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Abstract: Recent advances in wearable systems have made inertial sensors, such as accelerometers
and gyroscopes, compact, lightweight, multimodal, low-cost, and highly accurate. Wearable inertial
sensor-based multimodal human activity recognition (HAR) methods utilize the rich sensing data
from embedded multimodal sensors to infer human activities. However, existing HAR approaches
either rely on domain knowledge or fail to address the time-frequency dependencies of multimodal
sensor signals. In this paper, we propose a novel method called deep wavelet convolutional neural
networks (DWCNN) designed to learn features from the time-frequency domain and improve ac-
curacy for multimodal HAR. DWCNN introduces a framework that combines continuous wavelet
transforms (CWT) with enhanced deep convolutional neural networks (DCNN) to capture the depen-
dencies of sensing signals in the time-frequency domain, thereby enhancing the feature representation
ability for multiple wearable inertial sensor-based HAR tasks. Within the CWT, we further propose
an algorithm to estimate the wavelet scale parameter. This helps enhance the performance of CWT
when computing the time-frequency representation of the input signals. The output of the CWT then
serves as input for the proposed DCNN, which consists of residual blocks for extracting features from
different modalities and attention blocks for fusing these features of multimodal signals. We con-
ducted extensive experiments on five benchmark HAR datasets: WISDM, UCI-HAR, Heterogeneous,
PAMAP2, and UniMiB SHAR. The experimental results demonstrate the superior performance of the
proposed model over existing competitors.

Keywords: wearable inertial sensors; continuous wavelet transform; multimodal human activity
recognition; convolutional neural networks

1. Introduction

Wearable sensor-based human activity recognition (HAR) plays a significant role
in various applications, including sports [1–3], smart homes [4–6], and purpose-specific
monitoring systems [7–9]. By extracting information from different sensor signals, such as
accelerometers and gyroscopes, a HAR system can accurately recognize various activities,
such as running, walking, and sitting. Two common approaches for wearable inertial sensor-
based HAR systems are using single modality and multi-modality. A single-modality
sensor-based HAR approach [10–15] is generally designed to work with a specific type
of signal data source, whereas the multi-modality sensor-based HAR approach [16–21]
processes multiple sensor signals. The single-modality sensor-based HAR methods cannot
utilize complementary and comprehensive information from different modalities and
only focus on specific tasks, such as fall detection, sitting, and standing. In recent years,
multimodal sensor-based HAR methods have become preferable, as they can exploit diverse
information from various modalities for various recognition tasks.

Methods for multimodal wearable inertial sensor-based HAR can be further cate-
gorized into three groups. The first group, based on a shallow machine learning model,
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operates in the time domain. Specifically, the methods in this first group split sensor signals
into multiple segments using sliding window techniques. These segments are then clas-
sified into different action classes using conventional machine learning methods, such as
support vector machine (SVM) [16] and random forest (RF) [22]. However, this approach
captures only shallow features, often limited by human domain knowledge. Consequently,
more discriminative features are not extracted and utilized for more complex activity recog-
nition. Additionally, these methods cannot adapt to other similar activity recognition tasks
and involve time-consuming processes to choose optimal features.

The second group, in contrast, employs deep learning (DL) techniques to extract deep
features in the time domain. Specifically, convolutional neural networks (CNN) [20,23–26],
hybrid CNN and long short-term memory (LSTM) [19,27,28] are utilized to automatically
extract deep features in HAR systems without relying on human domain knowledge.
MAG-Res2Net [29] is the latest publication method, which proposed two DL architectures
of ResNet [30] with adding a gating module. The MAG-Res2Net model demonstrated
robust multimodal performance on two commonly public datasets UCI-HAR [31] and
WISDM [32] and leveraged the CSL-SHARE dataset [33]. More precisely, these deep neural
network (DNN) methods directly utilize raw sensor signals in the time domain in the
form of sequences and extract features through multiple deep neural layers. As a result,
the extracted deep features significantly contribute to improving the accuracy of HAR
systems. However, this group is constrained within the time domain, which contains
limited information about the signals.

Hence, the third group operates in the time-frequency domain by employing transfor-
mations through functions like the Fourier transform [18,34,35] and the wavelet
transform [21,36,37] to enhance the predictive accuracy of the models. These functions
convert raw signals into a spectrum of frequency components, improving the representa-
tion of sensor signals compared to using raw sensor data. DNN [17,38,39] are then used
to classify each spectrum as an activity. In comparison to wavelet, Fourier transform
tends to capture global frequency information over the entire signal. As a result, signal
decomposition may not be suitable for all HAR applications, particularly those involving
complex activities characterized by short intervals of characteristic oscillation. The wavelet
transform, in contrast, can extract local spectral and temporal information simultaneously.
Furthermore, it decomposes signals into a set of wavelets, providing a more direct represen-
tation of frequency domain distribution in the time domain. With the wavelet transform,
both the time and frequency information of the signals are preserved, making it a more
powerful transformation for extracting frequency features. In recent publications, as the
state-of-the-art results, the wavelet-transform-based and exploring CNNs-based DL meth-
ods [21,36,37] are considered, which show promising performance over existing methods
in the third group because of several significant reasons. Firstly, these methods used the
efficient wavelet-transform-based approach for extracting information from non-stationary
signals. Secondly, the methods explored the residual DL architectures of ResNet [30].
The ResNet-based methods address the issue of loss or saturation of accuracy as network
depth increases. These methods have drawbacks in complex signal processing and DL
architectures. Specifically, the signal processing is complex for suitable wavelet function
selection [36] or time-consuming for reducing noise via typical frequency domain filters [37]
or requires a well-known residual CNN architecture with 121 trainable layers [21].

