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Abstract: This paper presents a new self-clocked time-to-digital conversion method based on a
binary successive approximation (SA) algorithm. Its novelty consists in combining fully clockless
operation with direct conversion of the measured time interval. The lack of any reference clock
makes the presented method potentially predisposed to low-power solutions. Furthermore, its circuit
representation is extremely simple, thereby the ability to direct conversion of time intervals is not
burdened by a significant amount of components. The method is intended to measure relatively long
time intervals, i.e., hundreds of microseconds. Therefore, it is suitable for e.g., biomedical applications
using time-mode signal processing.

Keywords: successive approximation; analog-to-digital conversion; asynchronous time-to-digital
conversion; self-clocked method; clockless circuit

1. Introduction

One of the key requirements for modern systems is minimizing energy consumption
(low-power electronics). This factor is especially important in systems such as biomedical
applications, environmental sensor networks, or commercial mobile devices [1–5]. Re-
gardless of this tendency, since the beginning of the CMOS technology development, the
aim has always been to increase the efficiency of the systems by reducing the size of the
transistors. For decades, the combination of these two above-mentioned trends has caused
the necessity of the gradual supply voltage reduction [6,7].

Digital electronics benefit from the CMOS technological improvements in terms of die
area and switching speed [6–11]. On the other hand, unfortunately, analog circuit design
becomes more and more challenging, because aggressively decreasing voltage headroom
and declining transistor threshold voltage deteriorate the signal-to-noise ratio [9–11]. This
is relevant issue, for instance, for what concerns the dynamic range of analog-to-digital
converters (ADCs) [9]. Assuming the same number of bits, a lower power supply means a
smaller voltage range per bit.

In reference to this issue, in the last several years, alternative methods of signal
processing were proposed, such as time-mode signal processing (TMSP) [6,10,11]. In
this technique, instead of processing the information in the conventional, vertical form
(voltage domain), the operations are handled horizontally (time domain) using variable
time intervals.

Analog-to-digital conversion using TMSP can be achieved by relatively simple two-stage
action (Figure 1). Firstly, by encoding the voltage values x(t) into time intervals y(t), and
secondly, by converting them to the appropriate digital words z(t). The migration from
the voltage domain to the time domain can be performed, for example, by the time encod-
ing machine (TEM) or the level-crossing sampling technique [12–16]. Such an approach
transforms the analog signal to a quasi-digital waveform (voltage quantization, time-length
variability) which not only eliminates the shrinking headroom voltage problem, but also
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provides resistance to undesirable noise and distortion [6,7]. The time intervals generated
in this way are then converted to digital words using a time-to-digital converter (TDC).
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Figure 1. Analog-to-digital conversion implemented using TMSP.

Depending on the target application, the parameters of both TEMs and TDCs must
be carefully chosen to meet specific requirements imposed by the signals that occur in the
system. The TEM can be implemented in a few different ways, i.e., as an Asynchronous
Sigma-Delta Modulator (ASDM) or as a Spiking Neuron (SN) circuit [17–23]. A charac-
teristic feature of all TEMs is that they are fully-asynchronous analog circuits designed
with an extremely low number of components. It directly translates into advantages such
as the low power consumption and the low occupied area, making the TEMs suitable for
sensor systems, i.e., pixels of event-based vision cameras [9,24]. However, contrary to
the asynchronous operation of TEMs, the conventional TDC solutions require a reference
clock which is used for the measurement itself, for the control operations, or both [25,26].
Unfortunately, this is one of the main factors contributing to power consumption [6,12].
For some applications where low-power operation is a crucial design factor, eliminating
the clock signal may significantly reduce the energy demand. Therefore, the fully asyn-
chronous time conversion method, which is described in this paper, is suitable for such
low-power applications [27,28]. Additionally, it solves the direct conversion problem in the
time domain which is described below.

