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Abstract: This paper focuses on achieving the low-cost coexistence of the networks in an unlicensed
spectrum by making them operate on non-overlapping channels. For achieving this goal, we first
give a universal convergence analysis framework for the unlicensed spectrum allocation algorithm.
Then, a one-timescale iteration-adjustable unlicensed spectrum allocation algorithm is developed,
where the step size and timescale parameter can be jointly adjusted based on the system performance
requirement and signal overhead concern. After that, we derive the sufficient condition for the
one-timescale algorithm. Furthermore, the upper bound of convergence error of the one-timescale
spectrum allocation algorithm is obtained. Due to the multi-timescale evolution of the network states
in the wireless network, we further propose a two-timescale iteration-adjustable joint frequency
selection and frequency allocation algorithm, where the frequency selection iteration timescale is set
according to the slow-changing statistical channel state information (CSI), whereas the frequency
allocation iteration timescale is set according to the fast-changing local CSI. Then, we derive the
convergence condition of two-timescale algorithms and the upper bound of the corresponding
convergence error. The experimentalresults show that the small timescale adjustment parameter
and large step size can help decrease the convergence error. Moreover, compared with traditional
algorithms, the two-timescale policy can achieve throughput similar to traditional algorithms with
very low iteration overhead.

Keywords: cognitive radio networks; convergence analysis; continuous-time Lyapunov drift

1. Introduction

As high-speed data services continue to grow, the unlicensed spectrum has become an
option for cellular operators to increase their service capabilities [1]. In total, there is over
500 MHz of spectrum bandwidth for public (e.g., (5.15, 5.25) GHz and (5.47, 5.48) GHz in the
US). Compared with the licensed spectrum, the unlicensed spectrum is a completely open
spectrum resource open to different operators as long as they comply with the relevant
regulations. Through sharing the completely open unlicensed spectrum, operators no
longer need to deploy its network resources with over-provisioning according to the peak
load. In addition, it is very cost-effective to use the unlicensed spectrum. Depending on
the free unlicensed spectrum resource, operators can efficiently cope with the diminishing
effective revenue per GB.

Currently, WiFi is the most popular and successful wireless technology on the unli-
censed bandwidths. However, the spectrum efficiency of the WiFi system is pretty low,
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especially when the number of subscribers is large. Hence, deploying cellular technol-
ogy over the unlicensed spectrum has become a popular research topic in recent years.
However, in the coexistence scenario of 5G and the WiFi network, the decision of one
network can impair the decision of another markedly if they share the same unlicensed
spectrum band. For example, the LTE unlicensed network (LTE-U) does not implement
CSMA, whereas WiFi does. As a result, the WiFi network always senses the channel is
busy until the LTE network does not have any traffic to transmit. Therefore, knowing how
to achieve harmonious coexistence between LTE and incumbent systems that are already
operating in unlicensed spectrum is a key challenge.

The spectrum-sharing and coexistence scenarios can be categorized into two cate-
gories, i.e., uncoordinated and coordinated schemes [2]. In the former, networks achieve
coexistence based on their local information, whereas in the latter, networks should directly
or indirectly exchange signals with each other. In the coordinated schemes, coordination
can be implemented centralized by a cloud-based control plane via a direct communication
channel [3]. With the coordination of the cloud-based control plane, heterogeneous tech-
nologies can be allocated with its corresponding clean channels. Hence, each of them can
use its own resource segments without cross-tier interference. Moreover, the cloud-based
control plane can also consider the load dynamics and failure scenarios of the network for
adopting an adaptive coexistence scheme to avoid the underutilization of the unlicensed
spectrum [4]. Due to the fact that each network can identify the existence and operation
parameters of another network, coordinated schemes can provide higher performance than
uncoordinated schemes. However, this performance efficiency is achieved at the expense
of infrastructure/protocol complexity and coordination signal overhead. Especially when
the coordination logic is deployed in a wider coverage region beyond one-hop or two-hop
nodes, huge communication overhead will take place through the backhaul links.

Therefore, in this paper, we focus on achieving the low-cost coexistence of networks in
the unlicensed spectrum by making them operate on separate non-overlapping channels.
The use of an unlicensed spectrum allocation algorithm is critical to achieving this goal.
To avoid the over-provisioning of the spectrum resource on each network, the spectrum
allocation algorithm should have adaptive ability for solving the optimal solution after net-
work state changes. However, if the spectrum allocation algorithm iteration evolves much
faster than the network state dynamics, a lot of signal exchange between the coordination
logic and networks will be incurred. On the contrary, if the spectrum allocation algorithm
iteration evolves in a comparative timescale as the network state dynamics, the network
states may have changed after a few iterations, and the existing convergence results failed
to apply in this case of network states. Hence, we provide a theoretical framework in this
paper for studying the convergence of the adaptive unlicensed spectrum allocation algo-
rithm with adjustable iteration timescale. It should be noted that the theoretical framework
of convergence analysis in this paper not only can be used for the coexistence of 5G and
WiFi networks but also for the IoT networks with high heterogeneities.

The main contributions of this paper are summarized as follows:

• A universal convergence analysis framework is developed for the unlicensed spectrum
allocation algorithm. Specifically, the algorithm iteration evolutions are modeled by a
system of stochastic differential equations as a virtual dynamic system. We further
reveal that the stability of the dynamic system is equivalent to the convergence of the
algorithm iteration.

• A one-timescale iteration-adjustable unlicensed spectrum allocation algorithm is de-
veloped, where the step size and timescale parameter can be jointly adjusted based on
the system performance requirement and signal overhead consideration. After that,
we obtain the sufficient condition for the convergence of the one-timescale iteration-
adjustable algorithm and the upper bound of the convergence error.

• We further propose a two-timescale iteration-adjustable joint frequency selection and
frequency allocation algorithm, where the frequency selection iteration timescale is set
according to the slow-changing statistical channel state information (CSI), whereas
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the frequency allocation iteration timescale is set according to the fast-changing local
CSI. Then, we derive the convergence condition of the two-timescale algorithm and
the upper bound of the corresponding convergence error under mixed timescale
network states.

We organize the paper as follows. Section 2 summarizes the related work. Section 3
outlines the system model and problem formulation. Section 4 presents the static spectrum
allocation iteration algorithm. Section 5 includes the one-timescale dynamic spectrum allo-
cation algorithm. Then, in Section 6, we outline the two-timescale network state structure
and develop the two-timescale dynamic spectrum allocation algorithm. In Section 7, we
conduct the simulation. Section 8 concludes the paper.

2. Related Work

Many approaches have been proposed in these years for achieving the coexistence
between WiFi and LTE-U in the unlicensed bands. These methods can be classified into the
power domain approach, time domain approach and frequency domain approach.