In this paper, we introduce a novel model, deep wavelet convolutional neural networks
(DWCNN), which combines continuous wavelet transform (CWT) and deep convolutional
neural network (DCNN) for multimodal HAR using wearable inertial sensors. Our model
falls into the category of the third group, employing DNN and operating in the time-
frequency domain. However, unlike most methods in this group that use the Fourier
transform to compute signal representation in the time-frequency domain, our approach
utilizes CWT. Additionally, we propose an algorithm to automatically and adaptively
estimate optimal scale parameters for CWT on multiple sensor signals. This facilitates the
transformation of these signals into spectrogram images, which then serve as input to the
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DCNN. The CNN architecture consists of residual and attention blocks, with the former
extracting features from different modalities and the latter fusing these multimodal features.
We conducted extensive experiments on five benchmark HAR datasets, including WISDM,
UCI-HAR, Heterogeneous, PAMAP2, and UniMiB SHAR, to evaluate the performance of
the proposed method. The results confirm that our method is more effective compared to
existing approaches for multimodal HAR. In summary, the contributions of this paper are
as follows:

• Introduction of DWCNN, which is a combination of CWT and DCNN for multimodal HAR.
• Development of an algorithm to automatically and adaptively estimate optimal scale

parameters for CWT on multiple sensor signals.
• Designing a DCNN architecture with residual and attention blocks to extract deep

features from multimodal signals and classify them into various activity classes.
• Conduction of extensive experiments on five benchmark HAR datasets, including

WISDM, UCI-HAR, Heterogeneous, PAMAP2, and UniMiB SHAR, for evaluating
performances of the proposed method.

The remainder of this paper is structured as follows: In Section 2, we briefly review
existing methods for multimodal HAR. Section 3 outlines the problem definition for mul-
timodal HAR, and Section 4 elaborates on the intricacies of the proposed methodology.
Experimental results are reported in Section 5, and Section 6 finally concludes the paper.

2. Related Work

Artificial intelligence (AI) and DL are primarily employed in signal processing tech-
niques for HAR. We carefully survey the recent literature on sensor-based HAR using DL
in the time domain or time-frequency domain and summarize the findings in Table 1. In
the time domain, current research primarily focuses on sensor signal-based HAR using
DL techniques. These techniques include CNN [20,23,26,29,40], variants of RNNs like
LSTM and GRU, and hybrid DL methods [19,27,28,41–43]. Authors such as Yan et al. [40],
Cheng et al. [26], and Wang et al. [23] have introduced supporting techniques like the
attention layer and convolution layers with various kernel sizes to enhance CNNs for
HAR, thereby modifying the original CNN model architectures. Liu et al. [29] proposed
MAG-Res2Net, which explored two DL architectures ResNet [30] and added the gated
module to improve performance multimodal HAR on three simple and more complex
public datasets such as UCI-HAR [31] and WISDM [32] and leveraged the CSL-SHARE
dataset [33]. MAG-Res2Net, belonging to the time domain, utilizes raw signals directly
without undergoing signal transformation via wavelet transformation. It then feeds these
signals into with Res2Net, which integrates multi-scale residual networks and adaptive
attention mechanisms. More specifically, MAG-Res2Net employs two continuous ResNet
units to explore Res2Net for HAR on the time domain. The accuracy of the MAG-Res2Net
method on UCI-HAR, WISDM datasets are 94.26%, 98.42%, respectively. Hybrid models,
such as those combining CNN and LSTM or GRU, utilize CNN for spatial feature extraction,
LSTM for learning temporal information, and GRU layers for effectively learning long-term
dependencies in the data. However, these models typically use raw sensor signals in the
time domain and extract features using complex CNN or LSTM architectures, which can be
challenging to train and time-consuming. Additionally, some methods are highly specific
to particular activity recognition types, as seen in the work of Lee et al. [20]. As a result,
these models may not readily adapt to different human activity domains.
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Table 1. Descriptions of related works.

Refers Method Domain Detail Limitation

Dua et al. 2021 [42] CNN-GRU Time

It achieves superior
classification performance
based on hybrid CNN
and GRU

Model is hard to train and
high computation cost.

Gao et al. 2021 [24] DanHAR Time

Model presents residual
networks and attention
mechanisms to improve
feature representation ability.

Model needs to more labeled
multimodal samples for the
decisions of neural models.

Khatun et al. 2022 [19] CNN-LSTM Time

The hybrid DL models use the
self-attention algorithm to
enhance the predictive
capabilities of the system.
CNN is used for spatial
feature extraction, and the
LSTM network is utilized for
learning temporal
information.

It is not able to perform better
in the case of multiple people
and more complex physical
activities.

Lee et al. 2023 [20] MCNN Time

It effectively extracts features
using multiple CNNs with
different kernel sizes and an
attention layer to each channel
and spatial level.

It performs poorly and needs
to add a transform layer for
the specific domain.

Yan et al. 2023 [40] Spatial-Temporal Graph CNNs Time

It offers an outstanding
opportunity for fall detection
by extracting the motion
features of human falls and
the activities of daily living
(ADL s) at the spatial and
temporal scales for fall
detection.

It is more influenced by
window size for types of falls.

Ma et al. 2019 [18] AttnSense Time-frequency

The model capture the
dependencies of sensing
signals in prioritized sensor
selection and improves the
comprehensibility

fast Fourier transform (FFT)
tendency to capture global
frequency information over
the entire signal.

Liu et al. 2023 [29] MAG-Res2Net Time

Model used directly two DL
architectures Res2Net [30]
with adding the gated module
to improve performance of
multimodal HAR.

Nevertheless, certain
proposed techniques like Loss
Combined and multi-scale
networks increase
computational or memory
costs.

Dahou et al. 2023 [36] MLCNNwav Time-frequency

Model relies on residual
CNNs and then
one-dimensional trainable
DWT.

Complex transform the output
of MLCNNwav by
Daubechies wavelet family
with coefficients ranging from
1 to 6.

Showmik et al. 2023 [37] PCWCNN Time-frequency

Model uses principal
component analysis and the
DWT from signal feed into
residual CNNs.

Time-consuming and complex
in the step signal processing
for reducing noise since
typical frequency domain
filters.

Pavliuk et al. 2023 [21] CWT-DenseNet Time-frequency

The pre-trained model
combines different CWT
configurations and
DenseNet [44] with
121 trainable layers to improve
the accuracy of HAR
performance.