Because of its irreversibility, time does not fit the typical conversion methods com-
monly used in the voltage domain. A specific moment of an ongoing time interval can-
not be directly restored in the same manner as the voltage (current, charge, etc.), which
can be decreased, because it is impossible to turn back time. In reference to this issue,
preconversion-based time-processing methods are commonly used [10,28–30]. They in-
clude the prior conversion of the measured time interval to different, decremental physical
quantities (i.e., charge), which is then converted to the right digital word. Unfortunately,
the preconversion itself is associated, i.a., with the use of additional elements, increased
energy consumption, and obviously with additional measurement errors which leads to
increased uncertainty of the final result.

The time-to-digital conversion method presented in this paper is based on the binary
successive approximation variant which allows converting the time intervals directly, so
it is preconversion-free by default [27,28]. In general, there are three binary successive
approximation (SA) variants that are adopted in the analog-to-digital conversion: Oscillat-
ing Successive Approximation (OSA), Monotonic Successive Approximation (MSA), and
Full–Scale Monotonic Successive Approximation (FSMSA) [31]. Each of them has specific
properties that are particularly manifested in the issue of direct conversion of time.

The first one—OSA—does not allow for direct time conversion [31]. In this approach,
a reference equivalent R of the measured input value S is created (e.g., time interval), based
on which the output bits are evaluated (Figure 2a). The equivalent R is created with the
use of predetermined binary-scaled reference elements. At each step, the equivalent R is
compared to the measured input value S and, based on the result, an appropriate bit is
evaluated. If the equivalent is smaller than the measured input value (R < S), the currently
tested bit is set to one and the equivalent R is increased by adding the next reference element
to it. Otherwise (R > S), the bit is set to zero and the equivalent is decreased by replacing the
most recently added reference element with a smaller one. The above operations cause the
measured input value to be approximated alternatively, upwards and downwards, causing



Sensors 2023, 23, 9712 3 of 17

an oscillatory character (OSA) [31,32]. The necessary reduction of the equivalent R in case
of overestimation (R > S) makes the OSA inapplicable as a direct time conversion approach.
This is due to the fact that in time conversion the reference elements are time intervals. If
the time corresponding to the reference time interval (reference element) has elapsed, it is
impossible to return to the moment when the reference time interval started measuring
time [31]. This time interval has passed and cannot be turned back in the same way as the
voltage or charge can be decreased. Despite this disadvantage, the OSA is by far the most
commonly used successive approximation variant and by this, often mistakenly considered
to be the only one.
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Figure 2. Exemplary waveforms of the successive approximation algorithms: (a) Oscillating Suc-
cessive Approximation (OSA); (b) Monotonic Successive Approximation; (c) Full-Scale Monotonic
Successive Approximation.

The alternative variant—MSA—has the ability to perform direct conversion of time [31,32].
In this algorithm, the output bits are evaluated based on the successive balancing of the
input value S by the binary-scaled reference elements (Figure 2b). In the first step, the
measured input value S is compared to the reference R which is equal to the biggest
reference element. At each next step, the subsequent reference element is added to this
value (S or R) which currently is smaller. In this algorithm, no matter the relationship
between the signal S and the reference R values, the compensation is always handled by the
addition operation [31]. Thus, the direct time conversion can be successfully implemented
using MSA, since the reference elements removal operations (time returning operation) do
not occur.

The FSMSA variant also has the ability to produce a direct time conversion, but in
comparison to the MSA, it requires twice the number of reference elements—one set for
the value R and one for the value S [31,33]. In this case, the digital equivalent of the
value S is evaluated on the basis of successive comparisons with monotonically increasing
reference value R. The reference value R growth pattern is always the same, regardless of
the measured value S. It is created by adding subsequent reference elements at each step
of the conversion process. If the value S is smaller than the value R, the overestimation
is compensated by adding an identical reference element to the value S that caused the
overestimation. After that, the relationship between the values S and R changes and the
value S is again greater than the value R [31]. The bit evaluation in this case is similar to the
OSA and the MSA. If the value S is smaller than the value R, the bit is set to 0. Otherwise,
the bit is set to 1. The FSMSA is rarely applied. One of its few examples of use is [33].

