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Abstract: Poor visibility has a significant impact on road safety and can even lead to traffic accidents.
The traditional means of visibility monitoring no longer meet the current needs in terms of temporal
and spatial accuracy. In this work, we propose a novel deep network architecture for estimating the
visibility directly from highway surveillance images. Specifically, we employ several image feature
extraction methods to extract detailed structural, spectral, and scene depth features from the images.
Next, we design a multi-scale fusion network to adaptively extract and fuse vital features for the
purpose of estimating visibility. Furthermore, we create a real-scene dataset for model learning and
performance evaluation. Our experiments demonstrate the superiority of our proposed method to
the existing methods.

Keywords: visibility estimation; image classification; multi-scale fusion network

1. Introduction

Atmospheric visibility is a measure of how transparent the atmosphere is. For traffic
safety, atmospheric visibility monitoring is one of the essential services [1]. Atmospheric
visibility can be measured by sensors or visual perception. These sensors include mete-
orological sensors and forward scatter visibility sensors. However, the meteorological
observation network is not dense enough to monitor agglomerate fog. Additionally, visibil-
ity meters are costly and inaccurate in non-uniform atmospheric conditions [2].

Another method for estimating visibility is based on visual perception. This method
processes real-time images captured through surveillance to estimate visibility. Methods
based on visual perception can be divided into three main types: multi-image-based
methods, Koschmieder-based methods, and deep-learning-based methods.

The multi-image-based methods require multiple images to establish a relationship
between image and visibility. Some researchers use the filtering methods (like the Sobel
filter or homomorphic filter) to establish the relationship between image features and
visibility [3,4]. However, these methods are sensitive to illumination variations. To over-
come this disadvantage, Babari et al. [5] adopted the Lambertianess of the image as the
reference to adjust the image contrast. Varjo and Hannuksela [6] proposed a new method
based on feature vectors that were projections of the scene images with lighting normal-
ization. Then, the new method was combined with the high-dynamic-range imaging to
improve nighttime image quality. The above methods require ground truth data from sen-
sors as a reference, so they are not suitable for real-time visibility estimation. To solve this
problem, some methods based on Koschmieder’s law are proposed [7]. Koschmieder’s law
describes the relationship between scene visibility and the extinction coefficient. Hautière
et al. have conducted a series of studies along these lines [8–12]. These methods treat the
distance between the camera and the furthest visible object as the scene visibility. The
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scene visibility can be obtained by calculating the Koschmieder’s law from the geometric
calibration model of the camera. Negru and Nedevschi [13] estimated the scene visibility
by detecting the positions of the inflection point and the horizontal line in the image.
These methods can estimate the scene visibility without ground truth data from sensors.
Nevertheless, the precision of geometric calibration is critical to these approaches.

The development of image recognition and deep learning technology has led to their
gradual application in atmospheric visibility estimation. Deep-learning-based methods
are superior for complex interaction processing compared to the above two methods.
You et al. [14] combined CNNs (convolutional neural networks) and RNNs (recurrent
neural networks) to estimate the relative atmospheric visibility from images, which signifi-
cantly improved the estimation accuracy. However, the evaluation capacity of this model
was only 300–800 m. Palvanov and Cho [15] proposed a deeply integrated convolutional
neural network with three streams for visibility estimation. And this approach considered
different image features as inputs to the model. Unlike the previous method using only
visible light images, Wang et al. [16] used visible–infrared image pairs as the input and pro-
posed a multimodal deep fusion model to learn the joint features from the input. Although
the performance of the deep-learning-based methods was superior to the two methods
mentioned above, the following problems still exist: (1) Most existing methods can not
sufficiently extract fog features, which can provide valuable information for subsequent
model learning; and (2) most existing methods are inadequate for extracting significant
high-level multi-scale features for visibility estimation. Therefore, we propose a novel
multi-scale fusion network for visibility estimation (Vis-MFN) from a single image. The
main contributions are as follows:

(1) We propose a CNN-based method for highway visibility estimation from a single
surveillance image. This method can provide low-cost and efficient support for
intelligent highway management.

(2) A multi-scale fusion network model is developed to estimate visibility from the input
highway surveillance image. We are more concerned with the efficient transfer of
low-level features to high-level features than with the design of complex network
structures. Multiple image feature extraction methods are utilized to extract low-
level visual features of fog, which can provide valuable information for subsequent
model learning. The multi-scale fusion module is designed to extract the important
high-level multi-scale features for the final visibility estimation, which can effectively
improve the accuracy of the estimation.

