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Abstract: With the demand for healthy life and the great advancement of flexible electronics, flexible
sensors are playing an irreplaceably important role in healthcare monitoring, wearable devices, clinic
treatment, and so on. In particular, the design and application of polyimide (PI)-based sensors are
emerging swiftly. However, the tremendous potential of PI in sensors is not deeply understood.
This review focuses on recent studies in advanced applications of PI in flexible sensors, including
PI nanofibers prepared by electrospinning as flexible substrates, PI aerogels as friction layers in
triboelectric nanogenerator (TENG), PI films as sensitive layers based on fiber Bragg grating (FBG) in
relative humidity (RH) sensors, photosensitive PI (PSPI) as sacrificial layers, and more. The simple
laser-induced graphene (LIG) technique is also introduced in the application of PI graphitization to
graphene. Finally, the prospect of PIs in the field of electronics is proposed in the review.

Keywords: polyimide; flexible substrate; photosensitive polyimide; colorless polyimide; sensing;
electrospinning; triboelectric nanogenerator; laser-induced graphene; fiber Bragg grating

1. Introduction

Within the emerging field of flexible electronics, intelligent sensors, integrating both
semiconductor devices and integrated technology, have been developing towards flexibility.
Compared with traditional sensors with the drawback of rigidity, flexible sensors have the
characteristics of low cost, wearability, light weight, and simple structures, which enable
them to catch target analytes much more effectively and obtain greater quality signals [1].
In addition, flexible sensors, maintaining high sensitivity and stretchability, are also being
applied in many emerging fields (e.g., the biomedical field, intelligent transportation,
wearable electronics, smart homes, etc.) [2]. Recently, Bao Z. N., Rogers A. J., Someya
T., and other researchers in the domain of flexible sensors have proposed a technology
roadmap of flexible sensors, mainly focusing on the issue of compatible sensor biological
interface [3].

The strategy design, material selection, and fabrication method of flexible sensors
are absolutely vital to promote the sensitivity and reliability of flexible devices. The ma-
terials used for flexible sensors include substrate materials, active materials, and flexible
electrodes [4]. Polymers with the combination of easy preparation process, good chemical
stability, and high mechanical compliance are ideal materials for making flexible sensors.
Commonly used polymers include polyimide (PI) [5], poly(dimethylsiloxane) (PDMS) [6,7],
poly(ether-ether-ketone) (PEEK) [8], polycarbonate (PC) [9], polyethylene naphthalate
(PEN) [10], poly (ethylene terephthalate) (PET) [11] and polyurethane (PU) [12,13], and
polyvinylidene fluoride (PVDF) [14–17]. Among these polymers, PI is extensively used
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owing to its excellent thermal stability [18], high chemical resistance, good dielectric prop-
erties, outstanding mechanical strength, and other comprehensive properties. However,
PI is commonly not colorless and is unable to recover under great strain; thus, its appli-
cation in the field of transparent flexible substrates is limited. Colorless polyimide (CPI)
films have been achieved, which make the production of high-performance sensor devices
possible [5,19]. In addition to the commonly used PI films, PI foams, PI fibers, PI aerogels,
and so on have also been prepared. Above all, porous PI aerogels and PI fibers are used as
the tribo-contact layer of triboelectric nanogenerators (TENG) and can greatly improve the
performance of TENG [20–22]. On account of the triboelectrification and energy harvesting
(EH) benefits of TENG, it can be used for the testing of embedded applications, especially
those involving self-powered sensors [23]. Last but not least, with the emergence of three-
dimensional (3D) printing and other technologies, there is a growing amount of research
on developing electronic components directly on flexible substrates, which undoubtedly
widens the application range of polymers [24].

Herein, this review explores flexible electronic materials in the application of sensors
and summarizes the recent research and application of PIs in flexible sensors, including PI
nanofibers prepared by electrospinning as flexible substrates, PI aerogels as tribo-contact
layers in TENG, PI films as sensitive layers, insulation layers, sacrificial layers, and coat-
ings (Figure 1). In particular, the application of PI graphitization to graphene by laser-
induced graphene (LIG) technique without the need for superhigh temperature in sensors
is introduced. Finally, this study proposes an orientation of future PI modifications and
perspectives on the challenges of PI applications in the field of flexible electronics.
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2. Applications of PI in Sensors
2.1. Flexible Substrate
2.1.1. Traditional Flexible Substrate

Flexible electronic sensors featuring lightweight, flexible, and foldable characteristics
have become an enthusiastic topic in the electronics field in recent years. Recent progress
has been made in the research and application of flexible organic light-emitting diodes
(OLED), flexible solar panels, flexible integrated circuits (IC), electronic skin (e-skin) [25],
implantable medical and wearable devices [26], and so on. The rapid progress of flexible
electronic devices depends on the use of new materials and the introduction of new
manufacturing methods. Among them, PI is the most widely used flexible substrate
by virtue of its excellent heat resistance, chemical resistance, and mechanical strength, and
its ability to match the traditional semiconductor manufacturing process. Kapton, a product
developed by DuPont, is a kind of PI with the highest utilization rate as a flexible substrate
in traditional flexible pressure sensors. Figure 2 shows the synthesis process of Kapton with
dark brown color from pyromellitic dianhydride (PMDA) and 4,4′-diaminodiphenyl ether
(ODA) in polar solvent N,N-dimethylacetamide (DMAc). The method of preparing PI by
forming polyamic acid (PAA) solution and then dehydration through chemical imidization
or thermal imidization is known as two-step. The flexible sensors based on PI can be
classified according to sensing principles or applications. Since there have been a large
number of literature reviews in this field [1,2,19], only a few representative examples of PIs
used as flexible substrates in flexible sensors are introduced here.
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Figure 2. Synthesis diagram of Kapton.