The necessity of using additional reference elements for value S leads to increased
energy consumption, making the FSMSA relatively inefficient. This is the second reason
(aside from the direct time conversion capability) why the time conversion method pre-
sented in this paper is based on the MSA variant rather than the others. It has been named
Successive Time Balancing Time-to-Digital Conversion (STB-TDC).

In this paper, the STB-TDC technique is described, with a particular emphasis on
time irreversibility. Firstly, a simplified, intuitive model is introduced. It shows how
the proposed time conversion method handles the problem of inevitable timelapse. The
inherent property of time is its natural, continuous lapse. Neither reversal, stoppage, nor
prediction of the measured time interval length is possible. Thus, in direct time conversion,
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the adopted method has to provide information about the current length of the measured
time interval at every moment during the conversion. Only then is the method capable
of making correct decisions without any intervening delays which are a source of the
additional error. Considering this fact, the continuous timelapse phenomenon must be
accurately reflected during the direct time conversion process. The STB-TDC method is
based on the well-known SA variant (Monotonic Successive Approximation). Nevertheless,
the way it handles the continuous lapse of time is unique and by this it is necessary
to describe [27,28]. After this introduction, the circuit representation of the STB-TDC
is described along with the processing method relating to the specific elements. Next,
the simulation results of the ideal STB-TDC circuit are presented. Finally, the physical
implementation of the Successive Time Balancing time-to-digital converter using UMC
0.18 µm technology is presented. The ideal model and the layout implementation are
designed using Cadence Virtuoso EDA with the preliminary assumptions imposed in
advance by the target technology.

2. Idea of the Successive Time Balancing Method

The STB-TDC conversion scheme, as well as the bits evaluation, can be accurately
illustrated as a building process of two columns: the signal column S and the reference
column R.

The building components are limited to a single set of n binary-scaled, empty reference
tanks Cn−1, . . ., C0 (in real circuits these are capacitors). The capacities of the reference
tanks are defined as Ck = 2kC0, for k = 0, . . ., n − 1. In any other consideration, the reference
tanks are identical.

The columns S and R are constructed by appropriately stacking the reference tanks
Cn−1, . . ., C0, one on top of another. For every column-building process, the reference tanks
are used in the same descending order, starting from the biggest one, Cn−1.

Each column has assigned a pump (current source) of constant and equal throughput:
IS and IR, for the signal column S and the reference column R, respectively (Figure 3). The
pumps IS and IR are used to uniformly (constant throughput) fill the subsequent reference
tanks with liquid (charge), one after another. Thus, the time required to fill the k-th tank Ck
is always proportional to its capacity Ck.
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Figure 3. STB-TDC method conversion steps: (a) the initial step of the column R building; (b,c) the
initial step of the column S building; (c,d) adding subsequent tank to the column S; (d,e) adding
subsequent tank to the column R; (f) finished conversion process.

The conversion process begins with the occurrence of the front edge of the measured
pulse TIN. At the same moment, the building process of the reference column R begins
(Figure 3a). Firstly, the biggest tank Cn−1 is placed on the column R. Simultaneously, the
pump IR is turned on to start filling the biggest tank Cn−1 with a constant flow rate. The
rising liquid level reflects the timelapse of the constantly increasing time interval TIN.



Sensors 2023, 23, 9712 5 of 17

The building process of the signal column S starts when the rear edge of the time
interval TIN appears (Figure 3b,c). Similarly to the building process of the column R, at that
moment the biggest reference tank Ck from the empty ones is used (in this example Cn−2).
However, it is placed at the height equal to the length of the time interval TIN. Instantly
after that, the signal pump IS starts filling the newly connected reference tank Ck with a
constant flow rate.