A joint user association and power control algorithm was developed in [5] for maxi-
mizing the number of QoS-preferred users supported by LAA-LTE while protecting the
WiFi users. The work in [6] proposed a power control algorithm based on Q-Learning to
realize the coexistence of licensed users and unlicensed users. A stochastic optimization
framework was developed in [7] for minimizing the average power consumption in the
LAA-enabled SBSs and WiFi networks. To realize coexistence, the works in [8] regarded
WiFi users as protected users, and then proposed a power control scheme to ensure that
the interference caused by cellular users to WiFi users is less than a certain threshold.
A distributed solution based on Lagrangian relaxation was proposed in [9] to assist the
LTE-unlicensed network in making decisions on transmit power. Although the power
domain scheme can theoretically realize the coexistence of LTE and WiFi, it is very complex
to enact fine-grained control on the transmit power in real networks. On the other hand, in
time-varying networks, the power control algorithm will bring huge algorithm iteration
overhead and signaling transmission overhead.

The time domain scheme relies on LTE’s scheduling to periodically turn off its trans-
mission so that WiFi users can have adequate access time [10]. Hence, the time domain
scheme can be also considered as an uncoordinated scheme. The listen before talk (LBT)-
based access mechanisms have been proposed in [11–13] for adjusting the backoff window
size based on WiFi traffic load to enhance the service capacity of an LTE-U. Different from
the LBT mechanism, the devices in [3,14] transmitted data on different timeslots by the
polling method. However, there are many issues for using these approaches. Under the
current LTE service, the time domain transmission approach degrades the rate guarantee
that devices have been accustomed to. As a result, it is difficult to know why a device
would select LTE service instead of using free WiFi directly. The time domain scheme
usually requires all of the devices to be synchronized with each other, which would involve
a major change to some LTE protocols.

Different from the time-domain scheme, in the frequency domain, the coexistence be-
tween LTE and WiFi can be achieved by having the two operate on separate, non-overlapping
channels [15]. In order to achieve the frequency domain coexistence, Refs. [16–18] developed
the unlicensed spectrum splitting strategy between WiFi and the femtocell network. Note
that all of these schemes need a central server to coordinate the spectrum sharing between
WiFi and LTE BS, so these schemes can be considered as coordinated schemes. It should be
pointed out that these schemes have no adaptive ability; the light-loaded networks cannot
deliver its superfluous spectrum resource to the heavy-loaded ones. As a result, the capacity
and robustness of the entire network will be seriously restrained. With this consideration,
ref. [15] developed the adaptive spectrum allocation schemes for achieving the significant
improvement in network performance. However, this scheme needs to reformulate a new
optimization problem under the updated network states. Solving the optimization problem
often needs an algorithm to be iterated many times. Hence, huge signal overhead over both
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the air interface and the backhaul links will be incurred. Therefore, we need to design the
low-cost adaptive spectrum allocation schemes.

3. System Model

LTE-U and the WiFi network are representative technologies deployed in the unli-
censed spectrum. In this paper, our goal is how to realize the coexistence of LTE and
WiFi. We assume that there is a cloud server deployed at the backend to implement the
coordination of LTE-U and WiFi [1]. As shown in Figure 1, the cloud server connected
with LTE-U and WiFi by backhaul links, and the coordinating networks have an infras-
tructure to exchange information about themselves or their demands. We represent the
devices covered by LTE-U as sDevice, and we represent the devices covered by WiFi as
wDevice. We assume that the system model in this paper consists of one WiFi, N LTE-U
and K devices. Let N = {1, 2, · · · , N} denote the sets of LTE-U. Furthermore, we use
K =M∪L to denote the devices set, whereM and L denote the sets of wDevices and
sDevices, respectively. Let M and L denote the number of devices in setsM and L. We
assume that the total available bandwidth for the unlicensed spectrum is B.

Cloud server

WiFi

wDevice

LTE-U

sDevice

Figure 1. System model. The cloud server connects with LTE-U and WiFi by backhaul links. LTE and
WiFi operate in different frequency bands that do not overlap each other.

The throughput of CSMA networks has been investigated by [19]. However, this
throughput model cannot reveal the relationship between the spectrum bandwidth, channel
state information and the network throughput. Different from [19], we focus more on
investigating the relationship between throughput, dynamic CSI and the allocated spectrum
resource. To this end, we adopt the Ideal CSMA Network (ICN) model to compute the WiFi
throughput [20]. For the wDevices in setM, they compete to access the channel through
CSMA protocol. We assume that each wDevice always has packets to transmit; i.e., the
network operates in the saturation state. Then, the wDevice needs to spend some time on
waiting, confirming and retransmitting when transmitting packets. We use Ttr to represent
the total time for transmitting a packet, which consists of packet duration, distributed
Interframe Spacing, acknowledgement and short Interframe Spacing. In addition, the
period of the random backoff countdown process is Tcd. Thus, the countdown overhead
can be represented as c = E[Tcd]/E[Ttr]. The transmission state of wDevice m is expressed
as sm, where sm = 1 and sm = 0 indicate that the device is transmitting and waiting,
respectively. After that, we use s = s1s2 · · · sM to represent the state of the network. Based
on the state transition equation in [20], the stationary distribution of the state s = 0 · · · 0
and s = s1s2 · · · sM can be given as

P0···0 = (1 + M/c)−1, Ps1s2···sM |s:sm=1 = (c + M)−1.

The normalized transmission rate of wDevice m is computed as
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xm = Ps1s2···sM |s:sm=1 =
1

M + c
.

Then, multiplying the normalized throughput by the achievable uplink transmission rate
of wDevice m, we can obtain its actual throughput as

rm =
αw

M + c
log2

(
1 +

hm

αw

)
where αw denotes the fraction of the unlicensed spectrum for WiFi, hm = pm|gm|2/N0, pm
denotes the transmit power for wDevice m, N0 is the power spectral density of the Gaussian
background noise, and gm is the channel gain from wDevice m to WiFi. For the modest-size
network, the effect of c on approximating the real throughput is negligible. Therefore, we
give the overall throughput of the WiFi as

RWiFi =
M

∑
m=1

αw

M
log2

(
1 +

hm

αw

)
(1)

In the LTE-U network, we use Ln to denote the set of sDevices associated with LTE-U n.
In the proposed model, LTE-U n will allocate a dedicated channel ρn

k to sDevice k ∈ Ln. Then,
the uplink transmission rate for sDevice k can be computed as

Rn
k = ρn

k log2

(
1 +

hn
k

ρn
k

)
, ∀n ∈ N , k ∈ Ln. (2)

The definition of hn
k is similar to hm.