Yang et al. [27] fabricated a flexible piezoresistive sensor that is applied to e-skin and
a manipulator with superior performance based on MXene/PU/interdigital electrodes
(Figure 3). Similar to graphene, MXene is composed of two-dimensional transition metal
carbides and nitrides with excellent hydrophilicity, good conductivity, large specific ca-
pacitance, and superior electrochemical performance. It has been one of the most popular
conductive materials in flexible sensors recently [28–30]. Interestingly, the sensitive layer of
the sensor uses PU with a self-healing ability as the substrate to improve the robustness of
the system. The self-healing function takes advantage of the interaction between hydrogen
bonds of PU. It is worth mentioning that the preparation of polymer materials with self-
healing function is also a challenge in the sensing field [31–34], and PI with self-healing
function will be mentioned in Section 2.2. The choice of flexible substrate is generally
restricted by the fabrication processes of flexible sensors, but it is worthwhile mentioning
that a versatile, low-cost, and universal template spraying method is used to prepare the
interdigital electrodes here. MXene is separately sprayed on the spinosum structure PU as
a sensitive layer and on the flexible substrates as an interdigital electrode. The selection of a
flexible substrate for the interdigital electrode fabricated by this procedure can theoretically
be random [27]. PI and a mixed cellulose filter membrane are selected, and experimental
results are gained. There are differences in the performance of pressure sensors made with
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the two different flexible substrates above, and PI substrates obviously perform better. In
comparison to cellulose filter membrane, the response time and the recovery time of the
PI-based sensor are shorter, and its sensitivity is higher in low (0.20–1.70 kPa), middle
(1.70–5.70 kPa), and high (5.70–20.30 kPa) pressure as well. In particular, the sensitivity
of the sensor can reach 509.78 kPa−1 when it is within the middle-pressure range. The
sensing performance comparison results are shown in Table 1. These results prove that
the microstructural design of the flexible substrate does have an impact on the sensitivity
property of the sensor. The results show that the PI-based sensor has better performance,
and the fabrication process of this sensor is valuable, as it broadens the selection of flexible
substrates and makes sense for the production of flexible sensors.
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Table 1. Sensing performance comparison of PI and membrane filter substrate [27].

Sensitivity
Response
Time/ms

Recovery
Time/msIn Low

Pressure/kPa−1
In Middle

Pressure/kPa−1
In High

Pressure/kPa−1

PI 281.54 509.78 66.68 67.8 44.8
Membrane filter 99.8 408.4 23.4 68.4 46.5

2.1.2. PI Nanofiber Prepared by Electrospinning

With the improvement of sensor manufacturing technology, the advantages of tra-
ditional PI film (like Kapton) as a flexible substrate are less obvious. Furthermore, PI
film with poor air permeability is not appropriate for long-time wearing, such that it is
almost excluded from the application of sensors in human healthcare monitoring and
wearable electronics [35]. Therefore, novel preparation processes and new structures of
PI are constantly being explored. Converting PI into PI fiber to improve biocompatibility
could be considered. Electrospinning technology is an effective and convenient method for
preparing continuous nanofibers. Generally, PAA solution is synthesized first, and then
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PAA nanofibers are prepared by spinning. PI nanofibers are obtained through thermal
or chemical imidization. For some soluble PIs, a one-step synthesis of PI solution can
be used to directly prepare PI nanofibers through electrospinning [36–38]. The work of
combining photosensitive polyimide (PSPI) and electrospinning to achieve a fiber-based
photolithography hierarchical structure and micron-size patterns on flexible substrate will
be introduced in detail below.

A kind of ultrafine fibrous membrane (UFM) was fabricated by using a high-speed
electrospinning technique and negative PSPI (n-PSPI) with a structure of aryl ketones,
a photoactive group [39]. Although high-performance PI fiber has a mature synthesis
process, the research on the combination of PSPI and electrospinning is lacking. The n-PSPI
is synthesized via a one-step method from 3,3′,4,4′-benzophenonetetracarboxylic dian-
hydride (BTDA) and 4,4′-((3-(trifluoromethyl)phenyl)methylene)bis(2,6-dimethylaniline)
(Figure 4a) [40]. The mechanism for preparing n-PSPI is to use the hydrogen reaction
between the electrophilic carbonyl group of benzophenone and the alkyl hydrogen donor
in the diamine unit under ultraviolet (UV) light (365 nm) to crosslink, which is insoluble
in the developer and displays the micron-size pattern (Figure 4c). It is worth noting that
the diamine molecule is elaborately designed. The methyl groups on the ortho position of
amino use the steric effects to improve the glass transition temperature and solubility of PI.
Trifluoromethyl can improve the optical transparency and reduce the moisture absorption
and dielectric constant of PI. The well-designed diamine molecule and BTDA with ben-
zophenone structure can produce photo cross-linking with high efficiency without other
additives. In addition, electrospun PI fibers can provide outstanding mechanical properties
and tailored physicochemical properties, so they are promising as a flexible substrate for
the production of flexible electronics [41]. More essentially, a quantity of sophisticated
patterns on the soft PI substrate can improve the mechanical tolerance of devices, so it is
important to make fibers form hierarchical structures with various patterns at the micro- or
nano-level through photolithographic approaches to obtain upgraded sensing properties
and a variety of functions. In general, a layer of photoresist needs to be coated on the PI
surface and etched by a lithography machine to realize patterning on PI. However, the
photolithography machine is expensive, and the process is complex. In contrast, the PSPI, a
more economical and practical way to realize patterning under UV irradiation, has been
widely studied. The n-PSPI with good organic solubility by high-speed rotating (speed
is 1000, 1500, 2000, and 2500 rpm) can form aligned ultrafine fibers with excellent heat
resistance and lithography eligibility. Furthermore, PI UFMs can achieve micron-scale
patterns by an easy process (Figure 4b,d) and maintain the fibrous structure. These phe-
nomena are extremely important for future flexible electronic devices with complicated
multilevel structures and functionality. The n-PSPI is also an important direction in the
development of PIs, which can be patterned under light by introducing photosensitive
groups and crosslinking agents into the PI system. At present, PSPI has been used as
stress-buffer layers, redistribution layers, and protective layers for electronic packaging of
IC. In order to adapt the development requirements of sensors and other electronic fields,
how to decrease the curing temperature of PSPI is an urgent research topic [42].