Select scale parameters and
CWT functions cost time and
complex residual CNNs-based
architecture.

Recently, the hybrid wavelet transform and residual CNN-based techniques [21,36,37]
were proposed to enhance the accuracy of the multimodal wearable sensor-based HAR
problem. In [36], the MLCNNwav model relies on residual CNN and one-dimensional
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trainable wavelet transform. First, MLCNNwav employs the residual CNN-based architec-
ture to capture global features as the output results. Then, the output of results is fed into
a discrete wavelet transform (DWT) to enhance the representation and generalization by
learning-activity-related features, whereas PCWCNN [37] first reduces noise via typical
frequency domain filter and transform signals by DWT, then uses multilayer residual CNNs
to extract features and classification. In [21], the authors proposed CWT-DenseNet, which
is the hybrid wavelet transform and DenseNet [44]. The CWT-DenseNet method handles
complex with various wavelet functions for each HAR dataset. In addition, CWT-DenseNet
explored residual CNN architectures with 121 trainable layers for HAR. However, CWT-
DenseNet has the robustness residual CNN-based architecture but only evaluated two
small public datasets, specifically the KU-HAR [45] and UCI-HAPT [46] datasets. These
methods are time-consuming to select a suitable wavelet function and scale parameters
range for different types of signals and the complex residual CNN-based methods.

To address the limitations of existing wearable inertial sensor-based multimodal HAR
models, we introduce a novel and robust hybrid model known as the DWCNN model. In
Section 4, we will present the problem definition and provide an in-depth exploration of
our proposed methodology.

3. Problem Definition

In this paper, we tackle the HAR problem using wearable inertial sensors, including
accelerometers, gyroscopes, and magnetometers, attached to different positions on each
object. Each type of sensor generates three signals, as it measures 3D data along the x-axis,
y-axis, and z-axis. To process these data, we employ a channel-based late fusion approach.
This approach involves splitting each sensor signal into three input signals based on the
channel position. Next, each channel-based signal is further divided into smaller segments
using sliding window techniques, enabling us to extract features through network layers
and later fuse these features for comprehensive analysis. We represent the raw sensor data
input, denoted as S, along with its channels as follows:

S = [S1, S2, . . . , Si, . . . , Snc ]. (1)

Here, Si = (S1
i , S2

i , . . . , St
i ) for i ∈ (1, nc), where nc represents the number of sensor modali-

ties or input channels, and St
i is the signal vector of the i-th channel sensor at time t. The

goal of the multimodal HAR problem is to split Si into fragments and assign an activity
category to each segment. Specifically, given the multimodal sensor data S, our objective is
to detect activities within a signal sequence using deep supervised learning techniques in
the time-frequency domain.

4. Proposed Methodology

To facilitate human activity recognition, we introduce the DWCNN model for multi-
modal HAR using wearable inertial sensors. This model combines the continuous wavelet
transform (CWT) with the deep convolutional neural network (DCNN). The framework
of the model is depicted in Figure 1. The process begins with the raw sensor input data
S, which undergoes a CWT phase. Each signal sequence within Si is transformed into a
spectrogram, represented as a CWT image in Ii, enabling time-frequency analysis. Sub-
sequently, these CWT images are input into the proposed DCNN, which extracts feature
representations for human activity recognition.
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Figure 1. Framework of the proposed DWCNN method.

4.1. CWT

The CWT, as introduced by [47], is a method that transforms a 1D signal x(t), where
t represents time, into a 2D time-scale representation. This transformation is defined
as follows:

C(a, b) = |a|
−1
2

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt, (2)

where C(a, b) represents the CWT coefficients, the symbol (∗) denotes complex conjugation,
ψ is the mother wavelet, a is the scaling parameter, and b represents the time-shifting
parameter or translation of x(t). The coefficient matrix C obtained through the CWT is
then converted into a time-frequency image. It is important to note, as mentioned in [48],
that selecting the most suitable mother wavelet for specific problems can be a challenge.
Different wavelet choices applied to the same signal can yield varying results. Additionally,
the different scales and signal lengths are shifted throughout the entire dataset, and the
results are multiplied by the sampling interval to obtain meaningful coefficients.

In [21], the Morlet wavelet is employed for non-stationary time series due to its
effective auto-correlation performance and low cross-correlation characteristics. The Morlet
wavelet function is defined as:

ψ(t) = cσπ−
1
4 e−

1
2 t2
(

eiσt − e−
1
2 σ2
)

, (3)

where cσ is given by:

cσ =
(

1 + e−σ2 − 2e−
3
4 σ2
)− 1

2 . (4)

To determine the appropriate parameters σ and a for constructing an optimal wavelet trans-
form, we introduce an algorithm for automatically and adaptively selecting the wavelet
scale in CWT. The details are shown in Algorithm 1. This algorithm consists of two proce-
dures. The first procedure selects the optimal σ based on Shannon entropy, as described
in [49]. Shannon entropy is used to assess the sparsity of wavelet coefficients. The cor-
responding shape factor σ is chosen to minimize Shannon entropy, resulting in wavelet
transform coefficients with higher sparsity. The second procedure optimizes the selection of
the scale parameter based on singular value decomposition (SVD), following the approach
outlined in [50]. The goal is to obtain the maximum periodicity ratio δ using SVD on the
coefficients matrix. This helps determine the optimal scale parameters for the wavelet
transform. Figure 2 provides a visual representation of CWT images generated from a
signal sequence at different scale parameters using the Morlet wavelet function. Generally,
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a broad range of scales can capture more information about slow changes, which can
enhance classification accuracy.

