Cf(t) is independent of those motion
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parameters. The value of κf is directly proportional to the frequency of the wheel in contact
with the terrain. According to Section 2, the frequency of the vibration signal is appropri-
ately equal to the quotient of the number of times the wheel contacts the terrain divided by
the cost time when the wheel rotates 360◦. According to Equations (45), (46), and (48), κf is
equal to 1 for LEIS and ALCT, and κf is smaller than 1 for SLCT.

(2) The ratio of the sum of all harmonic amplitudes in Equation (50) for a wheel
traversing an actual terrain and the reference terrain is described as

κA = Aa/Aart= ∑ ωw
2Cyi/∑ ωw

2Cyrti = ∑ Cyi

/
∑ Cyrti. (52)

where Aa is the sum of all harmonics’ amplitudes of the vertical vibration acceleration
for wheels traversing actual terrains with angular velocity ωw, and Aart is the sum of all
harmonics’ amplitudes of the vertical vibration acceleration for wheels traversing reference
terrain with the same angular velocity ωw.

The κA is independent of the angular velocity, velocity, and slip ratio of the wheel
because Cyi and Cyrti are independent of those motion parameters. The κA is relative to the
stiffness and roughness of the terrain. It is directly proportional to the terrain roughness for
terrain that does not cause the wheel to sink and inversely proportional to wheel sinkage
for terrain that causes the wheel to sink. For ALCT, κA is slightly greater than 1. For SLCT,
κA is much greater than 1. For LEIS, κA is less than 1.

(3) The mean value ratio of vertical vibration acceleration for a wheel traversing an
actual terrain and the reference terrain is described as follows:

κmv = va/vart =
(

ωw
2Cy0

)/
ωw

2Cyrt0 = Cy0

/
Cyrt0. (53)

where va is the mean value of the vertical vibration acceleration for wheels traversing
actual terrains with angular velocity ωw, and vart is the mean value of the vertical vibration
acceleration for wheels traversing reference terrain with the same angular velocity ωw.

Due to Cy0 and Cyrt0 being independent of the wheel’s angular velocity, velocity, and
slip ratio, the κmv is independent of those motion parameters. It indicates intensity of the
vertical speed change.

(4) The mean square ratio of the vertical vibration acceleration for a wheel traversing
an actual terrain and the reference terrain is described as follows:

κms = sa/sart=
(

ωw4ay2(t)
/

ωw4
)/(

ωw4arty2(t)
/

ωw4
)
=
(

ay2(t)
/

ωw4
)/(

arty2(t)
/

ωw4
)

. (54)

where va is the mean square value of the vertical vibration acceleration for wheels traversing
actual terrains with angular velocity ωw, and vart is the mean square value of the vertical vi-
bration acceleration for wheels traversing reference terrain with the same angular velocity ωw.

The value of κms is independent of the wheel’s angular velocity, velocity, and slip ratio
because the numerical value of ay

2(t)/ωw
4 is independent of those motion parameters.

The κms is relative to the stiffness and roughness of the terrain, similar to κA. It can reflect
the variation in speed of the signal from the minimum to the maximum value. It is the
powerfulness of vibration energy. For ALCT, κms is slightly greater than 1. For SLCT, κms is
much greater than 1. For LEIS, κms is smaller than 1.

3.2. Analysis of Vibration Features Based on a Single-Wheel Experiment

Experiments were conducted using the wheel–terrain interaction test platform with an
accelerometer used to collect the vertical acceleration of a wheel, as shown in Figure 9a. The
three motors on the platform are the driving, turning, and dragging motors, and the sensors
on the platform include the torque, displacement, and six-axis force/torque sensor. The
driving motor drives the wheel forward, and the dragging motor is used to simulate the
body movement of the rover. A wheel moving with different slip ratios can be controlled by
regulating the two motors at different rotational speeds. The displacement sensor is used
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to measure wheel sinkage. A counterweight is used to adjust vertical load of the wheel,
whereas the actual load is measured using the six-axis force/torque sensor. The radius of
the wheel is 140 mm and its width is 150 mm. A wheel with 28 lugs of 15 mm in height
is shown in Figure 9b. The vertical load of the wheel is 100 N. For each terrain class, the
velocities of the wheel are 10, 14, and 20 mm/s, and the slip ratio of the wheel is 0–0.4.
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Figure 9. Experimental equipment, (a) is the wheel–soil interaction test platform and (b) is the
experimental wheel.

The Mars terrain mainly includes hard, sandy, and gravel surfaces [3]. Rovers need to
safely traverse those terrains. Motivated by the challenges of rover mobility, HT, GT, ST,
hard terrain with gravel (HGT), and sandy terrain with gravel (SGT) were chosen for the
experiment, as indicated in Figure 10. HT is made up of hard slate, GT is constructed with
a pile of gravel, ST is sand, HGT is formed by placing gravel randomly on slate, and SGT is
sand with a small amount of gravel with a random distribution.
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Figure 10. Five terrain classes: (a) HT, (b) GT, (c) ST, (d) HGT, and (e) SGT.