2.2. Negative Friction Layer in TENG

Although TENG technology, depending on electrostatic induction to convert mechan-
ical energy into electrical energy, is not the latest one in sensors, it has still become an
increasingly attractive solution for self-powered sensors [43]. Owing to the principle of
TENG, the surface properties of tribo-contact layers play a vital role in the output perfor-
mance of TENG. Because the structure of PI contains a large number of imide groups, the
electron cloud density is high, and it is easy to attract the surrounding positive charge to
make the membrane surface negatively charged. In addition to splendid triboelectric nega-
tivity, PI has good thermal stability, so it is often used as a component for the preparation
of TENG. The following will give examples of improving the properties of TENG by using
different PI preparation processes and the structural design of PI.
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2.2.1. PI Aerogel as Friction Layer

Considering the thickness, mass, and charge storage capacity of the friction layer, PI
aerogel was creatively proposed as a friction layer and compared with a compressed PI
layer [20]. PI aerogel has countless nano-sized pores, which makes it have larger specific
surface area and reduces the effective dielectric thickness of the layer, so that more charges
are generated in the process of triboelectrification, ultimately leading to an increase in the
capacitance of TENG. They also obtained samples with different ratios of open-cell contents
by compressing aerogels at different rates [21]. The results show TENG prepared by PI
aerogel with 50% pore content has the best electrical output performance. Compared with
compressed PI, the open circuit voltage (Voc) is increased from 10 V to 40 V, the short circuit
current (Isc) is increased from 2.4 µA to 5 µA, and the maximum instantaneous power
(Pt max) can reach 47 µW (the best resistance is 10 MΩ). When the open-cell content increases
constantly, the performance of TENG descends, because the dielectric constant of air is less
than that of PI. It can be explained as follows: when the open-cell content is excessive, the
effective dielectric constant of the material will be reduced, and then the performance of Teng
shows an increase. However, all PI-aerogel-based TENGs have better performance than the
compressed-PI-based TENG. Figure 5 shows the preparation process of PI aerogel, in which
4-Phenylenediamine (PDA) and 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA) are
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selected as monomers to react in N-methylpyrrolidone (NMP) (47 wt% solid content) to form
PAA solution. Then, 1,3,5-Benzotriacyl chloride (BTC) is added as a crosslinker to improve
the dielectric properties of PI. Acetic anhydride and pyridine are added as the dehydration
agent and catalyst, respectively, to form PI through chemical imidization. Acetone is used
for solvent exchange with NMP, and finally dried with supercritical carbon dioxide (SC
CO2). Here, the method of preparing PI aerogel is conventional, but the innovative point
of this work is to think of using aerogel instead of an ordinary PI film as the friction layer,
which expands the application of PI aerogel. This is of great significance for the performance
improvement of TENG and the application of PI aerogel.
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2.2.2. Modified PI as Friction Layer

To use TENG for mobile screen display, the friction layer needs to be colorless.
Wu et al. [44] synthesized a transparent-PI-based TENG for mobile phone screen. Four kinds
of PI films are synthesized by combining two kinds of diamine (2,2′-bis(trifluoromethyl)
benzidine (TFDB) and ODA) and two kinds of dianhydride (PMDA and 4,4′-(hexafluoroiso-
propylidene)diphthalic anhydride (6FDA)) in a conventional two-step process (Figure 6).
It is found that 6FDA-TFDB film has excellent transparency. In fact, this phenomenon is
well explained from the perspective of its molecular structure. The trifluoromethyl group
is an electron-withdrawing group and conducive to the electrical output of TENG, which
can effectively decrease the density of the electron cloud and improve the polarity of PI. In
addition, a lot of work shows that fluorinated PI can endow PI with good optical properties
without decreasing its thermal stability [5]. The friction coefficient in the friction process
is also tested. It is found that the friction coefficient of fluorinated PI is less than that of
Kapton, which could improve the durability of TENG [44]. Due to the strong electronega-
tivity and small atomic radius of the fluorine atom (F), the electron and ion polarizability
of PI containing F in some special position can be significantly reduced, thus reducing the
dielectric constant of the PI. In addition, the introduction of F reduces the regularity of PI
molecular chains, making the stacking of polymer chains more irregular, increasing the
intermolecular space and further reducing the dielectric constant. However, PI with low
dielectric constant cannot achieve high power output as a friction layer [45,46], so use of
fluorinated transparent PI as a friction layer is not optimal. Regardless, colorless is a neces-
sary condition for the special application of electronic display screens, so the preparation
of a colorless, high-dielectric-constant, and low-dielectric-loss PI or PI composite can be a
research direction in the future.