Algorithm 1 Optimal wavelet transform scale algorithm
1: Input: sensor signal x(t), σ = [σ0,..,σk], a = [a0,. . . ,ak]
2: Initial value σ0, a0 . σ: shape factor, a: scale
3: Procedure 1: Select σ with the minimal Shannon entropy
4: for i = 0, . . . , k do
5: Compute CWT coefficients Ci(a,b) with size m × n
6: Compute di =

ci,j

∑m×n
1 ci,j

. ci,j is the element at the (i, j) position of the Ci

7: Compute Shannon entropy Hi = −∑m×n
i=1 di log di

8: σ = agrmin{Hi, Hi+1}
9: end for

10: Procedure 2: Select a with the maximum periodicity
11: for j = 0, . . . , k do
12: Compute CWT coefficients Cj

13: Compute SVD of matrix Cj = UEVT . UTU = I, VTV = I, E =diag(α1, α2, . . . , αp),
p = min(m, n)

14: Compute periodicity ratio δj =
(

αi
αi+1

)2

15: a = agrmax
{

δj, δj+1
}

16: end for
17: Output: (σ, a)

(a) scale 32 (b) scale 64 (c) scale 128

Figure 2. CWT images of a signal sequence at different scales.

4.2. DCNN Architecture

We propose DCNN by exploiting the original CNN and adding the residual attention
blocks (RAB). The DCNN architecture is shown as a part of Figure 1a. The proposed DCNN
includes two convolutional (Conv) layers, two RAB as in Figure 1b, two max pooling (MP),
and a fully connected (FC) layer. The details of the proposed DCNN model for the layer
names and each layer’s hyperparameter settings are listed in Table 2.

Table 2. Description of hyperparameter settings.

Layer Name Hyperparameter Settings

Conv Activation = ReLU, Strides = 1, Kernel Size = 5
RAB 2 Conv: Activation = ReLU, Strides = 1, Kernel Size = 3, Batch Norm
Conv Activation = ReLU, Strides = 1, Kernel Size = 5
MP Padding = Same, Strides = 1, Pool Size = 2

RAB 2 Conv: Activation = ReLU, Strides = 1, Kernel Size = 3, Batch Norm
MP Padding = Same, Strides = 1, Pool Size = 2
FC Activation = Softmax
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4.2.1. Convolutional Layer

CWT transforms sensor signal inputs into CWT images. The CWT images are denoted
x(ql , pl), where ql and pl represent the length and width of the time-frequency images,
respectively. Then, CWT images are fed into the convolutional layer. The output Cln of
convolutional layer is formulated as

Cln = f (x ·W + B) (5)

where W and B represent weight and bias, respectively. Here, f represents the activation
function of nonlinear mapping. The actual size of the feature image is denoted as

S(Cln) =

[
ql + 2× r− qs

s
+ 1
]
×
[

pl + 2× r− ps

s
+ 1
]
× KC, (6)

where KC is the number of the convolution kernel, qs and ps are the length and width of
the convolutional kernel, respectively. r is the edge extension parameter. s is the step size
of the convolutional kernel.

4.2.2. Residual Attention Block

The RAB serves as a crucial component of our proposed DCNN architecture, as
depicted in Figure 1b. Each RAB consists of two convolutional layers and a residual
connection, which can be represented as:

H(x) = f (Cln + x) (7)

Here, H(·) and x denote the output and input of the RAB, respectively. Cln represents the
output of the convolutional layer before the summation operation. The activation function
f is defined as:

f (x) = max(0, x) (8)

Between the two convolutional layers, we apply batch normalization (Batch Norm) and
ReLU activation. Batch Norm normalizes the outputs from the first hidden layer before
passing them as inputs to the next hidden layer, improving convergence during training.
Additionally, the residual connection facilitates the aggregation of low-level and high-level
features in an additional way, addressing the issue of gradient vanishing that can occur in
deep networks.

4.2.3. Max Pooling Layer

The pooling layer reduces the dimensionality of output feature maps by replacing
the output of a particular network position with the overall statistical characteristics of its
neighboring outputs. The MP kernel is denoted as P(qm × pm), where qm and pm represent
the length and width of MP, respectively. The MP layer identifies multiple feature images
Pi as follows:

Pi = maxP(qm×pm)Cln, (9)

where Pi ranges from 1 to Kp, and Cln has dimensions q× p. The output size of the MP
layer is calculated as:

S(Pi) =

[
q + 2× r− qm

s
+ 1
]
×
[

p + 2× r− pm

s
+ 1
]
× Kp, (10)

where Kp represents the number of MP kernels.

4.2.4. Fully Connected Layer

The output from the RAB layer is passed to the FC output layer with a softmax
activation, which classifies the input into a given number of classes. In the FC layer, each
neuron performs a linear transformation on the input vector using a weight matrix. This
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product is then passed through a non-linear activation function. Specifically, in this paper,
the FC operation is defined as:

Z = f (u×W + B). (11)

Here, u represents the output from the previous layer, Z is the output of the FC layer, and
W and B denote the weight and bias terms, respectively. The activation function f used
is ReLU.

To classify the input data into their respective classes, a softmax activation function is
employed at the final output layer. The softmax function takes a vector of FC layer outputs
and returns a vector of probability scores. The equation for the softmax activation function
is as follows:

so f tmax(z)i =
e(zi)

∑N
j=1 ezj

, (12)

where z is the vector of FC layer outputs, N is the number of classes, and the i-th entry in
the softmax output vector, softmax(z), represents the predicted probability of the test input
belonging to class i.

4.3. Model Training

The DCNN architecture consists of two convolutional (Conv) layers, two residual
attention blocks (RABs), two max pooling (MP) layers, and a fully connected (FC) layer. The
DCNN learning procedure is presented in Algorithm 2. Forward propagation is conducted
using Equations (4)–(11), where information flows from the input layer through the hidden
layers to the output layer, resulting in the model’s output. Each forward propagation
iteration produces the model’s error value. To calculate this error, we employ the cross-
entropy cost function:

L = − 1
n

n

∑
1
[y log ŷ + (1− y) log(1− ŷ)], (13)

where n represents the number of training samples, yi is the actual label, and ŷi is the
predicted value of the model. To fine-tune the weight and bias parameters layer by layer,
we employ a gradient descent algorithm, performing error backpropagation with Adam
optimization [51].