The wheel–HT interaction pertains to ALCT, wheel–GT/HGT interaction pertains
to SLCT, and wheel–ST/SGT interaction belongs to LEIS. Figure 11 shows the extraction
results for the vibration features. The values of the vibration features are expressed as a
fuzzy set {Small (S), Medium (M), Big (B), Very-Big (VB)}. Table 2 shows a comparison of all
vibration features for three WTICs. The vibration features extracted to constitute feature
vector P for WTIC recognition are {p1, p2, p3, p4} (p1 = lg(κf), p2 = lg(κA), p3 = lg(κmv), and
p4 = lg(κms)) According to P, each WTIC can be distinguished from the others.
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Table 2. The comparison of all vibration features for different WTICs.

Vibration Features
WTIC

ALCT SLCT LEIS

p1 = lg(κf) M S M
p2 = lg(κA) M B S
p3 = lg(κmv) MB VB MB
p4 = lg(κms) M VB S

Feature vector {p1, p2, p3, p4} {M, M, MB, M} {S, B, VB, VB} {M, S, MB, S}
Annotation: MB = S∪B.

4. Recognition of Wheel–Terrain Interaction Class Based on Speed-Independent
Vibration Features

Every WTIC has a suitable terramechanics model. Based on WTIC recognition, the
terramechanics model can be correspondingly selected for identifying terrain parameters.
A vibration-based speed-independent WTIC recognition method without requirement of
training data is introduced in this section.

4.1. Analysis of Feature Space of the Four Speed-Independent Features

It can be known from Table 2 that the WTIC can be distinguished according to its
vibration features’ values. The regions of feature space formed by the vibration features
for three WTICs can be partitioned as shown in Figure 12. The value ranges of feature
vector P for three WTICs can be known from the analysis of Section 3.2. When the WTIC
is ALCT, κf is approximately equal to 1, and κA and κms are slightly bigger than 1. Thus,
p1 is approximately equal to 0, and p2 and p4 are slightly bigger than 0. As every lug is in
contact with the terrain, there are upper limits for p2 and p4. The experiment results show
that p3 is also slightly greater than zero. The feature vector P for ALCT (such as wheel–HT
interaction) is located within the vicinity of zero. The vicinity of zero is expressed as {p1, p2,
p3, p4|lgεfl < p1 < lgεfu, lgεAl < p2 <lgεAu, lgεmvl < p3 <lgεmvu, lgεmsl < p4 < lgεmsu}, where εfl,
εAl, εmvl, and εmsl are the lower limits for κf, κA, κmv, and κms respectively, and εfu, εAu, εmvu,
and εmsu are the upper limits for κf, κA, κmv, and κms, respectively.
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According to the analysis of Section 3.2, when the WTIC is SLCT, κf is smaller than 1,
and κA and κms are greater than 1. The feature vector P for SLCT (such as wheel–HGT/GT
interaction) is located in the region {p1, p2, p3, p4 | p1 < lgεfl, lgεAu < p2, lgεmvu < p3, lgεmsu < p4}.
When WTIC is LEIS, κf is approximately equal to 1, and κA/κms are smaller than 1. The
feature vector P for LEIS (such as wheel–ST/SGT interaction) is in the region {p1, p2, p3,
p4 | lgεfl < p1 < lgεfu, p2 < lgεAl, lgεmvl < p3 <lgεmvu, p4 < lgεmsl}. If P is not located in the
above three regions, the corresponding WTIC is classified as an unknown wheel–terrain
interaction class (UWTIC).

4.2. Analysis of Feature Vector P for the All Lugs Contacting Terrain Surface within the Vicinity
of Zero

Owing to the wheels used on the rover all being multi-lugged, the analysis in this
section is conducted without considering olig-lugged wheels. When the WTIC is ALCT,
the supporting lug of the wheel must depart from the terrain before the adjacent lug along
the y-axis. When lug lu1 contacts the terrain after lug lu0 along the y-axis and departs
from the terrain before the adjacent lug lu2 along the y-axis, as shown in Figure 13, the
vibration displacement caused by lu1 has the highest amplitude in this case. When lu1 is
along the y-axis, the distance h(t) between the lowest point of the wheel and the terrain
is l. The distance h(t) calculated using lu1 is (r + l) cos(αnl)− r at the moment when lug
lu2 is along the y-axis. The amplitude of the vibration output displacement caused by
rotating around lu1 is (r + l)(1− cos(αnl)). Thus, to make every lug have contact with the
terrain, the amplitude of the vibration output displacement caused by rotating around
each lug is no bigger than (r + l)(1− cos(αnl)). The amplitude of the reference vibration
displacement is (r + l)(1− cos(αnl/2)). Therefore, C1

M(t) in Equation (45) is no bigger
than (1− cos(αnl))/(1− cos(αnl/2)). The following in equalities can be obtained based on
Equations (52) and (54).

κA ≤ (1− cos(αnl))/(1− cos(αnl/2)). (55)

κms ≤ (1− cos(αnl))
2
/
(1− cos(αnl/2))

2
. (56)
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Figure 13. The wheel–terrain interaction case in which vibration displacement caused by lu1 has the
biggest amplitude.