All next steps of the conversion process are designated by the moments in time
when the filling process of any reference tank is finished. In these moments, two crucial
conversion operations are made. Firstly, the appropriate bit is evaluated (corresponding
to the specific tank), and secondly, the decision about adding the subsequent, still unused
reference tank is made. Following the above, evaluation of the bits bn−1, . . ., b0 can be
described as follows:

• If the tank Ck has been attached to the column S and during its filling process, the
filling of a new tank on the (opposite) column R was started, the bit bk is set to logic
one: bk = 1 (Figure 3d).

• If the tank Ck has been attached to the column R and during its filling process, the
filling of a new tank on the (opposite) column S was not started, the bit bk is set to
logic one: bk = 1 (Figure 3e).

• In any other case, the bit bk is set to logic zero: bk = 0 (Figure 3b,c,f).

The above operations are repeated until the moment when, after filling the tank Ck,
there are no empty ones left that could be used to extend the column (S or R) height
(Figure 3f). In the case of the reference tank C0, the bit b0 is evaluated as if there were
another reference tank, C−1, which would start filling at the moment when the filling of the
reference tank C0 is finished (Figure 3f).

By looking at the conversion process results statically (omitting the filling), it can
be noted that the TIN can be treated as a tank of an initially unknown height. From that
perspective, it is successively approximated with the use of preliminary defined reference
tanks Cn−1, . . ., C0 in a similar way as an unknown voltage is determined with a set of
voltage references in conventional successive approximation ADCs. In addition, the heights
of the columns S and R are equal with the accuracy of C0. Because of that, the measured
time interval TIN can be evaluated as the difference of the reference elements accumulated
on each column.

What is also clearly visible here is the applied variant of the binary successive approx-
imation method (Monotonic Successive Approximation) and its properties [31]. During
the conversion process, there is no situation in which it would be necessary to remove any
reference tank Ck (i.e., subtract reference time interval). This property fits the direct time
conversion very well because turning back on time is obviously impossible.

3. The STB Time-to-Digital Converter Circuit

Described in the previous section, the column-building model illustrates how the
STB-TDC method handles the phenomenon of an inherent and continuous timelapse.
However, the model does not present the second greatest advantage of the STB-TDC
which is fully asynchronous, self-clocked conversion. In order to show how the particular
subcircuits cooperate with each other without any reference clock, it is necessary to migrate
from the simplified model to the circuit implementation.

3.1. General Architecture of the STB-TDC

The conversion flow diagram and the complete schematic diagram of the STB time-to-
digital converter are presented in Figures 4 and 5, respectively. The fundamental building
blocks are: one set of binary-scaled capacitors Cn−1, . . ., C0, two current sources IR, IS,
two comparators KR, KS, a reference voltage source VREF, a set of analog switches units
SWn−1, . . ., SW0 and an asynchronous state machine ASM, which controls the operation of
the entire converter (Figure 5).
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Figure 5. Exemplary states during the STB conversion: (a) detection of the rising edge of the measured
time interval; (b) detection of the falling edge of the measured time interval; (c) simultaneous
disconnecting the capacitor Cn−2 from the rail S and connecting the capacitor Cn−3 to this rail;
(d) simultaneous disconnecting the capacitor Cn−1 from the rail R and connecting the capacitor Cn-4

to this rail; (e) simultaneous disconnecting the capacitor Cn-4 from the rail R and connecting the
capacitor Cn-5 to this rail; (f) conversion process finished.

In comparison to the column-building model, there are two rails: S and R, which
directly correspond to the signal column S and the reference column R (Figure 3). The
reference tanks have been replaced by the binary-scaled capacitors Cn−1, . . ., C0 defined as
Ck = 2kC0, for k = 0, 1, . . ., n − 1.

Each capacitor Ck is related to a corresponding bit bk, which is evaluated during the
conversion process. The capacitors are sequentially connected, one by one, to the rails (S or
R) in such a way that one is replaced by another. Thus, at any step of the conversion process,
no more than one capacitor is connected to a given rail. Also, with the connection of the
capacitor Ck to the specific rail, a simultaneous disconnection of the previously connected
one is made.