Algorithm 2 DCNN learning algorithm
1: Input: spectrogram images returned by Algorithm 1, data splitted into training, valida-

tion, and testing sets
2: Output: (optimal weights and biases of DCNN)
3: repeat
4: Forward Propagation: Prediction of the label is calculated as (4)–(11)
5: Backward Propagation: Conduct backward propagation with Adam optimization
6: until convergence

5. Experiments
5.1. Dataset

Several public HAR datasets including WISDM, UCI-HAR, Heterogeneous, PAMAP2,
and UniMiB SHAR are used for our evaluation. The statistics of these datasets are described
in Table 3. There are several differences between them such as the number of subjects, the
number of activities, the number of samples, and the length of each sample. The WISDM
and UniMiB SHAR datasets are recorded sensor signals through a triaxial accelerometer.
UCI-HAR, PAMAP2, and Heterogeneous datasets are collected from more than two differ-
ent types of sensors such as accelerometer (A), gyroscope (G), and magnetometer (M). Each
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type of sensor generates the 3D acceleration signals typically corresponding to the x-axis,
y-axis, and z-axis. The details of the datasets are as follows:

• WISDM [32] is collected from 9 users wearing smartphones equipped with a three-
axial accelerometer. Each user performs 6 types of low-level daily activities (walking,
jogging, upstairs, downstairs, sitting, and standing). The data are composed of triaxial
accelerometer signals collected at a sampling frequency of 20 Hz. The length of the
sliding window is equal to 10 s and the overlap rate is set to 90%. Therefore, the whole
WISDM dataset includes 10,981 samples.

• UCI-HAR [31] is collected by 30 volunteers wearing a smartphone to record the ac-
celerometer, gyroscope, and magnetometer signals, performing 6 activities (walking,
upstairs, downstairs, sitting, standing, and lying). The sensor signals were prepro-
cessed by applying noise filters and then sampled in fixed-width sliding windows of
2.56 s and 50% overlap (128 readings/window).

• Heterogeneous [52] contained sensing data of accelerometer and gyroscope. It was
collected from 9 users performing 6 activities (biking, sitting, standing, walking, stair
up, and stair down). This dataset has been investigated in a large number of simple
activities HAR. The key fact of the dataset is collected by 12 different smartphones and
smartwatches, which increases the complexity of the task. The data are sampled at the
frequency of 100 Hz.

• PAMAP2 [53] recorded signals of the accelerometer, gyroscope, magnetometer, tem-
perature, and heart rate sensor. We select accelerometer, gyroscope, and magnetometer
sensor signals for evaluation. The dataset is collected from 9 users while performing
12 activities (lying, standing, sitting, walking, cycling, nordic walking, ascending stairs,
descending, running, ironing, vacuum cleaning, jumping rope).

• UniMiB SHAR [54] is recorded sensor signals through a triaxial accelerometer. It is
performed by 30 participants along with 17 activities, including 9 different types of
activities of daily living (StandingUpFL, LyingDownFS, StandingUpFS, Running, Sit-
tingDown, GoingDownS, GoingUpS, Walking, Jumping) and 8 different types of falls
(Falling-BackSC, FallingBack, FallingWithPS, FallingForw, FallingLeft, FallingRight,
HittingObstacle, Syncope). The window length and overlap rate are set to around
3 s and 50%, respectively. Data are sampled at a frequency of 50 Hz, which provides
11,771 acceleration samples.

Table 3. Description of datasets.

Dataset Subject Sample Rate Activity Length Sensor Sample

WISDM [32] 29 20 6 200 A 10,981
UCI-HAR [31] 30 50 6 128 A, G 10,470

Heterogeneous [52] 9 100 6 128 A, G 43,930,257
PAMAP2 [53] 9 100 12 128 A, G, M 2,844,868

UniMiB SHAR [54] 30 50 17 151 A 11,711
Note: A is denoted accelerometer, G is denoted gyroscope, M is denote magnetometer.

5.2. Experimental Setup

In this paper, the experiment is run on a computer with an Intel Core i7 processor
(Intel Corporation: Santa Clara, CA, USA) 16 GB of RAM. In terms of software, the
Google COLAB server is used to compile the experimental analyses. Keras as a Python 3
library is used for conducting DL model training and parameter inference with automatic
differentiation. In addition, dataset and results analysis is conducted by Matplotlib and
Seaborn library.

As the architecture of DWCNN in Figure 1 is shown in Table 2, the training parameters
of DWCNN and the other algorithms were first determined, as shown in Table 4. First, CWT
is applied to sensor signal input to get CWT images and resize all with size 64 × 64. The
kernel size of the convolutional layer is set to 5 × 5. In RAB, the size of the convolutional
kernel is set to 3 × 3. The activation function is ReLU. The size of the max pooling window
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is 2 × 2. The size of the output FC layer is equal to the number of labels of each dataset.
The DWCNN optimizes the scale parameter with a scale of 64, and DCNN optimizes by
the Adam optimizer for the optimization of the cross-entropy loss function with a learning
rate of 0.0001 with a batch size of 128, with training epochs of 100. The datasets are divided
into a 70 % training set, a 10% validation set, and a 20% testing set. Furthermore, we run
10 repetitions of the experiments and report averaged measures as the final measures of a
model’s performance.

Table 4. Values of the training parameters of DWCNN.

Parameter Value

Scale_parameter 32, 64, 128
Wavelet_function Morlet wavelet

Minibatch_size 128
Activation_function ReLU

Batch_Normalization −1
Learning_rate 0.0001
Max_epochs 100

Optimizer_function Adam
Classifier_function Softmax

Loss Cross-Entropy function

5.3. Evaluation Measures

For the classification task, we use evaluation metrics such as accuracy (Acc), precision
(P), recall (R), and F1 as shown in Equations (14)–(17).

Acc =
TP + TN

TP + FN + TN + FP
(14)

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

F1 =
2× P× R

P + R
(17)

Here, TP and TN are the true positives and true negatives, and FP and FN are the
false positives and false negatives, respectively. Precision is the ratio of correctly predicted
positive observations to the total predicted positive observations. Recall is the ratio of
correctly expected positive observations to all observations in the actual class. F1 score is
a harmonic average of the P and R values. When there is an unbalanced distribution of
classes, this measure is crucial.