Generally, evaluating the throughput maintained by each network is still a common
approach to ensure that all collocated networks can sustain a certain level of performance [1].
Therefore, the optimization problem can be formulated as

max F(αw, ρ; h) (3)

s.t. αw +
N

∑
n=1

∑
k∈Ln

ρn
k ≤ B,

αw > 0, ρn
k > 0, ∀k ∈ Ln, n ∈ N ,

where F(αw, ρ; h) =

w1

M

∑
m=1

αw

M
log2

(
1+

hm

αw

)
+w2

N

∑
n=1

∑
k∈Ln

ρn
k log2

(
1+

hn
k

ρn
k

)
,

h = [hk]k∈K, ρ = [ρn
k ]k∈L, w1 and w2 are weights of throughput of sDevices and wDevices,

respectively, which provide the preference of operators on wDevices or sDevices. The
constraint indicates that the partitioned spectrum can’t be more than the total bandwidth.

4. Spectrum Allocation Iteration Algorithm

This section considers that the CSI remains unchanged before the corresponding
algorithm-solving problem (3). At this case, problem (3) is a concave optimization problem.
We will propose a spectrum allocation algorithm for the LTE-U/WiFi networks and then
analyze the convergence of this algorithm.

4.1. Spectrum Allocation Iteration Algorithm

For problem (3), we construct the following Lagrange function
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L(αw, ρ, λ; h)=F(αw, ρ; h)−λ

(
αw+

N

∑
n=1

∑
k∈Ln

ρn
k−B

)
,

where λ is the Lagrange multiplier. Then, the following Karush-Kuhn-Tucker (KKT)
conditions for problem (3) are given as

∂L(αw, ρ, λ; h)
∂αw

= 0, (4)

∂L(αw, ρ, λ; h)
∂ρn

k
= 0, ∀n ∈ N , k ∈ Ln, (5)

λ

(
αw+

N

∑
n=1

∑
k∈Ln

ρn
k−B

)
= 0. (6)

For convenience, we express the spectrum allocation variables αw,ρ and λ as x = (αw, ρ, λ) ∈
RL+2
+ . Therefore, at the ns-th solt, x is iterated as

xns+1 = Γ+[xns + γns G(xns ; hns)], (7)

where γns is the step size, and Γ+ denotes the projection onto the non-negative domain.
The mapping of G(·) is given as

G(·) =


∂F(αw ,ρ;h)

∂αw
− λ

∂F(αw ,ρ;h)
∂ρ − λ

αw+∑N
n=1 ∑i∈Ln ρn

i −B

 ∈ RL+2
+ . (8)

Although many works have proved the convergence of the iteration algorithm [21,22], it
is difficult to apply them directly in the scenario where the CSI is time-varying. In a dynamic
wireless network, when the network state changes, the optimal spectrum allocation solution
will also change, which may result in existing convergence results failling to apply. Hence,
in the following, we will explore the convergence performance of the spectrum allocation
algorithm in static LTE/WiFi networks. This study will provide a basis for analyzing the
convergence of spectrum partitioning algorithms in dynamic network environments.

4.2. Convergence Analysis

If we regard the spectrum allocation solution x as a dynamic system evolving with the
change in network state h, then the state trajectory x can be considered as the solution to
the following equation:

dx = γG(x; h)dt, (9)

where the subscript of γ is omitted for the sake of convenience.
Then, the equilibrium point of a specific dynamic system can be defined as

Definition 1. (Equilibrium Point): The solution x∗ satisfying G(x∗; h) = 0 is defined as the
equilibrium point.

In static wireless networks, in the iterative process of the algorithm, CSI h is always un-
changed. Hence, it should be noted that the equilibrium point x∗ is fixed. In order to analyze
the convergence performance of the algorithm, we give the definition of convergence error.

Definition 2. (Convergence Error): Convergence error of the spectrum allocation algorithm is
defined as the error between the iterative output x and the optimality x∗, i.e., xe = x− x∗.
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Then, based on this definition, the differential equation of convergence error is de-
fined as

dxe = dx− dx∗ = γG(x; h)dt. (10)

Equation (10) can be also considered as a dynamic system. Therefore, the convergence
of the algorithm in Equation (7) is equivalent to the asymptotic stability of the dynamic
system defined in Equation (10).

Then, we use Lyapunov theory to study the stability of the system. First, we define
a Lyapunov function as V = 1

2 xT
e xe. Motivated from the definition of Lyapunov drift in a

discrete-time system, the Lyapunov drift in a continuous-time dynamic system is defined as

LV(xe) = lim
δ→0

E[V(xe(t + δ))−V(xe(t))|xe(t)]
δ

. (11)

Lyapunov drift indicates the growth direction of the Lyapunov function V(xe) over time,
which can be also considered as an energy function. Obviously, the negative Lyapunov drift
contributes to the stability of the system. However, Equation (11) is not easy to calculate. In
order to obtain an accurate expression, the Lyapunov drift LV(xe) can also be calculated by
the following lemma.

Lemma 1. (Continuous-Time Lyapunov Drift [23]): Suppose that there is a stochastic process z
described as

dz = f (z)dt + g(z)dW, (12)

the stochastic Lyapunov drift of V(z) can be written as

LV(z) =
∂V(z)

∂z
f (z) + tr

[
g(z)T ∂2V(z)

∂z∂zT g(z)
]

,

where W is a standard complex Wiener process.

Lemma 1 builds a bridge between the dynamic system in Equation (10) and the
Lyapunov drift. Therefore, in the following, we will study the stability of dynamic systems
by exploring the characteristics of Lyapunov drift.

Lemma 2. Suppose that the Lyapunov drift of V(z) satisfies

V(z) ≤ −a‖z‖+ g(s),

then z(t) is stable and satisfies

lim sup
t→∞

1
t

∫ t

0
E[z(τ)]dτ ≤ d

a
.

where s(t) satisfies lim supt→∞
1
t
∫ t

0 E[g(s(τ))]dτ ≤ d for d < ∞ and a is a positive constant.

Proof. The similar proof is shown in [24].