Thus, the following equations can be obtained:

εAu = (1− cos(αnl))/(1− cos(αnl/2)). (57)

εmsu = (1− cos(αnl))
2
/
(1− cos(αnl/2))

2
. (58)

The parameters εfl, εmvl, εfu, and εmvu are influenced by the noise and accelerometer
properties including the sampling frequency and precision. In this study, εfl = 1 − εf,
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εfu = 1 + εf, εf is set as 0.15, εmvu is set as 10, and the lower limits of εAl, εmvl, and εmsl are 0.5.
Therefore, the range of the feature vector P for the ALCT is as follows:

lg
(

1− ε f

)
≤ p1 ≤ lg

(
1 + ε f

)
lgεAl ≤ p2 ≤ lg

(
(1− cos(αnl))

/
(1− cos(αnl/2))

)
lgεmvl ≤ p3 ≤ lg(εmvu)

lgεmsl ≤ p4 ≤ lg
(
(1− cos(αnl))

2
/
(1− cos(αnl/2))

2
) . (59)

4.3. Recognition of Wheel–Terrain Interaction Class Based on Vibration Features

According to the value of feature vector P, the WTIC can be recognized. If P satisfies
Equation (59), the WTIC is ALCT. According to the analysis in Section 4.1, the value ranges of
feature vector P for SLCT and LEIS are expressed as Equation (60) and Equation (61), respectively.

p1 < lg
(

1− ε f

)
lg
(
(1− cos(αnl))

/
(1− cos(αnl/2))

)
< p2

lgεmvu ≤ p3

lg
(
(1− cos(αnl))

2
/
(1− cos(αnl/2))

2
)
< p4

. (60)


lg
(

1− ε f

)
≤ p1 ≤ lg

(
1 + ε f

)
p2 < lgεAl
lgεmvl ≤ p3 ≤ lg(εmvu)
p4 < lgεmsl

. (61)

If P is not located within the above three regions, the corresponding WTIC is UWTIC.
The programming for WTIC recognition is shown in Figure 14. Table 3 shows the WTIC
recognition results for the single-wheel test experiments.

Table 3. WTIC recognition results of 300 samples for the single-wheel test experiments.

Actual WTIC
Recognized WTIC

ALCT SLCT LEIS UWTIC

ALCT (wheel–HT interaction) 58 0 0 2
SLCT (wheel–GT/HGT interaction) 0 118 0 2
LEIS (wheel–ST/SGT interaction) 0 0 116 4

The accuracy of the WTIC categorization into the three classes is no less than 96.67%.
These results show the ability of the algorithm to distinguish WTICs. When attempting
to identify ALCT, the algorithm misclassifies 2 samples of 60 samples as UWTIC, and the
recognition accuracy reaches 96.67%. When recognizing SLCT, 2 samples of 120 samples
are misclassified as UWTIC, and the recognition accuracy is about 98.34%. Similarly, when
recognizing LEIS, 4 samples of 120 samples are misclassified as UWTIC, and the recognition
accuracy is approximately 96.67%. The three WTICs are not mutually misclassified. This
clearly demonstrates the ability of the algorithm to identify WTICs that induce clearly
distinct vibrations on the wheel.
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Figure 14. Flow chart for recognition of wheel–terrain interaction class.

5. Estimation of Terrain Properties Based on the Recognition of Wheel–Terrain
Interaction Class

The WTICs can be recognized using the algorithm shown in Figure 14. The terrame-
chanics model is switched corresponding to the recognized WTIC and then used to identify
the terrain parameters in this section.

5.1. Switchable Terramechanics Model

Yang et al. [19] inferred that the terramechanics models for wheels moving on sand and
hard terrain can be similarly expressed, and the parameters of sand and hard terrain can
be unified. The terramechanics model equations for wheel–ST interaction can be switched
to the equations that have the same form as the Hunt–Crossley contact model by setting
the shearing deformation modulus K and soil cohesion c as zero. It can be used for the
interaction between a rigid wheel and hard terrain.

The normal force FN, drawbar pull FDP, and resistance moment MR between the wheel
and soil can be expressed as follows:

FN = rb(A + BE tan ϕ)kszN + rbcBE. (62)

FDP = rb(AE tan ϕ− B)kszN + rbcAE. (63)

MR = r2bcCE + r2bCE tan ϕkszN . (64)

where r is the wheel radius; b is the wheel width; z is the wheel sinkage, i.e., deformation of
the terrain; c is the soil cohesion; ϕ is the internal friction angle of the soil; N is the sinkage
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exponent (N = n0 + n1s); ks is expressed as ks = kc/b + kϕ (where kc is the cohesive modulus
of the soil and kϕ is frictional modulus of soil); and A, B, and C are as follows:

A = cos θm−cos θ2
θm−θ2

+ cos θm−cos θ1
θ1−θm

B = sin θm−sin θ2
θm−θ2

+ sin θm−sin θ1
θ1−θm

C = θ1−θ2
2

. (65)

where θ1 (θ1 = arccos(1-z/r)) is the entrance angle, θm (θm = (c1 + c2s)θ1) is the angle of the
maximum stress, θ2 (θ2 = c3θ1) is the departure angle, and c1, c2, and c3 are the coefficients
of wheel–soil interaction angle. The parameter E is expressed as follows:

E = 1− exp(−j(θm)/K). (66)

where K represents the shearing deformation modulus, and j is the shearing displace-
ment. When the wheel contacts hard terrain, the terrain has no shearing deformation.
Thus, K is equal to zero. In addition, c can be set to zero according to Yang et al. [19].
Equations (62)–(64) are as follows:

FN = rb(A + B tan ϕ)kszN = kzN . (67)

FDP =
A tan ϕ− B
(A + B tan ϕ)

FN = µFN . (68)

MR = r
C tan ϕ

A tan ϕ− B
FDP = λcrFDP. (69)

For interaction between the wheel and hard terrain, θ1 tends toward zero, and thus
the coefficient of friction µ tends toward tan ϕ. The parameter λc is the coefficient used
to balance the driving torque. When the parameters K and c are appropriately assigned,
the terramechanics model can be used for a rover traversing hard terrain. Therefore,
the terramechanics model for wheel–ST interaction can be switched to be suitable for
wheel–HT interaction.

5.2. Unified Identification Model for Terrain Parameters

Let X = tan ϕE, Y = rbkszN , and Q = rbcE; the following equation can be obtained:

 FN
FDP
MR

 =

A 0 B B
0 −B A A
0 0 rC rC




X
Y

XY
Q

. (70)

Therefore,
XY + Q = MR/(rC). (71)

Y = (rCFN − BMR)
/
(rCA). (72)

FDP = AY + B(XY + Q) =
A2 + B2

AC
MR

r
− B

A
FN . (73)

W = FN = AY + B(XY + Q) = ArbkszN +
B
C

MR
r

. (74)

TD = MR = r2CE[bc + FN tan ϕ/(rA)]/[1 + BE tan ϕ/A]. (75)

where W and TD are the wheel load and driving torque of the motor, respectively.
Equations (73)–(75) are a decoupled terramechanics model regarding unknown terrain pa-
rameters Ks, n0, n1, c1, c2, c, ϕ, and K, which can be used for terrain parameter identification.
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5.3. Identification of Terrain Parameters Based on Terramechanics Model Switching

Table 4 shows the correspondence between WTICs and setting values of terrain pa-
rameters for terramechanics model switching. WTIC recognition is used to judge whether
some parameters should be set to zero to achieve terramechanics model switching. If the
WTIC is ALCT, c is set to zero, K is set to zero, E is set to 1. This is because there is no
shear deformation or backward accumulation of the soil for ALCT. GT is a typical terrain
pertaining to T2 (wheel–T2 interaction is SLCT). When the wheel traverses GT, gravel will
move slightly backward and accumulate, which is far less than the accumulation degree of
sand. Thus, if the WTIC is SLCT, according to [19], c is set to zero.

Table 4. Correspondence between terrain class and setting values of terrain parameters for terrame-
chanics model switching.

WTIC
Terrain Parameters

Soil Cohesion c Shearing Deformation Modulus K

ALCT 0 0
SLCT 0 Without setting value
LEIS Without setting value Without setting value

The sinkage and slip ratio of the wheel are necessary parameters for identification of
the terrain parameters in the terramechanics model. Wheel sinkage can be detected using
machine vision methods or through a kinematic analysis of the rover suspension [21,22].
When WTIC is not LEIS, sinkage is set as 0.01mm for terrain parameter identification.
The wheel slip ratio can be estimated using a machine vision method [23]. The vertical
load W, driving torque TD, and drawbar pull FDP can be measured by installing a six-axis
force/torque sensor on the wheel [18].

According to Equation (73), FDP is a function of W, TD, θ1, s, and the unknown
parameters c1 and c2. Here, c1 and c2 can be identified according to the measured FDP,
W, TD, θ1, and s. According to Equation (74), W is a function of TD, θ1, z, s, identified
parameters c1 and c2, and unknown parameters Ks, n0, and n1. The three parameters Ks, n0,
and n1 can be identified using the measured W, TD, θ1, z, s, and identified c1, c2. According
to Equation (75), TD is a function of W, θ1, s, identified parameters c1 and c2, and unknown
parameters c, ϕ, and K. Parameters c, ϕ, and K can be identified using the measured W, TD,
θ1, s, and identified values of c1 and c2.

The least squares method is used to achieve identification for unknown terrain param-
eters. When identifying c1 and c2, xe denotes the parameter vector {c1, c1} to be identified;
xdata denotes the input data vector {s, FN, TD}; ydata denotes the measured FDP; m denotes
the length of xdata and ydata; and F denotes the function of Equation (73). When identifying
Ks, n0, and n1, xe denotes the parameter vector {Ks, n0, n1} to be identified; xdata denotes
the input data vector {s, TD}; ydata denotes the measured FN; and F denotes the function of
Equation (74). When identifying c, ϕ, and K, xe denotes the parameter vector {c, ϕ, K} to be
identified; xdata denotes the input data vector {s, FN}; ydata denotes the measured TD; and
F denotes the function of Equation (75). The ultimate goal is to find the vector xe that best
fits Equation (76):

min
xe

1
2
‖F(xe, xdata)− ydata‖ = 1

2

m

∑
i=1

[F(xe, xdatai)− ydatai]
2. (76)

Figure 15 shows the programming of the terrain parameter identification for different
types of terrain.
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6. Experiments for Wheel–Terrain Interaction Class Recognition and Terrain Parameter
Identification Using a Planetary Rover Prototype

The method proposed in this paper is experimentally validated using a six-wheeled
Planetary Rover Prototype. The collected vibration acceleration of the wheel is used to
recognize the WTIC. WTIC recognition guides the rover to switch the terramechanics
model for identifying terrain parameters in the model using the algorithm shown in
Figure 15. The results for the WTIC recognition and identification of terrain parameters in
the terramechanics model are discussed in this section.