Each capacitor Ck has a set of switches SWk associated with it. This set comprises
three single switches which allow setting the capacitor Ck in one of the three configurations:
connected to the rail S, connected to the rail R, or connected to the ground. Initially, all
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capacitors are connected to the ground and at an appropriate step of the conversion the
ASM makes the decision when and where the specific capacitor Ck should be connected.

The pumps IR and IS have been replaced by the current sources: IR and IS which
are digitally switched on and off. They provide constant current flow to the specific
capacitors which are currently used. The charging capacitor with a constant current flow
was presented in the column model as filling an appropriate reference tank (Figure 3).

The comparators KR and KS are assigned to the rails in the same way as the current
sources IR and IS. The purpose of the comparators is to sense the moment when the voltage
across a currently charging capacitor reaches the level set by the reference voltage VREF.
When such an event occurs, the comparator indicates it to the asynchronous state machine
ASM which then firstly determines the appropriate bit value, and secondly makes the
decision which capacitor should be connected to the specific rail (S or R). Of course, the
target rail is always the one on which the charging has just finished.

The asynchronous state machine ASM is a fully clockless control circuit. Neither
external (global) nor internal (local) clock signal is required for its proper operation. The
only signals it is driven by are the edges of the measured time interval TIN and the event
signals generated by the comparators KR, KS, so basically, the ASM is an event-driven
circuit [34]. This is actually where the self-clocked property of the STB comes from. The
devices that are directly under the control of the ASM are the switches SWn−1, . . ., SW0, and
the current sources IR and IS. During the conversion process, the ASM connects subsequent
capacitors, one by one, to the rail (S or R) via the appropriate switch SWk which is assigned
to the chosen capacitor. In addition, it turns on the current source: IR with the TIN front
edge and IS with the rear edge occurrence. The conversion process flow diagram of the
ASM is presented in Figure 4.

3.2. Conversion Process

During the relaxation state, while waiting for the time interval TIN, both R and S rails
are grounded, which prevents the accumulation of random charges that could disturb the
conversion accuracy. For this purpose, the switches SWn−1 and SW0 are used, respectively,
for the reference rail R and the signal rail S.

The conversion starts with the front edge of the measured time interval TIN (Figure 5a).
At this moment two actions are performed. Firstly, the triggered ASM simultaneously
disconnects the reference rail R from the ground and connects the biggest capacitor Cn−1 to
the reference rail R via the switch SWn−1. Secondly, the constant current source IR is turned
on causing the linear increase of the capacitor Cn−1 voltage as well as the reference rail R
voltage (Figure 6).
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Figure 6. Voltage waveforms of the rails R (blue color) and S (red color).

With the rear edge of the measured input value TIN, two operations are performed.
Firstly, the biggest capacitor Ck (k < n − 1) from the group of the empty ones Ck, . . ., C0 is



Sensors 2023, 23, 9712 9 of 17

connected to the signal rail S via the appropriate switch SWk. Immediately after that, the
constant current source IS is turned on, which causes the voltage across the capacitor Ck
and the signal rail S to increase linearly (Figure 5b).

When the voltage across the charging capacitor reaches reference level VREF, the
relevant comparator (KS or KR) triggers the ASM, which performs two operations. The first
of them is evaluating the appropriate bit associated with the capacitor that was the most
lately connected to any rail. Of course, it does not necessarily have to be the capacitor that
has just finished charging and caused the specific comparator to trigger.

The output digital word evaluation can be described as follows:

• If the capacitor Ck is connected to the signal rail S, and during the time it is being
charged, the charging of a new capacitor on the (opposite) rail R was started, the bit
bk is set to logic one: bk = 1 (Figure 5c,d).