In Lemma 2, d
a can be considered as an estimation on the upper bound of convergence

error. The advantage of Lemma 2 is that it provides a qualitative analysis of the dynamic
system. Then, based on Lemma 2, the Lyapunov drift of the dynamic system in Equation (10)
can be computed as shown in Equation (13).
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LV(xe) =xT
e γG(x; h)=γ(αw − α∗w)(

∂F(·)
∂αw

−λ)+γ
N

∑
n=1

∑
k∈Ln

(ρn
k−ρn,∗

k )(
∂F(·)
∂ρn

k
−λ)

+γ(λ−λ∗)(αw+
N

∑
n=1

∑
k∈Ln

ρn
k−B)

= γ(αw − α∗w)(
∂F(·)
∂αw

− ∂F(·)
∂α∗w

) + γ(αw − α∗w)(
∂F(·)
∂αw

− λ∗) (13)

+γ
N

∑
n=1

∑
k∈Ln

(ρn
k − ρn,∗

k )(
∂F(·)
∂ρn

k
− ∂F(·)

∂ρn,∗
k

)

+γ
N

∑
n=1

∑
k∈Ln

(ρn
k − ρn,∗

k )(
∂F(·)

∂
ρn

k − λ∗) + (λ− λ∗)(α∗w +
N

∑
n=1

∑
k∈Ln

ρn,∗
k − B)

≤ γ(αw − α∗w)(
∂F(·)
∂αw

− ∂F(·)
∂α∗w

) + γ
N

∑
n=1

∑
k∈Ln

(ρn
k − ρn,∗

k )(
∂F(·)
∂ρn

k
− ∂F(·)

∂ρn,∗
k

) ≤ −αxγ‖xe‖2.

In Equation (13), the first inequality is based on the KKT conditions in Equations (5) and (6),
the second inequality is because F(·) is a concave function.

It can be easily seen that the Lyapunov drift in Equation (13) satisfies the stochastically
stable condition in Lemma 2. Hence, we can conclude that the algorithm can iterate to the
optimal value and that the convergence error is zero, i.e., lim supt→∞

1
t
∫ t

0 E[xe(τ)]dτ = 0.
However, due to the constant step size, the iteration algorithm definitely converges

to within some range of the optimal value; i.e., we have lim
ns→∞

|Fns
bset − F∗| ≤ γε2

2 , where

F∗ denotes the optimal value problem (3), Fns
bset is the best objective value found in ns

iterations, and ε is the upper bound of the norm of G [22]. We refer to this part of error
as the steady-state error. As a result, the convergence of the spectrum allocation iteration
algorithm can be measured by the convergence error and steady-state error. The former
determines whether the algorithm is convergent, and the latter shows the quality of the
convergence result.

4.3. Signaling Overhead

The spectrum allocation algorithm should be executed with the coordination of the
centralized cloud server. Although the coordinated scheme provides higher performance,
the coordination overhead will be increased sharply. Especially for the heterogeneous LTE-
U and WiFi network, a cross-technology communication channel is used for exchanging the
corresponding information [25]. In order to implement the spectrum allocation, the cloud
server needs to acquire all of the CSI at each algorithm iteration. Let c1 and c2 denote the
signaling overheads on wireless links and backhaul links, respectively. In order to achieve
δ-optimality, i.e., |λ− λ∗| ≤ δ, it needs the order of O( 1

δ2 ) iterations to solve the system
through a maximization problem. Hence, the amount of signaling overhead between the
cloud server and the devices is O(K(c1+c2)

δ2 ).

Remark 1. It is certainly true that the iteration algorithm can converge to the optimal value.
However, we can observe from Equation (11) that the spectrum partitioning decision of the WiFi
network depends on the statistical global CSI. It is not difficult to understand that the statistical
global CSI is affected by the large-scale channel fading, whose statistical properties change over a
relatively large timescale. In contrast, the spectrum partitioning decision of LTE user is affected
by the local CSI. Moreover, the local CSI changes on a small timescale. Therefore, if the spectrum
partitioning decisions of the LTE and WiFi are iterated at the same time on a smaller timescale,
although the optimal solution can be found, the iteration of WiFi will bring additional iteration
overhead and signaling overhead. In contrast, if we iterate the two decisions on a large timescale,
the spectrum partitioning decision of the LTE will waste many transmission opportunities on the
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small timescale. Based on this motivation, we will first explore the convergence of an one-timescale
algorithm and extend its theoretical framework to the two-timescale algorithm.

5. One-Timescale Dynamic Spectrum Allocation

Obviously, the static CSI assumption during the algorithm iteration in the above
section is not practical. In fact, the CSI is dynamic and behaves as a stochastic process,
along with the spectrum allocation algorithm iteration. In this situation, a fast iterative
algorithm, as shown in Figure 2b, may converge to the moving optimal solution. However,
the complexity and coordination overhead may be too large to undertake. As shown
in Figure 2c, the iteration number and signal overhead will reduce with the increase in
the algorithm iteration timescale. However, the convergence of the algorithm cannot be
ensured. With this consideration, in this section, we will explore whether the algorithm can
converge in dynamic environments and its convergence error.

Network state changing timescales

h
n1 2 3 ...

...
s
n
x

Algorithm iteration timescale

...

1/ 2
s
N =

1
s
N =

s
N s

s
N s Algorithm iteration timescale

a

b

c

t

w

w

1x 2x 3x

1x 2x 3x s
n
x

CSI acquisition

CSI acquisition

Figure 2. Network state changing timescale vs. one-timescale algorithm iteration

5.1. One-Timescale Algorithm

In dynamic wireless networks, the fading of wireless links satisfies Rayleigh distribu-
tion. The signal incoming to the receiver contains a large number of reflected radio waves,
which are characterized by “multipath reception”. Thus, the wireless channel behaves in a
random-like fashion, and its random behavior can be described by the following stochastic
equation [26],

dh = −1
2

ahhdt + a
1
2
h dWK, (14)

where WK denotes the K-dimensional Wiener process and ah is the temporal correlation
of h.

Without loss of generality, we assume that the CSI is changing at the slotted time and
the slot length is represented as sufficient constant σ. Then, the slot length of the iteration
algorithm can be set as Nsσ, where Ns is the timescale adjustment parameter, and it can
be continuously taken values in (0, 1]. As shown in Figure 2, a small Ns indicates more
iterations of the spectrum allocation algorithm along with the CSI changing. Therefore,
at the ns-th slot, the spectrum allocation variable x can be also updated according to the
following iterations

xns+1 = Γ+[xns + γns G(xns ; hns)]. (15)

Equation (15) characterizes a discrete iterative algorithm. To describe its iterative trajectory,
we construct the following dynamic system

dx = γG(x; h)dω, (16)

where ω is the timescale of the spectrum allocation algorithm.
In order to analyze the convergence of the algorithm in the network, we need to relate

the algorithm iteration to the running time of the network. From the viewpoint of algorithm
iteration, the length of each iteration is σ; thus, the length of ns iterations can be expressed
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as the real number ω, i.e., ω = nsσ. From the viewpoint of the network running, the time of
an single algorithm iteration is σNs. Thus, after ns iterations, the running time of the network
is t = nsσNs. After the above analysis, we found that ns = ω/σ = t/(σNs). Hence, we can
obtain the relation between ω and t as

t = ωNs, dt = Nsdω. (17)

Based on the equation above, the dynamic system can be mapped from ω to t as

dx = γG(x; h)dω = γN−1
s G(x; h)dt. (18)