In addition to the monomer structure design mentioned above, changing the surface
morphology by solubility is also an effective strategy to modify PI. Bui et al. [47] took advan-
tage of the solubility difference of PI in solvent and non-solvent and realized customizable
non-tightly-packed micro dome arrays on the PI surface (md-PI), which improved the
effective contact area and contact pressure of the surface. The md-PI can be assembled in
TENG and used under high-temperature (below 200 ◦C) and high-humidity conditions
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with durability and excellent electric output. The fabrication procedure is shown in Figure 7.
Although the improved phase separation (ISP) method is simple and economical, it has
strict requirements for solubility. Here, PI is required to be soluble in chloroform, but insol-
uble in the mixed solvent of acetone and cyclohexanone. The commonly used Kapton and
unmodified PI are usually insoluble in low-boiling organic solvents (e.g., tetrahydrofuran
(THF), chloroform, acetone, dichloromethane, cyclopentanone, etc.). The solubility of PI
mainly depends on the chemical structure of the polymer. The strategy of designing soluble
and processable PI is to reduce the rigidity or symmetry of the backbone, on the one hand,
and to minimize the density of the imide ring along the skeleton, on the other hand [48].
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It has to be said that polymer materials with special micro surface structure do have bet-
ter sensing performance. Chen et al. [49] proposed and demonstrated a high-performance
pressure sensor through the combination of PDMS/silver (Ag) microstructures with rough
PI/gold (Au) interdigital electrodes (Figure 8), which has broad prospects in biomedicine,
EH, and intelligent robot applications. The highlight of this sensor is that it uses a rough-
rough configuration to achieve higher sensitivity (response time ~200 µs) compared with
the flat-bottom electrodes or flat-top PDMS. It is easy to find that in rough-rough pressure
sensors, the PDMS and interdigital electrode both have distinct defined conical frustum-
shaped microstructures, which can provide large area, sufficient roughness, and enough
elasticity. Among these merits, the eminent elastic property of PDMS/PI microstructures
withstands thousands of mechanical deformation cycles. In the other research on flexible
sensing, substrates or electrodes designed with pyramid microstructures [50–52] have
also shown a similar effect. It is noteworthy that the rough microstructure is obtained by
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positive photoresist, and the photoresist needs to be removed in subsequent steps, making
the experimental process a bit complicated. If Au is deposited on PSPI instead of PDMS, it
is not required to add photoresist. Naturally, aiming to simplify the experimental process,
there is no need to increase the experimental step of photoresist removal. Certainly, the
premise of using PSPI is that it has benign comprehensive performance, matching the
conditions in the process of sensor preparation. Apart from that, if only ordered and porous
PI film is desired, it can be attained by the microemulsion droplet method [53]. The process
is simple, and the layout and size of the holes can be adjusted by designing the template.
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Other than the above progress (the comparison is shown in Table 2), the following
works are also of great significance. The PI nanofibers prepared by Shi et al. [22] using elec-
trospinning technology and assembled in TENG can be used at an ultra-high temperature
of 250 ◦C with exceptional output performance. By introducing dynamic disulfide bond
exchange and flexible PDMS fragments into the PI main chain, Li et al. [54] endow PI with
a self-healing property, providing theoretical guidance for the production of self-healing
TENG. Pang et al. [55] prepared a sandwich-like friction layer for assembling TENG by
adding boron nitride nanosheets as intermediate layers between PI layers, which can retain
high mechanical robustness and electrical output performance in a humid environment.

Table 2. Comparison and analysis of different PI-based TENGs.

Name Parameters Advantages Disadvantages Ref.

50% open-cell content
PI aerogel

Voc: 40 V
Isc: 5 µA

Pt max: 47 µW
Lightweight, efficient The process is complex

and uneconomical [20,21]

Fluorinated PI
(6FDA-TFDB)

Voc: 30 V
Isc: 0.4 µA

Charge density: 24.82 µC/m2

High transparency,
durability

Low power output,
structural requirements [44]

Md-PI
(md-PI_95)

Voc: 122.20 V
Isc: 4.4 µA

Output power: 1.42 W/m2

Charge density: 58.4 µC/m2

Superior electrical
output, durability, and

thermal stability

Strict requirements for
PI solubility [47]

2.3. Sensitive Layer in RH Sensor

PI is also often used as the sensing functional layer material in sensors. For example, PI
is used as the humidity-sensing material in humidity sensors owing to its sensitivity to mois-
ture, good chemical stability, and long-term use stability in humid and hot environments,
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and the electrodes of the humidity sensors are usually made by inkjet printing or screen
printing techniques [56]. The reason why PI can be used as the sensitive layer of an RH
(relative humidity) sensor is that the dielectric constant of PI can change in the process of
moisture absorption and desorption, which leads to the change of capacitance. Therefore, for
the modification of PI structure, the dielectric constant is generally the parameter. However,
the development of humidity sensors using PI as the sensitive material is not limited to this.
As early as the end of last century, fluorinated PI and crosslinked PI have been studied for
capacitive RH sensors [57]. In recent years, the emergence of fiber-optic RH sensors has
given PI material a chance to show its ability. The use of new technology, the preparation
of PI composites by doping, and the modification of PI structure are all effective means to
enhance the performance of the RH sensor. Here are some typical examples to demonstrate.