6.1. Introduction of Planetary Rover Prototype and Terrain Environment

The Planetary Rover Prototype is shown in Figure 16. An accelerator mounted on the
front left leg of the rover, near the joint with the wheel axle, is used to collect the vertical



Sensors 2023, 23, 9752 23 of 32

acceleration of the wheel to study the vibration-based WTIC recognition. A camera is used to
monitor the robot’s wheel and detect the wheel sinkage and slip ratio. The camera is mounted
on a supporting arm, with three moving degrees of freedom (DOFs) and three rotational
DOFs, installed on the robot body. A gyroscope is attached to the camera to detect the rotation
angle of the camera. The position of the camera can be acquired with the relation of the arm
and robot body. Every wheel is equipped with a six-axis force/torque sensor to detect the
drawbar pull force FDP, vertical load W (equal to normal force FN), lateral force FL, driving
moment TD, steering moment MS, and overturning moment MO. The radius of the wheel is
155 mm and its width is 150 mm. The wheel has 24 lugs of 10 mm in height.
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Figure 16. Planetary Rover Prototype.

Three different surfaces were selected for the experiments: GT, HT (tiled with stone
bricks), and ST, as shown in Figure 17. HT pertains to terrain T1, GT pertains to terrain T2,
and ST pertains to terrain T3. As such, they represent a wide range of hardnesses from soft
to hard, and a roughness ranging from flat to rugged, thus better illustrating the overall
accuracy of the methods presented.
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6.2. Recognition of Wheel–Terrain Interaction Class for Planetary Rover Prototype

On each of the terrain surfaces, the rover drove back and forth thrice at a constant
velocity of 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, and 0.01 m/s. During the rover
movement, 32-bit vibration acceleration samples were collected using the accelerator shown
in Figure 14 at a frequency of 128 kHz. The signal is processed by down-sampling and
low-pass filtering to extract vibration features. Figures 18 and 19 show the vibration signal
samples for three classes of terrain. Once the single-terrain datasets were collected, multi-
terrain datasets were collected with the rover driving from ST to HT to GT in a single
traversal, both forward and reverse.

A single dataset consists of vibration data from an about 55 s traversal period. The
acceleration signals are segmented with 15 s long intervals to recognize WTIC. Table 5
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show the results for the WTIC recognition of single-terrain datasets. They demonstrate
an excellent performance of the WTIC recognition method proposed in this paper in dis-
tinguishing the WTICs. The results show that 133 samples of 144 wheel–HT interaction
(which belongs to ALCT) are recognized as ALCT, and the recognition accuracy reaches
92.36%. Ten samples of wheel–GT interaction (which belongs to SLCT) are misclassified
as UWTIC, i.e., 93.06% of the wheel–GT interactions are classified as SLCT. All wheel–ST
interaction samples are recognized as LEIS, and the accuracy attains 100%. No misiden-
tification occurred among the three WTICs. The results show that the WTIC recognition
algorithm has a high level of accuracy and can effectively distinguish the WTICs.
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Figure 18. Down-sampled acceleration signals when a wheel traverses (a) ST, (b) HT, and (c) GT.
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entire movement, the Planetary Rover Prototype operates for a total of 315 s, thus, the 
acceleration is divided into 21 segments for WTIC recognition. The segmentation is shown 
in the dotted square in Figure 18, and the WTIC recognition results are represented by the 
mark at the bottom of the block. These results clearly show the effectiveness of the algo-
rithm in recognizing multiple WTICs during a single traversal. This figure also illustrates 
the most common error mechanism of the algorithm, which occurs when the rover tran-
sitions between homogenous terrain regions. 
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Figure 19. Low-pass-filtered acceleration signals when a wheel traverses (a) ST, (b) HT, and (c) GT.

Table 5. WTIC recognition results for Planetary Rover Prototype test experiments.

Actual WTIC
Recognized WTIC

ALCT SLCT LEIS UWTIC

ALCT (wheel–HT interaction) 133 0 0 11
SLCT (wheel–GT/HGT interaction) 0 134 0 10
LEIS (wheel–ST/SGT interaction) 0 0 144 0

Figure 20 shows information regarding the vibration acceleration and WTIC recogni-
tion results for a distinct single traversal of all three terrain classes shown in Figure 15. The
rover is traveling from an area of ST to an area of HT and then on to an area of GT. The
data are also divided into 15 s interval segments for WTIC recognition. During the entire
movement, the Planetary Rover Prototype operates for a total of 315 s, thus, the acceleration
is divided into 21 segments for WTIC recognition. The segmentation is shown in the
dotted square in Figure 18, and the WTIC recognition results are represented by the mark
at the bottom of the block. These results clearly show the effectiveness of the algorithm
in recognizing multiple WTICs during a single traversal. This figure also illustrates the
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most common error mechanism of the algorithm, which occurs when the rover transitions
between homogenous terrain regions.
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three terrain classes.