5.2. Convergence Analysis

In a dynamic wireless network, the optimal solution, i.e., equilibrium point, is always
disturbed by the external stochastic CSI processes. Therefore, the equilibrium point is also
a stochastic process. Based on the optimality condition G(·) = 0 and the implicit theorem,
the dynamic of the equilibrium point can be computed as

dx∗ = −G−1
x∗ Ghdh, (19)

where Gx∗ , ∂
∂x∗G(·), Gh , ∂

∂h G(·).
Then, by subtracting Equation (19) from Equation (18), we can obtain the convergence

error for the algorithm iteration.

dxe = dx− dx∗ = γN−1
s G(·)dt−G−1

x∗ Ghdh. (20)

By substituting Equation (14) into Equation (20), the convergence error can be further
computed as follows

dxe =

(
γN−1

s G(·)+ 1
2

aG−1
x∗ Ghh

)
dt−a

1
2 G−1

x∗ GhdWK. (21)

We use z = (xe, h) ∈ RL+2+K to represent the state of a joint system. Then,
Equations (14) and (21) can be used to construct the following dynamic system

dz = U1(z)dt + U2(z)dW̃, (22)

where

U1=

[
γN−1

s G(·)+ 1
2 aG−1

x∗ Ghh
− 1

2 ah

]
, U2=

[
−a

1
2 G−1

x∗ Gh

a
1
2 IK

]
,

W̃ is a (L + 2 + K)-dimensional complex Wiener process.
Here, we find that the dynamic system is driven by the complex Wiener process W̃.

Hence, we can analyze the convergence of the spectrum allocation algorithm by studying
the stability of the dynamic system. Motivated from this consideration, we first define a
Lyapunov function of z as V = 1

2 zTz. Similarly to the convergence analysis in Section 3, the
Lyapunov drift of the dynamic system in (22) can be computed according to Lemma 1 as

LV(z) = zTU1(z) + tr
[
U2(z)TU2(z)

]
≤ xT

e

(
γGN−1

s +
1
2

aG−1
x∗ Ghh

)
(23)

+atr
[(

G−1
x∗ Gh

)T(
G−1

x∗ Gh

)]
− 1

2
hTh+aK.

In Equation (23), except for the network state parameters, such as a and h, the step
size γ and the timescale parameter Ns dominate the value of the Lyapunov drift. Based on
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Lemma 2, the dynamic system will be stable if the Lyapunov drift can be upper bounded by
a negative function. Hence, by making the Lyapunov drift satisfying the stability constraint
in Lemma 2, we can obtain the following theorem.

Theorem 1. (Convergence of the one-timescale algorithm): Suppose that there exists 0 < vxh < ∞,
such that ‖G−1

x∗ Gh‖ ≤ vxh. Then, if the step size parameter γ and timescale parameter Ns satisfy

γ

Ns
≥

av2
xh

8αx
,

the one-timescale algorithm can converge to the moving optimal solution.

Proof. First of all, from the convergence analysis in Equation (13), we can obtain xT
e G ≤

−αx‖xe‖2. Then, using this result and the assumption in Theorem 1, the upper bound of
the Lyapunov drift can be computed as

LV(z) ≤ −αxγN−1
s ‖xe‖2 − 1

2
a‖h‖2 +

1
2

avxh‖h‖‖xe‖

+av2
xhK + aK = −χTAχ + av2

xhNh + aNh,

where χ = [‖xe‖, ‖h‖] and

A =

[
αxγN−1

s − 1
4 avxh

− 1
4 avxh

1
2 a

]
.

Obviously, when the coefficient matrix A is positive, the dynamic system is stable. There-
fore, by making the matrix positive definite, the condition in Theorem 1 can be obtained.

In addition to the stability, the convergence error is another metric to show the conver-
gence performance of the one-timescale algorithm.

Theorem 2. (Upper Bound of Convergence Error): The convergence error of the one-timescale
algorithm can be given as

η ≤
(

Ns

γ

)2( avxhπ

2αx

)2
+

Ns

γ

2av2
xhK

αx

Proof. Following from Equation (21), the Lyapunov drift of xe can be calculated based on
Lemma 1 as

LV(xe) ≤ xT
e

(
γGN−1

s +
1
2

aG−1
x∗ Ghh

)
+atr

[(
G−1

x∗ Gh

)T(
G−1

x∗ Gh

)]
≤ −αxγN−1

s ‖xe‖2 +
1
2

avxhπ‖xe‖+ avxhK

≤ −1
2

αxγN−1
s ‖xe‖2 + av2

xhK +
(avxhπ)2

8αxγN−1
s

where π = maxk∈K{hk} is the maximum channel gains among K transmission links.
According to Lemma 2, the convergence error can be obtained as shown in Theorem 2.

The above results motivate the following remark on the convergence and convergence error.
In Theorems 1 and 2, a specifies the changing speed of the wireless CSI, K can be

interpreted as the network size, vxh represents the sensitivity of the equilibrium point
corresponding to the time-varying CSI and αx is the convergence rate of the spectrum
allocation problem. Therefore, for the given network situation, i.e., (a, K), we can increase
the iteration number (Ns) or set a large step size (γ) for achieving the algorithm convergence
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and decreasing the convergence error for the certain spectrum allocation algorithm (αx,vxh).
On the other hand, for the given spectrum allocation algorithm (αx,vxh) and adjustment
parameters (γ, Ns), the CSI changing speed a not only affects the convergence but also
determines the convergence error. However, the network size K only determines the
convergence error, which comes from the accumulation of convergence error on each link.

5.3. Signaling Overhead

For the one-timescale spectrum allocation algorithm, it needs the order of O(1/Ns)
iterations at each slot of the CSI. Similar to the signal overhead in Section 4, at each iteration,
the cloud server needs to acquire all of the CSI. Therefore, the signaling overhead amount
between the cloud server and devices is O(K(c1+c2)

Ns
), which is much smaller than the

signaling overhead in Section 4.

6. Two-Timescale Dynamic Spectrum Allocation

In above section, we observe that the fraction of the unlicensed spectrum for WiFi αw
adapts to the CSI statistics hm, m ∈ M with a global coordination, while the unlicensed
spectrum allocation ρn

k should adapt to the instantaneous CSI hn
k locally. In fact, In fact,

obtaining real-time local CSI is practical, while obtaining real-time global CSI is extremely
difficult [27]. Therefore, the one-timescale spectrum allocation algorithm not only is difficult
to achieve in practice but also has very sensitive system performance due to signaling
latency in acquiring the global CSI. In this section, we will decompose the spectrum
allocation into a short-term control and a long-term control. Furthermore, by iterating them
on different timescales, the spectrum allocation policy can not only exploit the instantaneous
transmission opportunity at small timescale but also save a lot of signal overhead at the
large timescale.