(3) We create a dataset of real-world highway surveillance images for model learning
and performance evaluation. Each image in the dataset was labeled by professional
traffic meteorology practitioners.

2. Proposed Method

We designed a deep multi-scale fusion network for highway visibility estimation.
As we all know, extracting visibility features from a single image is difficult. To better
understand the scene in the image, we extracted different types of features from the input
image to provide critical information for the subsequent model learning. The multi-scale
fusion module was further designed to jointly learn visibility from these image features
of the same image. The overall architecture of the proposed network is shown in Figure 1.
Multiple algorithms were adopted to process the input image to obtain detailed structural,
spectral, and scene depth features. The multi-scale fusion module was further designed to
fuse these features for adaptive visibility estimation.

2.1. Image Feature Extraction
2.1.1. Detailed Structural Feature Extraction

This branch is designed to extract the detailed structural features. The presence
of fog can obscure detailed structural features in the image. Therefore, the richness of
such features can reflect the visibility to some extent. We adopt the fast guided filter
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in [17] to decompose the image into a base layer and a detail layer. The detail layer is the
specific structural feature that we desire. The guided filter is a technique for edge-aware
image filtering. We choose the fast guided filter because of its superior visual output, fast
processing speed, and ease of implementation. The guidance image, filtering input image,
and filtering output image are represented as I, p, and q, respectively. The guided filter can
be denoted as follows:

qi = ak Ii + bk, ∀i ∈ ωk (1)

ak =

1
|ω|∑i∈ωk

Ii pi − µk pk

σ2
k + ε

(2)

bk = pk − akµk (3)

where i is the index of a pixel and k is the index of a local square window ω with a
radius r. µk, and σk are the mean and variance of I in the window k, and ε is a regulariza-
tion parameter controlling the degree of smoothness. The filtering output is represented
as follows:

qi = ai Ii + bi (4)

where ai and bi are the average of a and b, respectively, on the window ωi at i. As shown
in Figure 2, the detail layer mainly contains the detailed structural features, such as lane
lines. Therefore, the fast guided filter is suitable for extracting detailed structural features
of highway scene images.
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Figure 2. The original image, base layer, and detail layer. The detail layer is the detailed structural
feature which we want.

2.1.2. Spectral Feature Extraction

This branch was designed to extract the areas covered by fog. Images captured in dense
fog generally have low contrast, resulting in indistinct visuals. Because of the low contrast,
fog images closely resemble grayscale images. To improve the visual characteristics of
fog, we used a spectral filter, as the human visual system is more responsive to colors



Sensors 2023, 23, 9739 4 of 10

than grayscale. To facilitate the extraction of the spectral features of fog, we converted the
images from RGB color space to LAB color space, since it covers the full range of human
color perception. As shown in Figure 3, the regions of fog in the filtered image are marked
in pink. The filtered image presents fog regions more prominently than the original image.
As a result, the following CNN-based model can easily identify the fog regions and focus
on extracting local features.
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2.1.3. Scene Depth Feature Extraction

This branch is designed to extract the scene depth feature. The scene depth provides
information about the depth of objects in the image, which is useful for visibility estimation.
We utilized MiniNet [18] to extract the scene depth feature, as it is a lightweight and efficient
network for unsupervised monocular depth prediction. As shown in Figure 4, the black
area in the depth image is basically consistent with the fog area in the original image.
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2.2. Multi-Scale Fusion Module

The multi-scale fusion module is designed to adaptively fuse the detailed structural,
spectral, and scene depth features. It consists of three parts, including a shallow feature
representation block (SFRB), multiple multi-scale fusion blocks (MSFBs), and a global
feature fusion block (GFB). Specifically, two 3 × 3 convolutional layers extracted shallow
features from the structural, spectral, and scene depth features. This process is defined
as follows:

S = fs([X1, X2, X3, X4]) (5)

where fs denotes the SFRB function; X1, X2, X3 represent the structural, spectral, scene
depth features, respectively; X4 represents the original image; and [·] represents the con-
catenation operation. Then, several multi-scale fusion blocks (MSFBs) were designed to
extract multi-scale features. This process can be defined as follows:

Mk = fm(Mk−1), k = 1, . . . , n (6)
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where fm denotes the m-th MSFB function and Mk and Mk−1 represent the input and output
of the k-th MSFB, respectively. We fused these multi-scale features using the concatenation
operation and further extracted high-level features through the convolution operation. This
procedure can be formulated as follows:

G = fg([M1, M2, . . . Mn]) (7)

where [M1, M2, . . . Mn] denotes the concatenation of the feature maps produced in each
MSFN and fg represents the following convolution operation.