• If the capacitor Ck is connected to the reference rail R, and during the time it is being
charged, the charging of a new capacitor on the (opposite) rail S was not started, the
bit bk is set to logic one: bk = 1 (Figure 5d,e).

• In any other cases, bit bk is set to logic zero: bk = 0 (Figure 5a,b,f).

As mentioned before, the exception to the above rules is bit b0, because it is associated
with the capacitor C0 which is connected to one of the rails as the last in the sequence. Thus,
in this case, the bit value is determined as if there were another, capacitor C−1 that would
be used in the processing (Figure 5f).

The second operation after the capacitor Ck reaches the VREF is simultaneously dis-
connecting the fully charged capacitor Ck from the rail, connecting it to the ground, and
connecting the subsequent capacitor from the empty ones (supposing that there is at least
one left). Obviously, it does not necessarily have to be the subsequent capacitor Ck−1 as it
could have been used on the opposite rail already. If there are no capacitors left, the con-
version process is finished. The procedure of connecting, charging, and disconnecting the
capacitors is repeated until all of them are used (Figure 5f). The duration of the capacitors
switching operation is negligibly short, so the current sources IR,IS are not turned off when
the fully charged capacitor Ck is replaced by a smaller one.

Here the self-clocked mechanism is clearly visible. Once triggered, ASM decides about
replacing the charged capacitor with an empty one. This newly connected capacitor will
become a source that triggers the ASM in one of the later conversion steps.

When the conversion process is completed, the signal RDY is set to the logic one,
indicating that the bits determination process is complete (Figure 5f). Simultaneously, the
current sources are turned off and the rails are connected to the ground via the switches.
The bits bn−1, . . ., b0 in the digital output word are latched until the front edge of the next
time interval TIN occurs and triggers the conversion process.

4. The STB-TDC Circuit Simulations

The proposed conversion method has been verified in the Cadence® Virtuoso envi-
ronment (version IC6.1.8) by simulating the circuit application (TDC) on the schematic
level. The analog parts were designed using ideal elements (comparators, current sources,
analog switches, and capacitors) from the default analogLib library. The functionality of
the asynchronous state machine ASM was implemented in Verilog-A which is a subset
of Verilog-AMS Hardware Description Language. The use of Verilog-A was necessary
to fully control the capacitors’ switching sequence and thus prevent the occurrence of
false phenomena associated with the use of ideal elements. Since the whole circuit is
relatively simple (Figure 5), it was assumed that, overall, it can be supplied using a 1.8 V
power source.

The STB method does not strictly dictate the number of used capacitors. As each
capacitor Ck refers to one bit bk, for the purpose of the simulation eight capacitors C7, . . .,
C0 were used to achieve 8-bit resolution. At such a simplified level of the STB converter
the technological aspects can be totally omitted because all the elements are ideal. Still,
already at this stage certain parameters should be selected in such a way that they are
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achievable in the physical semiconductor implementation. The target technology is UMC
0.18 µm which in combination with the purpose of measuring relatively long time intervals
(microseconds) leads to the conclusion that for the good circuit matching and high resistance
to technological variations, the analog elements should be relatively large in size [35,36].
Following the above, the smallest capacitor C0 was set to 500 fF. The reference voltage
VREF, to which the capacitors C7, . . ., C0 are linearly charged, has been set to 1.2 V, which is
around the typical value for the real bandgap voltage reference circuits [37–42].

The current sources IR, IS were set to provide a constant current flow of 1 µA. Thus,
the minimum time interval that can be resolved equals to t0 = VREF ·C0

IR(S)
= 600 ns, which

directly leads to the full-scale range of 153.6 µs.
The verification of the STB converter was carried out using Virtuoso Analog Design

Environment XL tool. As the state machine, ASM behavior was handled with Verilog-A, it
imposed mixed-signal simulation. Figure 7 presents the result of a single simulation for the
measured time interval TIN of 31.9 µs which is converted to the digital word 00110101.
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Figure 7. The conversion of input time interval TIN = 31.9 µs.