6.1. Two-Timescale Algorithm Dynamics

Motivated from the above discussion, we employ the mixed timescale CSI model, i.e.,
hk = hl

khs
k, where hl

k is the large timescale fading and hs
k is the small timescale fading [27,28].

Furthermore, the dynamics of hl
k and hs

k can be specified by the following stochastic
differential equations:

dhs
k = −

1
2

ahs
kdt + a

1
2 dW, ∀k ∈ K, (24)

dhl
k = −c0Dk(t)−ι−1vk(t)dt, ∀k ∈ K, (25)

where c0 is an antenna-gain-related constant, Dj(t) ≥ Dmin is the distance between device
k and the corresponding network, vk(t) is the relative moving speed of device k, and ι is
the path loss exponent.

In fact, in any form of wireless network, obtaining real-time global CSI from a central
node is extremely difficult and expensive. Hence, we assume that only the network, WiFi
or LTE-U, has the knowledge of the local CSI (hl

k, hs
k) of the connected devices at the small

timescale. On the other hand, the cloud entity can only acquire the global CSI hl
k for all of

the devices at the large timescale. Therefore, the spectrum allocation can be achieved at
two-timescales. At the large timescale, the cloud entity select the clean block of bandwidth
for WiFi or LTE-U based the global CSI. On the small timescale, the frequency allocation
can be executed in the selected frequency by LTE-U using the local CSI.

Let Bn denote the selected clean block of bandwidth for LTE-U n, and let ρn
k denote

the allocated frequency for sDevice k. We can obtain the following constraint

αw +
N

∑
n=1

Bn ≤ Bmax, ∑
k∈Ln

ρn
k ≤ Bn,
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where the first equation indicates that the selected bandwidth for WiFi and LTE-U should be
smaller than the total unlicensed spectrum and the second equation indicates the frequency
allocation constraint for LTE-U.

Then, the two-timescale spectrum allocation problem can be formulated as

max E[F(αw, ρ, B, h)] (26)

s.t. αw +
N

∑
n=1

Bn ≤ B,

∑
l∈Ln

ρl
n ≤ Bn,

αw > 0, Bn > 0, ρn
k > 0, ∀n ∈ N , k ∈ K.

In problem (26), the constraints are coupled by the frequency selection variable Bn.
Hence, when the variable Bn is fixed, the problem would decouple. Therefore, it makes
sense to decompose problem (26) into two levels of optimization. At the lower level, we
have the frequency allocation subproblems for LTE-U n as follows

Fn(Bn, hn) = max w2 ∑
k∈Ln

ρn
k log2

(
1 +

hn
k

ρn
k

)
(27)

s.t. ∑
k∈Ln

ρn
k ≤ Bn, ρn

k > 0, ∀k ∈ Ln,

where hn = [hn
k ]k∈Ln . At the higher level, we have the master problem in charge of solving

the frequency selection problem.

maxE
[
w1

M

∑
m=1

a
M

αw log2

(
1+

gm

αw

)
+

N

∑
n=1

Fn(Bn, hn)

]
(28)

s.t. αw +
N

∑
n=1

Bn ≤ B, αw > 0, Bn > 0, ∀n ∈ N .

Let x = (ρ, λ) ∈ RL+1
+ be the small timescale frequency allocation variable of the lower

level subproblem. Similarly, let y = (αw, B, µ) ∈ RN+2
+ be the large timescale frequency

selection variable of the master problem. In x and y, both λ and µ are the lagrange multiplier
variables. As shown in Figure 3, the slot length of CSI is σ. The slot length of the small
timescale iteration algorithm is set as Nsσ, where Ns is the small timescale adjustment
parameter, and it can be continuously taken values in (0, 1]. On the other hand, the slot
length of the large timescale iteration is Nlσ, where Nl ≥ 1 is the large timescale adjustment
parameter. Let ns and nl denote the slot index of the small timescale iteration and large
timescale iteration, respectively. The frequency selection and frequency allocation can be
updated according to the following iterations

ynl = Γ+

[
ynl−1 + µK(ynl−1; hl

nl−1)
]
, (29)

xns = Γ+

[
xns−1 + γG(xns−1, ynl ; hs

ns−1, hl
nl
)
]
. (30)

Then, the trajectories of the algorithm iteration in Equations (29) and (30) can be character-
ized by the following dynamic system

dy = µK(y; hl)dκ, dx = γG(x, y; hs, hl)dω, (31)

where κ and ω are the virtual timescales of frequency selection and frequency allocation, re-
spectively. Under the continuous-time algorithm, the iteration indices of the two-timescale
algorithm are represented as ns = b ω

Nsσ c, nl = b κ
Nlσ
c. Then, based on the relation with the

CSI timescale, i.e., nh = b t
σ c, the timescale relation of κ, ω and t is given as
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t = κN−1
l , t = ωN−1

s , dt = N−1
l dκ, dt = N−1

s dω.

Then, the dynamics of the wireless network under frequency selection and frequency
allocation algorithms are determined by the following coupled equations

dh = −1
2

ahdt + a
1
2 dW, (32)

dx = γN−1
s G(x, y; hs, hl)dt, (33)

dy = γN−1
l K(y; hl)dt. (34)

The equilibrium point is a stochastic point driven by external conditions. Therefore, it is
necessary to study whether the iteration of the algorithm can track the change in the above
equilibrium point and its tracking error.

Network state changing timescales

hn1 2 3 ...

...
sn
x

Small iteration timescale

...
ln
y

1/ 3sN =

2lN =

sN s

lN s
Large iteration timescale

a

b

c

t

w

k

1x 2x 3x

1y 2y

Local CSI acquisition

Global CSI acquisition

Figure 3. Network state changing timescale vs. two-timescale algorithm iteration.

6.2. Convergence Analysis

For the two-timescale iteration algorithms, the trajectory of equilibrium y∗(hl) is
driven by the time-varying hl . Due to the slow variation of hl , the trajectory of equi-
librium x∗(y, hs, hl) is mainly driven by the time-varying y and hs. According to the
implicit theorem and the optimality conditions G(·) = 0, K(·) = 0, we can obtain the
following equations

dx∗=−G−1
x∗ Ghs dhs−G−1

x∗ Gydy, (35a)

dy∗=−K−1
y∗ Khl dhl , (35b)

where Gx∗ , ∂
∂x∗G(·), Ghs , ∂

∂hs G(·), Gy , ∂
∂y G(·) and Ky∗ , ∂

∂y∗K(·), Khl , ∂
∂hl K(·).