5.4. Compared Methods

We compare DWCNN with the baseline and state-of-the-art methods. Firstly, the
simple DNN methods on the time domain, which use only raw signal inputs without
processing signals, such as CNN [55], LSTM [56], and CNN-LSTM [19]. Secondly, the hybrid
DNN methods on the time domain or time-frequency domain with attention mechanism
as state-of-the-art for HAR, specifically, such as DeepSense [57], and DanHAR [24] on
the time domain, on the time-frequency domain such as AttnSense [18], and the CWT-
DenseNet methods [21]. Finally, to verify the contributions of different components in
the proposed DWCNN method, we consider two variants of the DWCNN model such as
DWCNN-noCWT and DWCNN-noRAB. The details of compared methods are as follows:

• CNN [55]: A CNN model with three convolution layers, a pooling layer, and a fully
connected layer.

• LSTM [56]: A simple LSTM model for time-series dataset.
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• CNN-LSTM [19]: The model uses CNN to extract features and LSTM to learn time
dependencies.

• DeepSense [57]: The model uses CNN to extract features of each sensor and combine
them by another merge convolutional layer, then it uses LSTM to learn time
dependencies.

• DanHAR [24]: The model presents residual networks with CNN and attention mecha-
nisms to improve feature representation ability.

• AttnSense [18]: The model combines an attention mechanism with CNN and an
improved LSTM to capture the dependencies of sensing signals in both spatial and
temporal domains. The raw sensor signal inputs are required to transform into spec-
trograms as images by FFT.

• CWT-DenseNet [21]: The pre-trained model combines CWT and DenseNet [44] to
extract features on the time-frequency domain.

• DWCNN-noCWT: A variant of DWCNN removes the CWT layer and only uses the
proposed DCNN.

• DWCNN-noRAB: A variant of DWCNN removes the RAB blocks instead of convolu-
tion layers.

We compare DWCNN with the baseline and the state-of-the-art methods that verify
the performance of our approach on the time-frequency domain based on hybrid wavelet
transform and residual CNN-based techniques. We compare the simple and hybrid DNN
methods to identify the effective proposed method on the time-frequency domain using
CWT and the robustness of the DCNN architecture. We compare two variants of DWCNN
to estimate potential implications of removing CWT layer or RAB blocks on the model’s
performance. The role of each component is evaluated in DWCNN.

5.5. Results

The proposed DWCNN method was compared with the baseline and the state-of-the-
art methods on five public datasets with the average F1 measure. The results are shown
in Table 5, and the normalized confusion matrixes are illustrated in Figures 3–7. Results
demonstrate that DWCNN performs the best among all compared methods on all datasets.

Table 5. Comparison of the DWCNN with the compared methods on average F1 measure and
standard deviation.

Method WISDM UCI-HAR Heterogeneous PAMAP2 UniMiB SHAR

CNN [55] 0.8580
±0.0346

0.9024
±0.0312

0.8080
±0.0291

0.8170
±0.0361

0.7483
±0.0415

LSTM [56] 0.8020
±0.0289

0.8591
±0.0318

0.8120
±0.0331

0.7510
±0.0297

0.7521
±0.0367

CNN-LSTM [19] 0.8706
±0.0158

0.9134
±0.0293

0.8560
±0.0192

0.7480
±0.0235

0.7739
±0.0314

DeepSense [57] 0.8605
±0.0179

0.9218
±0.0136

0.9310
±0.0256

0.8250
±0.0278

0.7602
±0.0286

DanHAR [24] 0.9795
±0.0313

0.9742
±0.0245

0.9724
±0.0213

0.9316
±0.0256

0.7903
±0.0356

AttnSense [18] 0.9520
±0.0296

0.9645
±0.0327

0.9650
±0.0101

0.8930
±0.0134

0.7712
±0.0256

CWT-DenseNet [21] 0.9456
±0.0192

0.9517
±0.0267

0.9127
±0.0145

0.8802
±0.0254

0.8216
±0.0219

DWCNN-noCWT 0.9136
±0.0216

0.9056
±0.0387

0.9015
±0.0218

0.9137
±0.0357

0.8126
±0.0238

DWCNN-noRAB 0.9649
±0.0231

0.9418
±0.0215

0.9437
±0.0156

0.9216
±0.0286

0.8245
±0.0225

DWCNN 0.9856
±0.0121

0.9956
±0.0156

0.9726
±0.0225

0.9352
±0.0197

0.8352
±0.0183
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DWCNN’s performance is better than the simple DNN methods such as CNN, LSTM,
and CNN-LSTM, averaging from 8% to 15%. It verifies that the DWCNN has a greater
capability to capture features in the time-frequency domain in multimodal sensing data
for HAR. CNN, LSTM, and CNN-LSTM cannot capture features to distinguish between
complex activities on the time domain because of the simple DNN architecture. The
experiment results demonstrate that the spectrogram images provide more complementary
information of signals by extracting the DCNN based on adding RABs. Therefore, the
signal processing by CWT in DWCNN brings a large benefit instead of using raw signals
for the HAR problem.