As shown, the STB converter starts the direct time approximation process as soon as
the front edge of the measured time interval TIN appears and there is no preconversion
process used. The charges generated by the current sources IR, IS cause the linear increase
of the voltage across subsequent capacitors C7, . . ., C0 (one by one). The characteristic,
sudden voltage drops indicate the moment of replacing a fully-charged capacitor with
another one—not yet used.

The transfer characteristic shown in Figure 8 has been plotted based on 3080 different
lengths of TIN in the range from 1 ns to 154 µs with a step of 50 ns. As expected, the results
show that at this level of complexity the STB converter is fully error-free and completely
coincides with the ideal characteristics of analog-to-digital conversion. This proves that
STB-TDC can be successfully used as a direct time-to-digital conversion method and no
additional reference clock is needed. The self-clocking mechanism is indeed sufficient to
achieve the appropriate quality of conversion.
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5. The STB-TDC Physical Implementation

The topologies of analog subcircuits used in the implementation of the STB-TDC
prototype are presented in Figure 9. The current sources IS, IR, shown in Figure 9a, were
implemented as the cascode current sources which, by default, provide resistance to the
temperature variation, process variation, and channel length modulation effect [43–46]. In
addition, the high-swing modification was applied. It allows the increase of the VREF value
to which capacitor Ck can be charged without causing the current sources to deviate from
the assumed value. For the comparators KS, KR, shown in Figure 9b, a simple topology has
been used which does not require any additional biasing voltage sources [44,47]. Due to
the completely clockless design of the STB-TDC, there is no auxiliary reference clock signal.
The asynchrony of the comparators KS, KR means that their propagation time depends on
the rate of voltage change on the monitored rail. Its parameters have been selected in such
a way as not to disturb the binary ratio of charging times of subsequent capacitors. Each
of the three switches comprised in a single switch SWk has been implemented as a trans-
mission gate (Figure 9c). For 8-bit STB-TDC there are 8 transmission gates (16 transistors)
connected to each rail which significantly increases its parasitic capacitance. Therefore,
the minimum transistor sizes offered by the UMC 0.18 µm CMOS technology were used
for the transistors in transmission gates. The bandgap reference voltage VREF presented
in Figure 9d is based on mutual compensation of PTAT-CTAT (proportional to absolute
temperature—complementary to absolute temperature) structure [43–46].
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Figure 9. The analog components of the STB-TDC: (a) current source IS, IR; (b) comparator
KS, KR; (c) one of the three switches comprised in SWk; (d) bandgap reference voltage VREF;
(e) Schmitt trigger.

In addition to the above described components, a few circuits have been applied. For
instance, a non-inverting Schmitt trigger, shown in Figure 9e, has been connected to the
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output of each comparator to increase the slope of the edges of the signals entering the
ASM [48,49]. In addition, a mutex (mutual exclusion) has been used to avoid the situation
of simultaneous appearance of output signals from the comparators KR, KS at the input of
the ASM. Proper resolution between the signals is absolutely necessary because the circuits
related to the individual rails S, R operate independently of each other.

The presented analog circuits can be controlled by a fully asynchronous state machine.
As shown, they can be implemented as relatively simple structures. Therefore, they are
suitable for direct cooperation with TEM circuits creating time-based ADC conversion
system (Figure 1).

The layout of the first 8-bit STB-TDC prototype is presented in Figure 10. It was
designed using UMC 0.18 µm 1P6M CMOS technology. Including the wire bonding pads,
the total occupied area equals 1.45 mm2 with the aspect ratio of approx. 1.14. The power
supply domains for the analog circuits and the digital asynchronous state machine have
been physically separated, but both of the domains are dedicated for 1.8 V as it was
assumed. The circuit requires two input digital ports: TIN, RESET; nine output digital
ports: b7, . . ., b0, RDY; two power supply ports: VDD, VDDA; and one port for the ground
connection: GND which is common for all the components across the chip. Each signal
path has been equipped with additional buffers and basic antistatic protection.
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Figure 10. The STB Time-to-Digital Converter layout.