The architecture of the multi-scale fusion block is shown in Figure 5. We constructed a
three-bypass network using different convolutional kernels in each bypass for multi-scale
feature extraction. We used multiple 3 × 3 dilated convolutions with varying dilation
factors instead of convolutional kernels of various sizes to extract multi-scale features,
which enlarged the receptive field and maintained the filter size [19]. We concatenated
the features extracted by the dilated convolutions for multi-scale feature fusion and then
used a 1 × 1 convolutional layer to reduce the dimension. Then, we concatenated the
outputs of two 1 × 1 convolutional layers and used a 1 × 1 convolutional layer to reduce
the dimension. This part can be denoted as follows:

C1 = fc1([ fd1(Mn−1), fd2(Mn−1), fd3(Mn−1)]) (8)

C2 = fc1([ fd1(C1), fd2(C1), fd3(C1)]) (9)

C3 = fc1([C1, C2]) (10)

where fdi represents the dilated convolution with dilation factor i, and fc1 represents
1 × 1 convolution. Finally, the residual structure was adopted to increase information flow,
which helped to reduce the computational complexity and improved the performance of
the model. The output of k-th MSFB can be expressed as follows:

Mn = Mn−1 + C3 (11)
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3. Experiments
3.1. Dataset

To our knowledge, there is no publicly available dataset of actual highway fog scenes.
For this reason, we created a real-scene dataset for highway visibility estimation. Specif-
ically, we selected about 30 cameras located near traffic weather stations in the Jiangsu
section of the Beijing-Shanghai Expressway. These cameras were positioned more than
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10 km from each other to guarantee diverse shooting scenarios. Then, we collected more
than 18,000 surveillance images of real highway scenes obtained from these cameras. These
images were collected in different time periods, further ensuring the diversity of the dataset.
After similarity elimination and quality control, 15,000 images were selected as the train-
ing dataset and 3000 images were chosen as the test dataset. Meteorology professionals
classified the fog intensity into five levels according to visibility. The detailed visibility
level standard is shown in Table 1. All dataset images were automatically labeled based on
observation data from traffic weather stations and subsequently adjusted by skilled traffic
meteorology practitioners. Some sample images from the dataset are presented in Figure 6.
The dataset is currently not accessible for public use due to security concerns regarding
road data.

Table 1. Visibility level standard.

Visibility Level 1 2 3 4 5

Visibility distance 0–50 m 50–100 m 100–200 m 200–500 m 500+ m
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3.2. Implementation and Training Details

We used Adam [20] for optimization. The momentum and weight decay were set to
0.9 and 0.0001, respectively. The learning rate was initialized to 0.0001 and decreased by a
factor of 10 every 40 epochs. We implemented our models with Pytorch1.5.1 on a single
GPU of NVIDIA RTX 3090. Cross-entropy was adopted as the loss function.

3.3. Comparison Experiments

We compared the proposed method with several deep-learning-based methods, includ-
ing two image classification methods (AlexNet [21] and VGG16 [22]) and two atmospheric
visibility estimation methods (relative CNN-RNN [14] and STCN-Net [23]). We re-trained
these three deep-learning-based methods on our dataset, where the parameters were set
according to the recommendations in the paper.
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Table 2 shows the accuracy of the multiple methods tested on the test dataset. The
experimental results indicate that the AlexNet and VGG16 methods showed poor perfor-
mance, primarily because the AlexNet and VGG16 models are designed for natural image
classification and do not take into account the characteristics unique to road scene images.
Consequently, extracting visibility features effectively is quite challenging. The relative
CNN-RNN method outperformed AlexNet and VGG16 because the CNN-RNN module
was able to capture the global view while approximating human attention shift, which
enabled it to learn more effective visual features compared to AlexNet and VGG16. How-
ever, the relative CNN-RNN estimated visibility from only the original image, so it was
challenging to extract multi-scale features. The STCN-Net achieved a better performance
than the relative CNN-RNN method, since this method designed a novel 3D multi-feature
stream matrix, which provided rich low-level features. However, the STCN-Net performed
slightly less well in terms of visibility below 500 m. The proposed Vis-MFN achieved the
best estimation accuracy. Figure 7 shows the confusion matrices of multiple methods on
the test dataset. It can be seen that the classification labels of the proposed method are
mainly clustered along the main diagonal of the matrix, demonstrating the stability of the
classification performance.