2.3.1. Sensitive Layer in Capacitive RH Sensor

Ag is often used as the electrode of capacitive sensors and can be deposited on the PI
film by ink printing. Yang et al. [58] used surface modification and ion-exchange technique
to prepare PI/Ag nanocomposite films on the PI film surface and constructed two different
kinds of capacitive humidity sensors with both Ag interdigital electrodes (IDE) through
two different reduction processes (Figure 9). PI acts as both a sensing material and a
flexible substrate in the humidity sensor. Additionally, the preparation process of Ag
IDE, using simple surface modification and a patterning self-metallizing process, is also
operated on PI substrate. Two kinds of humidity sensors both have excellent sensitivity
at high RH standard (~70 to 90%). It is supposed that the absorbed water vapor can
cause the increase of dielectric constant of polyamic acid (PAA)/PI, thereby increasing the
capacitance. The results clearly show that the metallization of Ag on PI provides a viable
source for future flexible applications. However, at low RH standard (~16 to 70%), the
sensitivity of the humidity sensor is very low, and the dielectric constant of PI scarcely
changes. The sensitivity under low RH level may be improved by introducing carboxyl or
sulfonic acid groups properly into the side chain of PI. The dielectric constant parameter of
PI has attracted widespread attention in the microelectronics industry. In the process of
signal transmission, the material with a low dielectric constant can not only reduce the delay
of signal transmission, but also improve the speed and efficiency of signal transmission. In
addition to introducing fluorine-containing groups [59], a nano porous structure can be
introduced to decrease the dielectric constant of PI as well.
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In order to improve the sensitivity of the sensor, carbon black [60], lithium chloride,
graphene [61], halloysite nanotube [62], and poly(glycidyl methacrylate) [63], and so on are
doped into PI to form a composite material as a new sensitive layer.

2.3.2. Sensitive Layer Based on FBG in RH Sensor

Different from the change in the dielectric constant of PI in the capacitive RH sensors,
the linear volume expansion of PI under humidity conditions is the principle in the RH
sensors based on FBG (fiber Bragg grating). In a harsh electromagnetic field and strongly
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corrosive environment, an optical humidity sensor has advantages over an electrical sensor.
The RH sensor based on FBG technology [64–66] has been widely studied in recent years.
Due to the different principles, the modification direction of the PI structure is also slightly
different. Because of the large number of benzene rings and imide groups in aromatic
PI, the polarity of PI is limited and results in a low expansion coefficient. Therefore, the
sensitivity of RH sensors prepared by PI with small polarity is low. In contrast, if the
polarity of PI is too high, the water absorption of the material will be excessive, which will
lead to desorption difficulties and is not conducive to sensing. Therefore, it is necessary to
increase the polarity appropriately by modifying the PI structure to improve the sensitivity
of the sensor.

Wu et al. [67] copolymerized commercial diamine ODA and dianhydride PMDA with
diamines containing phenolic hydroxyl or carboxyl groups to generate PI with phenolic
hydroxyl or carboxyl groups on the backbone (Figure 10), and coated the optical fiber with
PI through the impregnation method for assembling FBG sensors. The results show that
the humidity sensitivity of the probe containing carboxyl PI or phenolic hydroxyl PI is
2.28 times and 1.59 times higher than that of the ordinary PI probe, respectively. However,
it is still difficult to dehumidify. Studies have shown that the problem of humidity sensing
delay can be solved by fluorination of PI [68]. Although the repeatability of the sensor
is not good enough and the dehumidification response needs to be improved, this work
still proves that the improved PI structure plays an irreplaceable role in improving the
performance of the humidity sensor.
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2.4. Insulation Layer and Dielectric Layer

PI film also has some applications as an insulating layer and dielectric layer. Here are
some examples.

Du et al. [69] developed a flexible piezoresistive pressure sensor based upon an all-
fiber structure, which is lightweight, ventilate, biocompatible, and highly sensitive. The
device is composed of porous PVDF nanofiber film filled with conductive MXene nanosheets
(MXene/PVDF) as the sensitive layer, and with magnetron sputtered Ag IDE (Ag/PVDF)
as the electrode of the sensor. PI exists as an insulation layer in the middle of the sensitive
layer and electrode to induce the change of contact resistance. Thanks to the presence of the
insulation layer, the sensitivity of the sensor is remarkably improved (up to 1970.65 kPa−1 in
the low-pressure range, which is about 13 times higher than that of sensors with no adjunction
of insulation layer). In addition, the sensor also exhibits cycling stability (10,000 cycles),
fast response time (10 ms), and fast recovery time (20 ms). More importantly, the sensor
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has exceedingly good air permeability and biocompatibility due to its all-fiber structure.
These excellent performances provide a valuable reference for application in the sophisticated
detection of human motion and pressure distribution. As an insulating layer, PI also requires
low dielectric loss [70]. In recent years, as 5G communications have grown, extensive research
has been conducted on the structure and preparation process of PI as an antenna material
with low water uptake, low dielectric constant, and low dielectric loss [71–73].