DWCNN’s performance is higher than the hybrid DNN methods on the time do-
main such as DeepSense and averaging from 2% to 5% on the WISDM, UCI-HAR, and
Heterogeneous datasets and from 7% to 8% on the PAMAP2 and UniMiB SHAR datasets,
respectively. In comparison with the hybrid DNN methods on the time-frequency domain,
DWCNN’s performance is better than AttnSense and CWT-DenseNet methods averaging
from 2% to 4% on WISDM, UCI-HAR, and Heterogeneous datasets and from 5% to 7%
on PAMAP2 and UniMiB SHAR datasets, respectively. Although AttnSense and CWT-
DenseNet can capture the dependencies of multimodal sensing signals in both spatial
and temporal domains, they are not well enough for complex discrimination activities on
the time-frequency domain on PAMAP2, and UniMiB SHAR datasets. The reason may
be the different signal transform functions between the FFT of AttnSense and CWT of
CWT-DenseNet. A limitation of the Fourier transform can only capture global frequency
information over an entire signal. Therefore, the signal decomposition of the AttnSense
method may not serve all HAR applications well where signals have short intervals of
characteristic oscillation, whereas the CWT of CWT-DenseNet can decompose a signal
directly according to the frequency and represent it in the frequency domain distribution
state in the time domain. So, the signal’s time and frequency information are retained. The
CWT-DenseNet combines Morlet wavelet with 256 scale values and DenseNet architecture
with 121 trainable layers. However, the different wavelet functions and scale parameters of
CWT in CWT-DenseNet are very complex. It is not effective for various activity recognition
such as PAMAP2, and UniMiB SHAR datasets by 256 scale parameters with the complex
CNN architecture. The key distinction of DWCNN on the compared methods is signal
processing by auto sale parameter optimization with the Morlet wavelet function. To obtain
meaningful and rich features by scale parameter and DNN optimization, the proposed
DWCNN method uses the CWT algorithm to transform signals into spectrograms as images
with auto-scale parameters. Then, the images are fed into the DCNN, which includes RABs
to enhance capturing and extracting feature representation.

We employ the experiment cases with the two variants of DWCNN such as DWCNN-
noCWT, and DWCNN-noRAB. The performance of DWCNN outperforms its variants. The
DWCNN’s performance is higher than DWCNN-noCWT from 2% to 9% on the average
F1 score. The F1 result of the proposed method is higher than DWCNN-noRAB from
1% to 5%. The performance of DWCNN-noRAB is higher than DWCNN-noCWT on the
F1 score with five public datasets. These results emphasize the significance of signal
transformation by CWT in our proposed method. The key reason is signal processing
by CWT with auto-optimal scale parameter selection based on Algorithm 1 to extract
the distinguish spectrograms such as images. Consequently, the averaging F1 results of
DWCNN-noRAB on the time-frequency domain are better than DWCNN-noCWT on the
time domain on all datasets. However, the results imply that DWCNN-noRAB cannot
defeat DWCNN. The main reason is residual connections in RABs in DCNN of DWCNN
that address the generalization ability of DNNs. Therefore, DCNN can extract distinctive
features from simple and complex activities. Based on hybrid signal transformation by
CWT and DCNN, the DWCNN model is an effective and robust method for multimodal
wearable sensor-based HAR problems.
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Figure 3. Confusion matrix of WISDM.

Figure 4. Confusion matrix of UCI-HAR.

Figure 5. Confusion matrix of Heterogeneous.
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Figure 6. Confusion matrix of PAMAP2.

Figure 7. Confusion matrix of UniMiB SHAR.
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In order to further verify the outperforming of the proposed method for each class label
on each HAR dataset, we normalized confusion matrixes, which are shown in Figures 3–7.
The confusion matrix of three datasets such as WISDM, UCI-HAR, and Heterogeneous, is
composed of six activities in Figures 3–5, respectively. The confusion matrixes show that
our proposed method performs well in distinguishing six simple activities. Specifically,
the performance of six simple activities on three datasets such as WISDM, UCI-HAR, and
Heterogeneous outperforms by 95% to 99% accuracy measure. In several specific cases,
the accuracy performance of walking activity is 100%. Figures 6 and 7 show the confusion
matrix of PAMAP2 and UniMiB SHAR that DWCNN is effective well on both simple and
complex activities. The reason is that DWCNN can leverage complementary information
from both spatial and temporal domains to compute more discriminative complex activities.
Therefore, DWCNN can improve the performance of HAR classification. However, several
class labels of UniMiB SHAR are only higher than about 70% (such as syscope, fallingleft,
fallingbacksc, fallingwithbs, fallingback, and fallingright). The main reason may be their
interfering class labels and the number of samples for their class labels is not enough for
distinguished learning.

We perform a five-fold cross-validation for all datasets to evaluate the generality of
the proposed DWCNN method. The five-fold cross-validation processing is performed
as follows. Each dataset is randomly partitioned into five folds, in which each fold is
held out in turn and the training is performed on the rest four-fifths. Thus, the learning
processing is executed overall five times on different training sets. The accuracy results are
shown in Figure 8. The performance of DWCNN on three datasets such as WISDM, UCI-
HAR, and Heterogeneous, obtains more than a 97% accuracy measure. The performance
of DWCNN on PAMAP2 has more than a 92% accuracy measure. On UniMiB SHAR,
accuracy is more than 82%. The performance of DWCNN on WISDM, UCI-HAR, and
Heterogeneous is higher than PAMAP2 and UniMiB SHAR. Several significant reasons
are the number of class labels, the type of activities (simple activity, complex activity), and
the ratio between the number of class labels with total samples. Specifically, three datasets
such as WISDM, UCI-HAR, and Heterogeneous have six class labels with simple activities,
whereas PAMAP2 and UniMiB SHAR have twelve and seventeen class labels including
simple and complex activities, respectively. UniMiB SHAR has a large number of class
labels but the number of samples for each class label is small. Therefore, UniMiB SHAR
does not have enough samples for the training model to distinguish activities.