Figure 8 shows the estimated results of different methods on test images with different
visibility levels. The proposed method was able to make correct estimates on sample images
with different visibility levels, since the proposed method had two main advantages. The
first advantage was that three image feature extraction algorithms could adequately extract
visibility-related features from the images. The second advantage was that the multi-scale
fusion module could adaptively extract useful features for visibility estimation.

3.4. Ablation Experiments

We further conducted ablation experiments to verify the effectiveness of the image
feature extraction algorithms and the multi-scale fusion module.

(1) Vis-MFN-NF: No image feature extraction algorithm was used in the model.
(2) Vis-MFN-NM: The multi-scale fusion blocks were replaced by multiple convolutions

in series. Meanwhile, the receptive field of the new network remained unchanged.
(3) Vis-MFN-M2: Only two multi-scale blocks were used in the network.
(4) Vis-MFN-M4: Four multi-scale blocks were used in the network.

Table 3 shows the estimation accuracy of the proposed method and two ablation meth-
ods. It can be seen that both the multi-scale fusion module and the image feature extraction
methods significantly improved the estimation accuracy. Although the performance of
Vis-MFN-M4 was better than that of Vis-MFN-M2, the complexity of Vis-MFN-M4 was
significantly increased. Therefore, we chose the Vis-MFN-M2 for operational application.

Table 2. The estimation accuracy of multiple methods on the test dataset. The best result is marked
in bold.

AlexNet VGG16 Relative CNN-RNN STCN-Net Vis-MFN

Accuracy 69.21% 68.72% 78.58% 81.10% 81.76%

Table 3. The results of the ablation experiment. The best result is marked in bold.

Setting Vis-MFN-NM Vis-MFN-NF Vis-MFN-M2 Vis-MFN-M4

Image feature extraction methods 3 × 3 3

Multi-scale fusion module × 3 3 3

The number of MSFBs 2 2 2 4

Accuracy 75.36% 72.85% 81.76% 82.49%
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mance of Vis-MFN-M4 was better than that of Vis-MFN-M2, the complexity of Vis-MFN-
M4 was significantly increased. Therefore, we chose the Vis-MFN-M2 for operational ap-
plication. 

Table 3. The results of the ablation experiment. The best result is marked in bold. 
Setting Vis-MFN-NM Vis-MFN-NF Vis-MFN-M2 Vis-MFN-M4 

Image feature extraction methods ✓ × ✓ ✓ 
Multi-scale fusion module × ✓ ✓ ✓ 

The number of MSFBs 2 2 2 4 
Accuracy 75.36% 72.85% 81.76% 82.49% 

Figure 8. Visualization of the estimated results of different methods on images with different visibility
levels. The estimated results and ground truth are marked on the image.

4. Conclusions

Highway visibility estimation in foggy weather is important for traffic safety and
intelligent highway management. Traditional methods utilize visibility sensors to directly
measure visibility. However, the meteorological observation network is not dense enough
to monitor agglomerate fog. Additionally, visibility sensors are costly and inaccurate in non-
uniform atmospheric conditions. Although deep learning methods have been applied by
many scholars for visibility estimation, the following problems still exist: (1) Most existing
methods cannot sufficiently extract fog features, which can provide valuable information
for subsequent model learning. (2) Most existing methods are inadequate in extracting
significant, high-level, multi-scale features for visibility estimation. To close these research
gaps, we propose a multi-scale fusion network for estimating highway visibility in foggy
weather. The network can estimate the visibility level from a single image of a highway
scene. To achieve this, we used multiple image feature extraction methods to extract the
structural, spectral, and scene depth features from the image. Then, a multi-scale fusion
module was designed to extract and fuse relevant features to estimate visibility adaptively.
The experiments demonstrate the effectiveness of the proposed method. Our future work
aims to improve the performance of our method and propose a benchmark for highway
visibility estimation.
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