The pressure sensor described below is also a pressure sensor using fiber, while
electrospun PI fiber is used as a dielectric layer. Zhu et al. [74] used electrospun PI nanofiber
membrane as the dielectric layer between the electrodes of capacitive pressure sensor to
achieve superior sensitivity (2.204 kPa−1 in 3.5–4.1 Pa and 0.721 kPa−1 in 4.1–13.9 Pa),
wide scale range (0–1.388 MPa), low detection limit (3.5 Pa), and eminent cycle stability
(>10,000 cycles). Generally, the dielectric materials used in capacitive pressure sensors
should be easy to compress and have small Young’s modulus, such as PDMS, silicone
rubber, and so on. In this respect, PI is not suitable as a dielectric layer. However, the
performance of a dielectric layer can be optimized by using a multi-pore structure. Void
structure is often used in polymer to improve the elastic deformation ability of the dielectric
layer, so as to increase the sensitivity of sensors. The fiber membrane is increasingly
favored by pressure sensors because of its ultra-high porosity. When atmospheric pressure
is applied, the membrane can be easily compressed, which reduces the electrode distance
of the capacitive pressure sensors, and the equivalent dielectric coefficient increases, so that
the total capacitance increases rapidly. In addition, PI has good stability, so the electrospun
PI fiber membrane has been used as a dielectric layer by a four-needle electrospinning setup
(Figure 11), and the performance of the sensor used as a dielectric layer is compared with
PDMS. The results show that the electrospun PI fiber membrane has better sensitivity and
a lower detection limit, which can effectively improve the performance of the capacitive
pressure sensor.
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2.5. Sacrificial Layer

The selection of sacrificial layer materials for sensors is one of the most important
factors to consider. When metals such as aluminum (Al) or tin are inevitably used as
electrodes in sensors, it is difficult to directly make electrodes due to the poor selectivity of
metals for hydrogen fluoride (HF) etching. In this case, PI can be selected as the sacrificial
layer [75–77]. Compared with the traditional oxidation sacrificial layer, the oxygen plasma
ashing etching selectivity of PI is superior.

Hamid et al. [78] presented a new triboelectric EH and sensing system, which can
be reduced to the size of microelectromechanical systems (MEMS). In general, there are
four working modes of TENGs, including vertical contact separation mode, horizontal
sliding mode, single electrode mode, and independent layer mode [79–81]. The vertical
contact separation mode is adopted here, and the system uses eight serpentine springs
to realize the suspension of the top triboelectric layer (Figure 12b,c). When the system
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is in a sufficiently strong periodic vertical external vibration, the air gap can reach zero,
and periodic contact and separation can occur between the triboelectric layers to achieve
current output. In order to reduce the adverse effects of the scale reduction, it is necessary
to increase the air gap between two triboelectric layers by introducing and removing HD
4100 (a kind of n-PSPI) (Figure 12a). HD 4100 undergoes two steps of curing at 200 ◦C and
365 ◦C for 30 min and 1 h, respectively, to form a 14 µm thick film. The designed structure
of the triboelectric EH is optimized to obtain the maximum average power and power
density, while guaranteeing the robustness of the structure and achieving high operating
frequency and wide bandwidth. The complete and detailed manufacturing process of the
triboelectric energy harvester (TEH) is shown in Figure 13. Throughout the manufacturing
process, HD 4100 acts as a sacrificial layer for the triboelectric EH, which is primarily used
for patterning of the top triboelectric layer and finally removed by oxygen plasma ashing
technique to obtain an air gap. The novel triboelectric EH system is able to be integrated
into the self-powered sensors and gain specific applications (e.g., automobile industry,
actuator systems in airplane, prosthetic systems, and micro-robotic systems).
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In addition to using PI as a sacrificial layer, pattern transfer can also be achieved
by selecting appropriate flexible substrates through clean and environmentally friendly
contact printing (i.e., no additional organic solvents and chemicals required) [13] without
using a sacrificial layer.

2.6. Coating Material

PI is widely used as a packaging material in the field of semiconductor chips and
separation devices. In addition to the protective barrier, PI is often doped into a sensitive
layer as a composite material to improve sensing performance [82]. Besides the FBG RH
sensor based on PI coating [83] mentioned in Section 2.3.2, PI is also applied in other sensing
fields as an optical fiber coating [84,85]. PI coating can not only improve the mechanical
properties and heat resistance of the optical fiber sensor, but also effectively protect the
optical fiber, and even improve the sensitivity of the sensor [84]. For an oil downhole
monitoring application, the PI-coated fiberoptic distributed temperature sensor can work
at 300 ◦C [86].

Graphene is often used in piezoresistive sensors because of its excellent electrical and
mechanical properties, but its preparation difficulty and stability limit its development. A
relatively simple preparation process is using PI as the carbon source to prepare graphene,
which will be discussed in Section 3. Here, an effective strategy to improve the stability
of graphene is to compound it with polymer. Yang et al. [87] assembled a highly sensitive
piezoresistive sensor based on a porous composite aerogel of reduced graphene oxide
(rGO)/MXene/PI (GMP (G:rGO, M:MXene, P:PI), the name of porous composite aerogel)
that can be used to monitor tiny and complicated human motions (e.g., breathing, pulsing,
finger bending, etc.). PI acts as a binder and reinforcing agent for GO and MXene sheets to
prepare robust GMP composite aerogels. MXene sheet is pulled to the outer surface of the
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rGO sheet through hydrogen bond and strong adhesion of PAA to achieve a high-quality,
continuous three-dimensional (3D) ternary aerogel. Several kinds of GMP aerogels with
various MXene mass ratios to GO are synthesized for performance comparison. Among
them, the GM aerogel sample is contrasted with no addition of PAA. The experimental
results are shown in Figure 14. This proves that the introduction of the PI precursors can
transform the brittle rGO/MXene aerogel into a composite aerogel with better elasticity and
flexibility. The synergistic effect of rGO/MXene enhanced by PI provides GMP composite
aerogel with prime electrical and mechanical properties. Furthermore, it has superior heat
insulation performance, low and high temperature resistance, and flame retardance. It
is remarkable that the GMP aerogel is obtained by a directional freezing procedure to
realize low density (8.97–12.71 mg/cm3). PIs are required to have low density [88] if they
want to be applied to human skin. Yao et al. [89] provided a freezing-extraction/vacuum-
drying method for PI fibrous aerogel with low density (≤52.8 mg/cm3), robustness, and
fatigue resistance.
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Figure 14. (a) Density and conductivity of various aerogel samples; (b) stress and modulus of
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of the GMP-3 composite aerogel at various strains; (e) stress−strain and energy loss curves of the
GMP-3 composite aerogel under various cycles (at 50% strain); (f) schematic diagram of cyclic
compression [87]. Copyright 2022, American Chemical Society.