6.3. Terrain Parameter Identification for Planetary Rover Prototype

The wheel sinkage and slip ratio are necessary parameters for terrain parameter
identification and can be detected using machine vision methods shown in our earlier
studies [22,23].

6.3.1. Introduction of Sinkage Detection for Wheels Moving on Soft Terrain

Ref. [22] detailed the detection method of wheel sinkage, as shown in Figure 21.
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Figure 21. Flow chart of wheel sinkage detection.

It proposes a new definition of wheel sinkage for rough terrain. Wheel sinkage has
been defined as a vector using the wheel–soil boundary. A new vision-based method
for sinkage detection is proposed in the paper. The saturation of wheel–terrain image is
adjusted using a dynamic piecewise non-linear adjustment to enhance the color contrast
between the wheel and soil regions. Through a binarizing process, the wheel section in the
color-enhanced image is segmented to acquire an image in which the wheel region is white
and other regions are black. Thus, the outline of the wheel region can be extracted from the
binary image using the edge detection method. The wheel section outline is corrected to
represent the wheel rim operating as a circle. The distance between points of the wheel
rim and wheel center is equal to the wheel radius. And the distance between points of
the wheel–soil boundary and wheel center is less than the wheel radius. The wheel–soil
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boundary is extracted based on this characteristic. The sinkage is calculated using the
wheel–soil boundary based on the sinkage definition.

6.3.2. Introduction of Wheel Slip Ratio Detection

Ref. [23] detailed a detection method for wheel slip ratio shown in Figure 22. The
wheel slip ratio was estimated using the same wheel–terrain images as used in the sinkage
detection. At different moments, the wheel position in the wheel–terrain image is the same,
while the position of the wheel–trace boundary is different. Thus, the wheel speed can
be estimated from the displacement of the wheel trace relative to the wheel at different
moments. Based on this idea, Lv et al. [23] built an estimation model for the slip ratio,
which is expressed as:

s = 1− ∆S
arccos(1− ∆u2/2r1

2)r
(77)

where ∆S is the displacement of the wheel, ∆u is the average displacement of the mark
points, and r1 is the radius of the points.
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Figure 22. Flow charts of wheel slip ratio detection, with (a) for the wheel traversing ST, and (b) for
the wheel traversing GT/HT.

As shown in Figure 22a, the boundaries of the wheel trace were extracted from wheel–
terrain images acquired at adjacent moments and were matched to estimate the forward
displacement ∆S of the wheel. Meanwhile, the mark points (in this paper, the screws
on the wheel are regarded as mark points) of the wheel were also extracted from wheel–
terrain images acquired at adjacent moments and were matched to estimate the average
displacement ∆u of the mark points relative to the wheel center. The slip ratio can then be
calculated using Equation (77) according to ∆S and ∆u.

When the rover is traversing on HT or GT, there is no obvious wheel trace on the
terrain, but there are SURFF feature points that do not exist on ST. The wheel trace boundary
extraction and matching proposed by Lv et al. [23] for slip ratio estimation are replaced by
the terrain SURFF feature point extraction and matching. The forward displacement ∆S
of the wheel can be estimated by detecting the SURFF feature points in the wheel–terrain
images acquired at two adjacent moments, thereby estimating the wheel slip ratio, as shown
in Figure 22b.



Sensors 2023, 23, 9752 27 of 32

6.3.3. Identification Results of Terrain Parameters for Three Classes of Terrain

The slip ratio of the object wheel can be adjusted by varying the speed of the object
wheel and maintaining other wheels at a constant speed. For each terrain class, the
ratio is controlled at 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, and 0.6. The actual slip ratio is
detected visually.

Terrain parameters can be divided into three groups, namely, PI = {c1, c2}, PII = {ks,
n0, n1}, and PIII = {c, ϕ, K}, which are directly related to angles of θm and θ2, normal stress,
and shearing stress, respectively. The results of terrain parameter identification using the
algorithm in Figure 15 are shown in Table 6. Figures 23 and 24 show comparison of the
parameters PII = {ks, n0, n1} and PIII = {c, ϕ, K} for three terrain classes, respectively, to
clearly illustrate the difference in terrain parameters between the three terrain classes.

Table 6. Results of terrain parameter identification for Planetary Rover Prototype test experiments.

Terrain c1 c2 Ks (KPa/mN) n0 n1 c (KPa) ϕ (◦) K (mm)

T1 (HT) 0.8069 0 3.9999 × 105 0.6104 0.000 0 33.34 0
T2 (GT) 0 0 4.0053 × 105 0.5680 0.054 0 32.17 0.6
T3 (ST) 0.4424 −0.6379 2.4904 × 103 0.8169 1.296 308.6 29.67 6.6
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Figure 23. Comparison of parameters ks, n0, and n1 for three terrains.
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Wheel–terrain interaction forces are predicted for the wheels without considering the
rover dynamics or force coordination among the wheels during the rover movement to
simplify the calculation of them for easy control. The estimated drawbar pull force FDP,
wheel load W, and driving torque TD with identified terrain parameters are compared with
the sensor-measured results as shown in Figures 25–27. Their estimated relative errors are
shown in Table 7. From Figures 25–27 and Table 7, the predicted wheel–terrain interaction
forces are close to the measured values. Thus, the simplified predicted wheel–terrain force
can be used for optimal control (such as to maximize the wheel traction or minimize the
power consumption) for rovers.
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Figure 25. Wheel–terrain interaction force for Planetary Rover Prototype traversing HT, with
(a) s = 0–0.6, and (b) s = 0.05–0.6.
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Figure 26. Wheel–terrain interaction force for the Planetary Rover Prototype moving on GT.
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Figure 27. Wheel–terrain interaction force for the Planetary Rover Prototype moving on ST.
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Table 7. Relative error of data fitting for FDP, W, and TD.