Then, the convergence error can be computed as

dx−dx∗=γN−1
s G(·)dt+G−1

x∗ Ghs dhs+G−1
x∗ Gydy, (36)

dy−dy∗=γN−1
l K(·)dt+K−1

y∗ Khl dhl . (37)

Substituting Equations (24) and (25) into the above equations, we obtain

dxe =
(

γN−1
s G(·) + γN−1

l G−1
x∗ GyK(·) (38)

−1
2

aG−1
x∗ Ghs hs

)
dt + a

1
2 G−1

x∗ Ghs dW,

dye =
(

γN−1
l K(·) + K−1

y∗ Khl HL

)
dt (39)

where HL is a diagonal matrix, and HL(i, i) = c0Di(t)−ι−1vi(t). Let u = (xe, ye, hs) be a
joint system state. Then, Equations (38) and (39) can construct the following dynamic system

du = U1(u)dt + U2(u)dẄ, (40)
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where

U1 =

 γN−1
s G + γN−1

l G−1
x∗ GyK− 1

2 aG−1
x∗ Ghs hs

γN−1
l K−K−1

y∗ Khl HL

− 1
2 ahs


and

U2 =

 a
1
2 G−1

x∗ Ghs

0(N+2)×K

a
1
2 IK

,

Ẅ is a ((L + 1) + (N + 2) + K)-dimensional complex Wiener process.
We define the Lyapunov function of u as V = 1

2 uTu. Based on Lemma 1, the Lyapunov
drift of the dynamic system in (40) can be computed as

LV(u)=γN−1
s xT

e G+γN−1
l xT

e G−1
x∗ GyK− 1

2
axT

e G−1
x∗ Ghs hs

+γN−1
l yT

e K− yT
e K−1

y∗ Khl HL −
1
2

ahT
s hs

+tr
[

a(G−1
x∗ Ghs hs)

T(G−1
x∗ Ghs hs) + aIK

]
.

Based on the stability constraint in Lemma 2, we can obtain the following theorem for
the dynamic system stability.

Theorem 3. (Convergence of the two-timescale algorithm): Suppose there exists positive constants
vxy, vxh, vyh and ly such that ‖G−1

x Gy‖ ≤ vxy, ‖G−1
x Ghs‖ ≤ vxh, ‖K−1

y Khl‖ ≤ vyh and
K ≤ ly‖ye‖. If the step size parameter γ satisfies

γ

(
αx

Ns
−

(vxyll)2

4αyNl

)
≥

av2
h

8

the two-timescale algorithm can converge to the moving equilibrium point.

Proof. The proof is shown in Appendix A.

Then, we give the following remarks.

• The convergence of the small timescale variables and large timescale variables are

coupled with each other. The term
(

αx
Ns
− (vxy ll)2

4αy Nl

)
> 0 is the premise condition for

the convergence of two-timescale iterations. Recall that Ns and Nl are the adjustment
parameters of the two-timescale iterations. Then, for the given certain spectrum
allocation algorithm (αx,αy,vxy,ll), the small timescale variables should be iterated
much faster than the large timescale variables in order to achieve the convergence.

• By adjusting γ and Ns, the stability of the algorithm can be improved. However, when
Ns is too small, the algorithm must iterate more times per unit of time, resulting in more
iteration overhead. Excessive γ can also cause significant steady-state errorO(γ) [22].

Then, the convergence error of the two-timescale algorithm is investigated in the
following theorem.

Theorem 4. (Upper Bound of Convergence Error): The convergence error of the two-timescale
algorithm can be given as

ηy≤
(

Nl
γ

)2(vyhς

αy

)2
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and

ηx≤
Ns

γ

2v2
xhKa
αx

+

(
Ns

γ

)2
(

vxylyv2
yhς2

αxα2
y

Nl
γ
+

avxhπ

2αx

)2

.

Proof. Please refer to Appendix B for the proof.

From Theorem 4, we can give the following observations.

• For the convergence error, ηy is determined by the large timescale algorithm adjust-
ment parameters (Nl , γ) and the global CSI parameter ς. However, the convergence
error of the small timescale algorithm ηx is affected not only by the small timescale
parameters Ns, γ, a and π but also by the large timescale parameters Nl , γ and ς.

• For the static CSI, where the CSI parameters a = ς = 0, we have ηx = ηy = 0. Under
static hl , where ς = 0, we obtain that ηy = 0 and that ηx is the same as Theorem 2.
Hence, the overall convergence error only comes from the small timescale iterations.

• Under time-varying hs and hl , one can increase the step size γ and decrease the timescale
adjustment parameter Ns and Nl to reduce the convergence error at the price of larger
steady-state error O(γ), larger signaling overhead and computational complexity.

6.3. Signaling Overhead

For the one-timescale spectrum allocation algorithm, it needs the order of O(1/Ns)
iterations at the small timescale and O(1/Nl) iterations at the large timescale during each
slot of the CSI. The spectrum allocation has been decomposed into two levels of problems,
which are separately solved by the cloud server and network (WiFi/LTE-U), respectively.
Hence, the cloud server needs to acquire the global CSI at the large timescale, and the
network needs to acquire the local CSI at the small timescale. With the average signaling
overheads c1 and c2 on the backhaul links and wireless links, the signaling overhead
amount of the network is O(K( c2

Ns
+ c1

Nl
)).

7. Simulation Results

In this simulation, we consider one WiFi and two LTE-U nodes. We assume that the
devices are moving based on the widely adopted Levy walk mobility model [29]. From t = 0,
the device randomly chooses a destination and moves at a constant speed in (0, vmax]. Upon
reaching the destination, the device randomly choose a new destination and speed to go on.
We assume that the bandwidth of the whole unlicensed spectrum is 20 MHz. The maximum
moving speed of the device is set as vmax = 2 m/s. The minimum distance between the
device and the network is set as Dmin = 20 m and the path loss exponent is set as ι = 1.8 [30].
We compare our proposed algorithm with the following baseline schemes: one-timescale
optimal algorithm: The cloud sever collects the real-time global CSI and computes the
optimal spectrum allocation solution; this algorithm can be also considered as the case of
an one-timescale algorithm under sufficient small Ns. one-timescale based on statistical
CSI: In this algorithm, the optimal spectrum allocation solution is computed based on the
statistical CSI at each slot of a large timescale. Static algorithm: The unlicensed spectrum
is partitioned with static fraction.

In the first experiment, we compared the convergence performance of the vanishing
step-size and constant step-size algorithms. From Figure 4, we observe that both step
size rules can make the convergence errors converge to zero under sufficient iterations.
However, due to the fact that a diminishing step-size will converge to zero along with
the algorithm iterations, the output solution of the algorithm will not change with the
dynamics of network state. Practical, when the network state changes, the algorithm
iterations should continuously approach the time-varying optimal solution. Hence, for the
spectrum allocation in time-varying wireless networks, we must consider a constant step
size instead of diminishing step size. The figure also shows that a large steady-error will
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be incurred when the step size is excessively large. This is inevitable due to the discrete
iteration of the spectrum allocation algorithm.
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Figure 4. Convergence of the spectrum allocation iteration algorithm.