Figure 8. Accuracy results of five-fold cross-validation on five datasets.
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5.6. Ablation Experiments

Ablation experiments with two models such as DWCNN-noCWT and DWCNN-
noRAB are examined to thoroughly evaluate the suggested DWCNN model. The first
method, DWCNN-noCWT, is implemented to test the effectiveness of the learning original
signal by combining RABs with CNN without CWT. The second method, DWCNN-noRAB,
evaluates the effectiveness of learning CWT and CNN models without RAB. The accuracy
results of comparing three models on five datasets are shown in Figure 9. The DWCNN
performance outperforms the two compared variants (DWCNN-noCWT and DWCNN-
noRAB). The DWCNN performance is higher than DWCNN-noCWT by about 5%, 4%, 6%,
5% and 6% on UniMiB SHAR, PAMAP2, Heterogeneous, UCI-HAR, WISDM, respectively.
This indicates that the CWT phase in DWCNN has a significant role in the DNN. Based
on CWT, the original sensor signals were processed from the time domain into the time-
frequency domain with meaningful spectrogram images. In addition, combining RAB and
CNN architecture in the proposed method is suitable for spectrum images. The DWCNN
performance is higher than DWCNN-noRAB by about 4%, 3%, 4%, 4% and 5% on UniMiB
SHAR, PAMAP2, Heterogeneous, UCI-HAR, WISDM, respectively. Specifically, on the
WISDW dataset, the DWCNN-noCWT, and DWCNN-noRAB have a classification accuracy
of 92.16% and 93.59%, respectively, while the DWCNN acquires a better result of 98.26%.
With UCI-HAR, the DWCNN-noCWT, DWCNN-noRAB, and DWCNN have a classification
accuracy of 94.48%, 95.58%, and 99.87%, respectively. The accuracy results of DWCNN-
noCWT, DWCNN-noRAB, and DWCNN models are 91.46%, 92.71%, and 97.65% on the
Heterogeneous dataset. The accuracy results of DWCNN-noCWT, DWCNN-noRAB, and
DWCNN models are 87.03%, 88.92%, and 91.85% on the PAMAP2 dataset. On the UniMiB
SHAR, the accuracy of DWCNN-noCWT, DWCNN-noRAB, and DWCNN models are
79.06%, 80.18%, and 84.59%, respectively.

Figure 9. Accuracy results of three models on five datasets.

The performance of DWCNN outperforms its variants. The accuracy result of DWCNN-
noRAB is higher than DWCNN-noCWT on five public datasets. These results emphasize
the significance of signal transformation by CWT in our proposed method. The key
reason is signal processing by CWT with auto-optimal scale parameter selection based
on Algorithm 1 to extract the distinguish spectrograms such as images. Consequently,
the accuracy results of DWCNN-noRAB on the time-frequency domain are better than
DWCNN-noCWT on the time domain on all datasets. In addition, the results imply that
DWCNN-noRAB cannot defeat DWCNN. The main reason is residual connections in RABs
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in DCNN of DWCNN that address the generalization ability of DNNs. Therefore, DCNN
can extract distinctive features from simple and complex activities. Based on hybrid signal
transformation by CWT and DCNN, the DWCNN model is an effective and robust method
for multimodal wearable sensor-based HAR problems.

In order to evaluate the effectiveness of the proposed method with two variant meth-
ods, the number of training epochs is constantly set to 100 during the whole experiment.
As accuracy results following epochs from five public datasets such as WISDM, UCI-HAR,
Heterogeneous, PAMAP2, and UniMiB SHAR, respectively, such as Figure 10a–e, the
DWCNN model’s performances outperforms DWCNN-noCWT and DWCNN-noRAB
models. Therefore, the CWT phase and RAB significantly contribute to the performance gain
when compared with two variant baselines across five public datasets. Especially, there is an
increase of about 4% and 6%, respectively, over the DWCNN-noRAB and DWCNN-noCWT
models on all datasets.

(a) WISDM (b) UCI-HAR

(c) Heterogeneous (d) PAMAP2

(e) UniMiB SHAR

Figure 10. Performance comparisons on five public datasets on accuracy measure.
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We implement our proposed method on five datasets with different scale parameters
to evaluate the effectiveness of finding the scale optimization parameter in Algorithm 1.
The averaging F1 results are given in Figure 11. The results show that the best number of
wavelet scale parameters for both datasets is 64. It can be found that increasing the scale
size from 32 to 64 tends to improve the performance of the model. When the scale size is
more than 64, the model’s performance decreases and tends to stabilize after a certain scale
size. The reason is that CWT can be able to extract time-frequency information. The smaller
scales, such as 20, 21, and 22, correspond to high frequencies and thus predominantly
consist of noise in raw signals. When we go up in scale (i.e., in 25, 26), we observe bright
light corresponding to the activity. However, we can lose the signal in the larger-scale
coefficients (i.e., more than 26), which are associated with low-frequency information.

We investigate the number of training epochs to give the proposed model enough
space. Figure 12 shows the training and validation accuracy along training epochs on
five datasets. Accuracy is calculated as the number of correct predictions divided by
the total number of predictions made by the model. Reviewing the learning curves, we
can see that the model of the proposed method converges well with performance on the
validation dataset at around 40 epochs with WISDM, UCI-HAR, Heterogeneous, and
PAMAP2 datasets. The improvement trend continues with the UniMiB SHAR at around
70 epochs. The results imply that the number of training epochs of the DWCNN model is
small to obtain effective performance on all datasets. Therefore, DWCNN is a generality
architecture model for multimodal sensor-based HAR.

Figure 11. The performance of HAR under different wavelet scales.
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Figure 12. Accuracy change with epochs during training.

6. Conclusions

Human activity recognition from multimodal sensing data is a challenging task. In this
paper, we propose the DWCNN method to learn features from the time-frequency domain
and improve accuracy for the HAR task by combining scale parameter optimization in the
CWT algorithm and RABs in DCNN architecture. As demonstrated in the experiments
on five public HAR datasets, the proposed method outperforms baseline and state-of-
the-art methods with WISDM, UCI-HAR, Heterogeneous, PAMAP2, and UniMiB SHAR
datasets in terms of 98.56%, 99.56%, 97.26%, 93.52%, and 83.52% F1 scores, respectively.
The proposed DWCNN significantly enhanced the performance of multimodal HAR since
the proposed method can automatically learn features from the time-frequency domain
based on the hybrid CWT and DCNN model.

In real-world situations, wearable-based systems can have problems with the loss
of sensor signals or noisy data, so combining the different modalities may resolve their
limitations and provide better solutions. Using vision and wearable sensors for HAR can
solve some limitations and be used for healthcare applications. In future work, we would
explore the fusion of vision and wearable sensors that may provide view-invariant features,
which will be more useful in a realistic environment.
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