Figure Code Figure 25a Figure 25b Figure 26 Figure 27

FDP 65.8% 15.2% 11.85% 8.11%
W 11.68% 11.68% 6.67% 7.64%
TD 84.83% 15.52% 8.46% 7.75%

6.3.4. Analysis of Parameter Identification Results of Hard Terrain

Table 6 shows that the ks of HT is much larger than that of ST because the internal
bonding force of HT is much greater than that of ST and has a large rigidity; thus, the
terrain does not undergo substantial deformation when a wheel moves on it. There is no
sinkage of the wheel. The sinkage exponents n0 and n1 have different characteristics for
three classes of terrain. The n0 of HT is close to 0.5, whereas n1 is approximately zero.
Thus, the sinkage exponent N is not affected by wheel slip ratio. The normal force model
of the wheel–HT interaction is a non-linear elastic model as shown in Equation (67). The
tangential bond of HT is extremely large. During the interaction between the wheel and HT,
the soil will not be damaged. There is no shear deformation or backward accumulation for
the terrain. Therefore, there is no shear stress in the force of the wheel–terrain interaction,
and only normal stress occurs. From Figure 25a, the fitting curve of estimated wheel load
W using the identified parameters is extremely close to the fitting curve of the measured
data. The relative error of estimated wheel load W is no more than 11.68% as shown in
Table 7.

The drawbar pull force can be calculated using the friction model as shown in
Equation (68). When the wheel slips, the drawbar pull force of the wheel is equal to
the friction between the wheel and the terrain. The parameters c and K are both zero,
ϕ represents the external friction angle of the terrain, and tanϕ is the friction coefficient
between the terrain and wheel.

Because the wheel sinkage is close to zero, the maximum stress angle θm is calculated
as equal to zero according to the coefficients of the wheel–soil interaction angle.

Figure 25a shows that the estimated values of FDP and TD differ greatly from the
measured values when slip ratio is 0. And the maximum relative error of the estimated
drawbar pull force is 65.8%, as shown in Table 7. However, the estimated FDP and TD
are close to measured data except when the slip ratio is 0, as shown in Figure 25b. The
relative errors of estimated drawbar pull force and driving torque in Figure 25b are both no
more than 15.52%. When the slip ratio is zero, there is no relative movement between the
wheel and terrain, and the drawbar pull force (friction force) of the wheel is static friction
force. At this time, the actual drawbar pull force (friction force) is smaller than the dynamic
friction force calculated according to ϕ (the friction coefficient between wheel and terrain
is tan(ϕ)). Thus, the errors of the estimated drawbar pull force and the driving torque are
large when slip ratio is zero. Figure 25b shows a comparison among the estimated values
of the drawbar pull force, the normal load, and driving torque and the sensor measurement
values when the slip ratio is bigger than zero. The fitting curve of estimated data is close to
the fitting curve of measured data. The relative errors of estimated wheel–HT interaction
force with identified terrain parameters are less than 16% when slip ratio is not zero.

6.3.5. Analysis of Parameter Identification Results of Gravel Terrain

Table 6 shows that GT’s ks is close to HT’s, GT has a large rigidity, and the terrain does
not undergo substantial deformation when a wheel moves on it. GT’s n0 is close to 0.5 and
n1 is about 0.054. The value of n1 is relatively small, but the value of ks is very large. The
normal force is sensitive to the sinkage exponent. Therefore, the normal force in Figure 26
has obvious variation.

Under the action of wheels, gravel will slightly move backward and accumulate, which
is far less than the accumulation degree of sand. There is shear displacement between
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pieces of gravel and shear stress in the force of the terrain on the wheel. Therefore, K is not
0 in the shear parameter, and ϕ represents the external friction angle of the terrain.

Since the wheel sinkage is close to 0, the maximum stress angle calculated from
coefficients of the wheel–soil interaction angle is approximately equal to 0.

The drawbar pull force, normal load, and driving torque of the wheel are estimated
using Equations (62)–(64) with the identified parameters. Figure 26 shows that the fitting
curves of estimated wheel interaction force are close to the fitting curves of measured data.
The maximum errors of estimated drawbar pull force, wheel load, and driving torque are
11.85%, 6.67%, and 8.46% respectively.

6.3.6. Analysis for Parameter Identification Results of Sandy Terrain

Table 6 shows that ks of ST is much smaller than that of GT/HT. The bonding force
between sand grains is small, and thus the stiffness of sand is low. The wheel easily sinks
into the soil when the rover traverses over ST. The n0 of ST is about 0.8169 and n1 is about
1.2957. Thus, the sinkage exponent N is greatly affected by the wheel slip ratio. The normal
stress model is a variable exponential non-linear elastic model as shown in Equation (62).