Figure 5 illustrates the convergence trajectory of the one-timescale spectrum allocation
iteration algorithm. From the figure, we observe that the small timescale adjustment
parameter Ns can help the spectrum allocation iteration algorithm converge to the optimal
solution. However, as outlined in Section 4.3, the signal overhead will increase sharply
with the decrease of Ns. Besides the effect of timescale adjustment parameter Ns, we
investigate the relation between the step size γ and the system performance in Figure
6. The performance gap of Figure 6 is defined as the difference of weighted system
throughput between the optimal algorithm and the one-timescale spectrum allocation
iteration algorithm. From Figure 6, we observe that the performance gap decrease with
the increase in step size parameter. However, when γ is larger than 0.13, the performance
gap increase because of the steady error incurred by the constant step size. Therefore, it is
not reasonable to increase the step size parameter blindly. The step size γ and timescale
parameter Ns should be jointly adjusted based on the system performance requirement and
signal overhead constraint.
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Figure 5. Convergence trajectory of the one-timescale spectrum allocation iteration algorithm
(γ = 0.01).

Figures 7 and 8 illustrate the convergence trajectories of the two-timescale spectrum
allocation algorithm. We observe that the small Ns and Nl can help decrease the con-
vergence error, which validates the theoretical analysis in Theorems 3 and 4. Then, in
Figures 9 and 10, we investigate the performance gap versus Ns, Nl . From these figures, we
observe that the performance gap increases with the increase in Ns, Nl . However, the large
Ns and Nl decrease the overhead of the two-timescale spectrum allocation algorithm. We
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also illustrate the relation between the step size γ and the system performance in Figure 10.
Similar to the one-timescale algorithm, Figure 10 also shows that the performance gap
decrease as the step size parameter increases. When the step size is larger than 0.85, a
larger steady error will be incurred and the performance gap increase. Therefore, under the
consideration of system performance requirement and signal overhead constraint, we can
appropriately increase the step parameter γ to compensate for the performance gap of the
larger Ns and Nl .
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Figure 6. Performance gap vs. step size parameter γ.
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Figure 7. Convergence trajectory of the large timescale spectrum selection iteration algorithm.
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Figure 8. Convergence trajectory of the small timescale spectrum allocation iteration algorithm.

Figure 11 investigates the system performance versus the number of sDevices. The fig-
ure shows that the two-timescale optimal algorithm has the similar performance compared
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with the one-timescale optimal algorithm. This indicates the validity of decomposing the
spectrum allocation into a two-timescale algorithm. That is, by decomposing the spectrum
allocation into large timescale spectrum selection and small timescale spectrum allocation,
the policy can achieve the maximum system throughput without the real-time global CSI.
This can effectively reduce the signal overhead on both the backhaul links and wireless
links. The figure also shows that although there is a little loss of system throughput of
our proposed two-timescale algorithm, it performs much better than the static algorithm.
Moreover, it performs better than the one-timescale dynamic spectrum allocation algorithm
based on statistical CSI.
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8. Conclusions

In this paper, we investigated the continuous-time control for the spectrum allocation
in a wireless network. Specifically, we first proposed a universal convergence analysis
framework for the unlicensed spectrum allocation algorithm. Then, we developed the one-
timescale iteration-adjustable unlicensed spectrum allocation algorithm. For the networks
with mixed timescale network sates, we proposed a two-timescale frequency allocation and
derived its convergence condition and convergence error. When the user moves at high
speed, the wireless channel will be affected by the Doppler shift, and it is difficult for the
central server to obtain accurate CSI. In the future, we will model the uncertainty of CSI on
different timescales. On the small timescale, the distribution of uncertainty is considered to
be constant, but on the large timescale, the uncertainty is changing over time. According
to this uncertainty model, we will design a multi-timescale algorithm for achieving the
coexistence of LTE and WiFi networks.
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Appendix A

Proof of Theorem 3. The convergence analysis in Equation (13) indicates xT
e G ≤ −αx‖xe‖2.

Similarly, we can obtain yT
e K ≤ −αy‖ye‖2. Then, the upper bound of the Lyapunov drift

can be computed as

LV(z) ≤ −αxγ‖xe‖2N−1
s + γvxylyN−1

l ‖xe‖‖ye‖

+
1
2

avxh‖xe‖‖hs‖ − αyN−1
l γ‖ye‖2 + ‖ye‖vyhς

−1
2
‖hs‖2 + vxhaK + aK

= −χTAχ + bTχ + vxhaK + aK

where

A=


αxγN−1

s − γvxy ly N−1
l

2 − avh
4

− γvxy ly N−1
l

2 γαyN−1
l 0

− avh
4 0 1

2 a

, b=

 0
vyhς

0


where ς = 2c0ιD−ι−1

min vmax is the upper bound of Hl . By calculating each of the leading
principle minors of A, and making them positive, Theorem 3 can be proved.
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Appendix B

Proof of Theorem 4. Firstly, we will show the convergence error of ye. Based on Lemma 1,
the Lypounov drift of ye can be computed as

LV≤γN−1
l yT

e K−yT
e K−1

y∗ Khl
ς≤−αyγN−1

l ‖ye‖2

+vyhς‖ye‖ ≤ −
1
2

αyγN−1
l ‖ye‖2 +

(vyhς)2

2αyγN−1
l

.

According to Lemma 2, the convergence error of ye is

ηy ≤
(vyhς

αy

)2(Nl
γ

)2
. (A1)

For the convergence error xe, the Lypounov drift can be computed as

LV =γxT
e GN−1

s +γN−1
l xT

e G−1
x∗ Gy∗K

−1
2

axT
e G−1

x∗ Ghs hs + tr
[

a(G−1
x∗ Ghs)

TG−1
x∗ Ghs

]
≤ −αxγN−1

s ‖xe‖2 + γvxylyN−1
l ‖xe‖‖ye‖

+
1
2

avxhπ‖xe‖+ v2
xhKa.

Substituting Equation (A1) into the equation above, we obtain

LV≤ −αxγN−1
s ‖xe‖2 + v2

xhaK

+

(
vxylyv2

yhς2Nl

α2
yγ

+
1
2

avxhπ

)
‖xe‖

≤ −1
2

αxγN−1
s ‖xe‖2 + C1,

where

C1 = v2
xhaK +

Ns

2αxγ

(
vxylyv2

yhNl

α2
yγ

+
1
2

avxhπ

)2

.

Then, based on Lemma 1, the theorem can be proved.
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