For MXene, similar to graphene, an analogous strategy can also be adopted.
Zeng et al. [90] manufactured flexible, lightweight, and robust cross-linked transition metal
carbide (Ti3C2 MXene) for coating PI (C-MXene@PI) porous composites through scalable
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dip coating and chemical crosslinking methods. The preparation principle is that MXene
can adhere well to the PI skeleton through the strong hydrogen bond interaction between
PI and MXene nanosheets; thereby, MXene-coated PI composite foams are successfully
prepared. In addition, C-MXene@PI is obtained by the further chemical crosslinking agent
poly ((phenyl isocyanate) -co-formaldehyde) (PMDI) (Figure 15). The composite foam suc-
cessfully achieves oxidation resistance, hydrophobicity, and extreme temperature stability.
Moreover, the composite foam attaches well to the human body to detect its electromechan-
ical sensing performance, proving that it is reliable and sensitive as a wearable sensor to
detect human movement, and it has potential to realize the application of PI on human
skin. The robust and porous PI bracket can endow the composite foams with excellent
flexibility, low density, and extreme temperature resistance properties.
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3. Application of PI Graphitization to Graphene in Sensors

PI film can be converted into carbon nanomaterials (e.g., carbon nanotubes (CNTs),
graphene) via graphitization, and it is commonly regarded as a relevant pyrolysis precursor
of graphitized films used in diverse electrodes and batteries. Carbon nanomaterials have
great advantages in sensors because of their excellent conductivity, chemical robustness,
and sensitivity to a wide range of analytes, especially in electrochemical sensing that
requires high sensitivity and selectivity, fast response, and low cost [91–93]. Here, in
addition to the application of PI in sensors by traditional high-temperature graphitization,
LIG based on PI is also introduced.

3.1. High-Temperature Graphitization of PI

In 2019, Zhang et al. [94] presented a 3D elastic graphene-crosslinked carbon nanotube
sponge/PI (Gw-CNT/PI) composite. Based on the experiments and theoretical simulations,
the Gw-CNT/PI-5 composite with the highest electrical sensitivity (sensitivity, η = 973% at
9.6% strain) is promising as an alternative material for flexible piezoresistive sensors [2]. The
high sensitivity is attributed to a combination of relatively low conductivity and suitable
compression strain. Crosslinked Gw-CNT hybrid networks give PI high modulus with
controllable compression deformability and elasticity, making it suitable for use in flexible
electronics. From Figure 16, the 3D interconnected Gw-CNT hybrid network structure
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is prepared by coating a PI layer and then performing graphitization, and the final PI
nanocomposites (Gw-CNT/PI) are obtained by coating the Gw-CNT frame with PI layer
by layer. The elasticity, thermal conduction, and electronic conduction of the Gw-CNT/PI
nanocomposites are influenced by the composite microstructure, which can be facilitated
by the layer-by-layer coating of PI. Furthermore, the strong interactions between PI and
Gw-CNT enable uniform synthesis, and the structural integrity can be retained by avoiding
network expansion or contraction during the solution process. The introduction of an
interconnected cross-linked structure can improve the number of cycles of the Gw-CNT/PI
composites. However, the preparation process has an inherent defect, that is, the graphite
structure changes when the heat temperature of carbonization and graphitization are
between 1000 ◦C (Cw-CNT) and 3000 ◦C (Gw-CNT).
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3.2. LIG Based on PI

Generally, synthesis methods of porous graphene require high-temperature treatment [42]
or a multi-step chemical synthesis route [95]. Although great efforts have been paid to
achieve low-temperature or chemical-free processing of high-quality graphene, low-cost
synthetic methods for directly manufacturing graphene sheets on the substrate are still
rare. LIG [96–98] is a recently developed method for the direct formation of graphene
from carbon-rich materials. Lin et al. [99] demonstrated that LIG exhibits high electrical
conductivity through experiments and found that the mechanism of laser graphitization in
polymers is closely related to the structural features present in the repeating units, such
as aromatic and imide repeating units. PI, as a carbon-rich material containing aromatic
and imide repeating units, can be used to form LIG by using a CO2 infrared laser under
environmental condition. Tao et al. [100] developed a wearable, one-step, and low-cost LIG
artificial throat using direct laser writing of PI. The LIG artificial throat can produce sound
with controlled volume and frequency by detecting various types of simulated hum. It is
experimentally found that PIs of different thicknesses show differences in recognition due
to different resistance change.