During the interaction between the wheel and terrain, the soil will be displaced,
causing the compression under the wheel and accumulation behind the wheel. The terrain
places a large amount of shear stress on the wheel, which is not symmetrically distributed
along the y-direction of the wheel. The shear stress is also an important factor in calculating
the supporting force of the terrain applied to the wheel.

Owing to the obvious shear deformation, both c and K are greater than zero and much
larger than those of GT. In addition, ϕ is the internal friction angle of the soil.

From Figure 27, it can be seen that the relative error of the estimated drawbar pull
force, wheel load, and driving torque using Equations (62)–(64) with the identified pa-
rameters is small, and the fitting curves of the estimated data are extremely close to the
fitting curves of the measured data. Table 7 shows that the maximum relative errors of
the estimated drawbar pull force, wheel load, and driving torque are 8.11%, 7.64%, and
7.75%, respectively.

According to the above analysis of experiment results, it can be seen that the relative er-
rors of estimated wheel–terrain interaction force with identified terrain parameters are less
than 16%, 12%, and 9% for rovers traversing hard, gravel, and sandy terrain, respectively.

7. Discussion and Conclusions

This paper has been focused on speed-independent vibration-based WTIC recognition.
The terramechanics model was switched for terrain parameter identification according to
the recognized WTIC. Concluding remarks of this study are provided as follows:

(1) Three vibration models of rigid lugged wheels have been built and analyzed for
three WTICs. The three vertical vibration displacements are all approximately periodic
functions. Therefore, the vibration acceleration of a rigid lugged wheel was approximated
as a periodic signal. Its frequency, amplitude, mean value, and mean square value were
extracted as vibration features describing the wheel–terrain interaction response character-
istics and processed to make them non-dimensional and independent of the wheel speed.

(2) A vibration-based method for WTIC recognition without requirement of training
data is proposed. The regions of the vibration feature space for three WTICs are analyzed.
The WTICs are determined by judging which feature space region the wheel–terrain
interaction is located in. Experiment results of the single-wheel test show the simple and
effective method has recognized 292 samples out of 300 samples correctly, so the recognition
accuracy is about 97%.

(3) The proposed WTIC recognition method can help rovers to switch the terrame-
chanics model when traversing hard or soft terrain by modulating the parameters c and
K appropriately. Terrain parameters in the switched terramechanics model are identified
using the least squares method, and model parameters have been successfully identified
for various terrain classes, particularly for hard terrain/rock and soft sandy terrains that
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are similar to the main terrain types of Mars. The experiment results obtained using a
Planetary Rover Prototype moving on the three terrain classes have demonstrated that
the WTIC recognition, terramechanics model switching, and parameter identification are
effective. The relative errors of estimated wheel–terrain interaction force with identified
terrain parameters are less than 16%, 12%, and 9% for rovers traversing hard, gravel, and
sandy terrain, respectively.

A vibration-based method for WTIC recognition is proposed in this paper. Previous
planetary terrain analysis studies usually identify terrain types, such as ST, GT, HT, SGT,
HGT, and so on [4–8]. When rovers move on some of these terrain types (such as ST and
SGT), the WTIC is the same. It is difficult to give comprehensive and accurate statistics on
the correspondence between terrain type and WTIC. Thus, these methods cannot recognize
WTIC, select terramechanics models, and identify terrain parameters. In addition, terrain
classification may result in misidentification between different types of terrain. It can lead
to incorrect selection of terramechanics models. The WTIC recognition method proposed in
this paper does not involve misidentification between different WTICs. It is more conducive
to the selection of terramechanics models and the identification of terrain parameters.

In terms of terrain parameter identification, a method for identifying the terrain
parameters when the rover moves on various terrains is proposed in this paper. Previous
studies on terrain parameter identification (such as [16–18]) focused on identifying the
terrain parameters of ST without identifying the terrain parameters of other types of terrain.
They have not been able to switch and select terramechanics models. If the terramechanics
model of wheel–ST interaction is used for terrain parameter identification of other types
of terrain, it can lead to incorrect terrain parameter identification results. In terms of
identifying the terrain parameters of ST, the method proposed in this paper is similar
to [18]. The accuracy of identified terrain parameters is basically the same, and the relative
errors of estimated wheel–terrain interaction force with identified terrain parameters are
also close. Compared to previous studies on terrain parameter identification, the proposed
method can achieve the terrain parameter identification of various types of terrain. It has
improved the parameter identification ability.

As future work, the identification of terrain parameters in a terramechanics model in
real time for planetary rovers traversing various types of terrain will be further studied. The
parameters identified using this method will be used to improve the estimation accuracy of
wheel–terrain interaction force in the control model for a planetary rover. And they can be
used to calculate the wheel-driving torque for evaluating the terrain traversability [24]. In
addition, to improve the autonomous mobility of a rover, a terrain–environment perception
system of a planetary rover can be built by combining this study with vision-based terrain
classification. The system can help a planetary rover construct a knowledge base of the visual
terrain features and terramechanics properties and roughly estimate the terrain parameters’
value ranges in the terramechanics model for terrains that the rover will move on.
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