The unit capacitor C0 has been set to 499.5 fF and the entire reference capacitors
matrix was designed using it. The reference capacitors have been arranged based on
common centroid algorithm in order to minimize the systematic mismatch. In addition,
dummy capacitors have been added around the reference capacitors so that all capaci-
tances have the same neighborhood. Overall, the matrix occupies 0.305 mm2 and it is the
largest component.

The ASM, presented in Figure 11a, has been implemented in Verilog-HDL and syn-
thesized using Genus Synthesis Solution. In the final netlist 359 logic elements from the
dedicated library were included to form a fully clockless, event-driven state machine.
The physical implementation PnR (place and route) was carried out using the Innovus
Implementation System. In order to ensure proper filtration, capacitive filler cells were
used. The area of the ASM is 0.03 mm2, however, it should be noted that most of it are the
above-mentioned filler cells.
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Figure 11. STB-TDC layout subparts: (a) asynchronous state machine; (b) comparators and current
sources; (c) bandgap reference voltage; (d) analog switches.

The analog circuits are presented in Figure 11b–d. In total, 188 CMOS transistors
were used (excluding dummy transistors) to design the whole analog part of the STB-TDC.
During the design of each individual components, efforts were made to maintain layout
symmetry. The summary area of all the analog circuits is 0.037 mm2, most of which is
occupied by the bandgap voltage reference as it contains a set of emitter diodes made of
PNP transistors.

The post-layout verification of the STB-TDC has been performed in the same way as
the verification of the ideal model. Based on the acquired data, selected time-to-digital
parameters have been analyzed.

Figure 12 presents the final transfer characteristic of the proposed 8-bit STB-TDC
design. Comparing the physical implementation to the ideal model, current sources IR,
IS and bandgap reference voltage VREF values were slightly changed, which resulted in
a change of the LSB and therefore in the transfer characteristic. The proposed solution is
able to convert the measured time intervals TIN up to 135.66 µs with the LSB of 532 ns. The
transfer characteristic is monotone and none of the output codes are missing.
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The differential and integral nonlinearity (DNL, INL) plots are shown in Figures 13 and 14.
Maximum positive and negative differential nonlinearity errors equal, respectively, 0.25 LSB
and −0.6 LSB. The latter occurs for the output digital code transition from 127 to 128. Maxi-
mum positive and negative integral nonlinearity equal, respectively, 0.71 LSB and −0.5 LSB.
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The average consumed current equals 445 µA, which, after taking into account
the power supply of 1.8 V, determines the average power consumption of 801 µW. The
above-described parameters are summarized in the Table 1.

Table 1. The STB-TDC physical implementation parameters.

Parameter Value

CMOS process UMC 0.18 µm
Power supply 1.8 V
Occupied area 1.45 mm2

Unit capacitance C0 499.5 fF
LSB 532 ns

Full-scale range 135.66 µs
Maximum DNL +0.25 LSB, −0.6 LSB
Maximum INL +0.71 LSB, −0.5 LSB

Average power consumption 801 µW

6. Conclusions

In this paper, a new time-to-digital conversion method based on the binary successive
approximation has been presented. Its main advantage consists in a fully clockless operating
method with the simultaneous ability to direct conversion of the measured time intervals
without the necessity of any preconversion. The introduction of the method was carried
out gradually. Firstly, the simplified column-building model has been presented, in which
the ability to direct conversion was emphasized. Secondly, the operation of the TDC circuit
model has been described, wherein additionally, a fully clockless conversion is clearly
visible. Next, the STB-TDC ideal model, followed by the physical implementation using
UMC 0.18 µm technology have been presented. Finally, the simulations results as well
as the time-to-digital conversion parameters have been shown, which proves that the
STB-TDC method can be successfully used for time interval measurement.
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