The laser power has a great influence on the structure and properties of LIG. Only
when the power reaches a certain amount (≥2.4 W) can the polymer film be carbonized
effectively [99]. Chen et al. [101] developed a system for preparing high-quality graphene
directly from PI films at room temperature and atmospheric pressure using a picosecond
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UV laser and explored and determined the effects of the laser processing parameters on the
quality of LIG. After optimization, they fabricated a high-sensitivity proximity sensor to
prove the promising application of LIG. Figure 17 shows the response and recovery when
a human hand approaches or moves away from sensors, respectively. Meanwhile, it also
shows that the response voltage varies little when the hand is constantly monitored for
100 cycles. The above results indicate that the LIG proximity sensor has decent sensitivity
and stability and is able to detect the approaching objects promptly. Although the sensitivity
of this sensor needs to be further improved, it still exhibits the broad application potential
of the UV LIG technique.
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It is notable that due to the convenient processability of polymers, graphene hybrid
with the required properties can be obtained by changing the polymer composition. For
example, Peng et al. [102] prepared boron-doped porous graphene in ambient air by means
of a facile laser induction process from boric acid comprising PI sheets, which can be utilized
as an useful active material for a flexible in-plane micro-supercapacitor. With boron doping,
the electrochemical property of boron-doped LIG is significantly improved. Furthermore,
the transformation of PAA to PI is proven to be vital for the successful formation of LIG
with both a good electrochemical property and high quality. LIG based on PI has more
application in biosensors [103,104] and wearable sensors [105]. In 2022, Li et al. [104]
presented a neurotransmitter sensor for the brain and gut that resembles tissue. A polymer
precursor solution including PAA mixed with a metalloporphyrin is casted as a film on a
PI substrate and then annealed in air in order to form the PI film. The film surface, through
laser carbonization, can generate the graphene network. The sensitivity and selectivity of
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the sensor can be enhanced by mixing transition metal nanoparticles, which can promote
molecular absorption and electron transfer. Significantly, PI nanoparticles formed by laser
carbonization are embedded in elastomers and can exist in animal and human bodies. This
provides a great value in achieving the biocompatibility of PI.

4. Challenges and Perspectives Analysis

Although there have been many studies about PI, many review papers mainly reported
the usage of PI as a substrate in flexible-substrate electronics. PI film (Kapton) has been
recognized as a flexible substrate due to its chemical stability, heat resistance, and good
mechanical properties. However, as a traditional organic polymer, past studies have
focused more on how to improve the mechanical and thermal properties of PI to realize
its applications in aeronautics, aerospace, and the military industry [106,107]. However,
with the development of 5G communication, sensing technology, and flexible display, more
attention has been paid to the dielectric and optical properties of PI in order to realize
the application of PI in the above fields. As different layers, PI materials have different
functions, so the required properties are also different. For example, as the sensitive layer
of an RH sensor, PI needs a low dielectric constant to obtain high sensitivity. However,
as a triboelectric layer, PI needs a high dielectric constant to achieve high power output.
It is difficult to predict the dielectric property of PI by simple structure–property relation
algorithms. PI, as a dielectric layer or insulating layer, requires low dielectric loss. However,
the relation between dielectric loss and the structure of the polymer is difficult to express.
Due to the trade-off effect of material properties, it is difficult to obtain a relatively accurate
result by using the local optimization algorithm and global optimization algorithm. It
is also unrealistic to test the performance of PIs one by one, although this can provide
relatively accurate results. If a small amount of experimental sample testing and an existing
database are used, it is the most ideal situation to achieve bidirectional input and output
of material structure and performance (i.e., input performance data and output structure
reference, input structure data and output performance prediction).

As a significant branch of artificial intelligence (AI), machine learning (ML) is a strong
tool for interpreting sensor data easily with an outstanding advantage of effectively han-
dling multi-dimensional and multi-faceted data, which is very complicated [108]. Through
the combination of materials and AI, it is expected to infer the performance of polymers
with unknown structures from existing structures through ML assisted by specific algo-
rithms; this could even give the corresponding material structure and composition by
providing only the required material properties. It is encouraging that researchers have
tried to establish high-throughput screening through ML and made progress at glass transi-
tion temperature and cut-off wavelength of PI recently [109,110]. With the emergence of
ML and deep learning, data-driven chemical informatics research has made new progress.
Through the input of chemical and physical properties, the composition, structure, and
performance can be realized through ML [111,112].

5. Conclusions

This review mainly summarizes the recent study advances regarding the applications of
PIs in flexible sensors, including PI aerogel, electrospun PI fiber membrane, modified PI film,
PSPI, and so on as flexible substrate, friction layer, sensitive layer, sacrificial layer, dielectric
layer, and coating. The combination of PI with advanced sensing technologies based on
TENG and FBG has demonstrated the importance of PI in the sensing field. In particular, the
application of PI graphitization to graphene as a convenient processing technology in sensors
is introduced with a simple laser-induced method. Although PI material has many merits,
there are still problems in the practical application of flexible sensors. Based on these problems,
future efforts should be made in designing new structures of PI with high performance and
developing new processing technology; at the same time, ML can be integrated to accelerate
the development of innovative processing technology and the establishment of a database
dedicated to PI. It has to be emphasized that the performance requirements for PI vary between
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different sensors. For example, (a) in wearable devices, PI requires ultra-light weight, low
water absorption, and high transparency, which can be achieved by introducing silicon-oxygen
bond and non-coplanar ring structures, and so on, in the main or branch chains of PI; while
(b) in biosensing and environmental monitoring, the use of electrospinning technology can
directly produce PI nanofibers, making PI with the necessary property of high air permeability.
In order to truly realize the large-scale application of flexible sensing, it is essential to constantly
not only improve the properties of polymer materials like PI, but also combine them with
ML to achieve more breakthroughs in developing processing technologies and setting up
databases about various polymer materials.
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