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Abstract: With the rapid development of vision sensing, artificial intelligence, and robotics technology,
one of the challenges we face is installing more advanced vision sensors on welding robots to achieve
intelligent welding manufacturing and obtain high-quality welding components. Depth perception
is one of the bottlenecks in the development of welding sensors. This review provides an assessment
of active and passive sensing methods for depth perception and classifies and elaborates on the
depth perception mechanisms based on monocular vision, binocular vision, and multi-view vision. It
explores the principles and means of using deep learning for depth perception in robotic welding
processes. Further, the application of welding robot visual perception in different industrial scenarios
is summarized. Finally, the problems and countermeasures of welding robot visual perception
technology are analyzed, and developments for the future are proposed. This review has analyzed a
total of 2662 articles and cited 152 as references. The potential future research topics are suggested to
include deep learning for object detection and recognition, transfer deep learning for welding robot
adaptation, developing multi-modal sensor fusion, integrating models and hardware, and performing
a comprehensive requirement analysis and system evaluation in collaboration with welding experts
to design a multi-modal sensor fusion architecture.

Keywords: welding sensor; welding robot; depth perception; 3D reconstruction; deep learning;
industrial applications

1. Introduction

The interaction between cameras and welding lies in the integration of technology,
vision, and field plots for controlling the welding process [1,2]. As we embrace the rapid
development of artificial intelligence [3], the prospects for research and development in
the automation and intelligence of robotic welding have never been more promising [4–6].
Scientists, engineers, and welders have been exploring new methods for automated welding.
Over the past few decades, as shown in Figure 1, numerous sensors have been developed
for welding, including infrared sensors [7], vision sensors [8,9], temperature sensors [10],
acoustic sensors [11], arc sensors [12], and force sensors [13].

The vision sensor stands out as one of the sensors with immense development poten-
tial. This device leverages optical principles and employs image processing algorithms
to capture images while distinguishing foreground objects from the background. Essen-
tially, it amalgamates the functionalities of a camera with sophisticated image processing
algorithms to extract valuable signals from images [14].

Vision sensors find widespread application in industrial automation and robotics,
serving various purposes including inspection, measurement, object detection, quality
control, and navigation [15]. These versatile tools are employed across industries such as
manufacturing, food safety [16], automotives, electronics, pharmaceuticals, logistics, and
unmanned aerial vehicles [17]. Their utilization significantly enhances efficiency, accuracy,
and productivity by automating visual inspection and control processes.
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unmanned aerial vehicles [17]. Their utilization significantly enhances efficiency, accu-
racy, and productivity by automating visual inspection and control processes. 

A vision sensor may also include other features such as lighting systems to enhance 
image quality, communication interfaces for data exchange, and integration with control 
systems or robots. It works in a variety of lighting conditions for detecting complex pat-
terns, colors, shapes, and textures. Vision sensors can process visual information in real 
time, allowing automated systems to make decisions and take actions. 

 
Figure 1. A classification of depth perception for welding robots. 

Vision sensors for welding have the characteristics of non-contact measurement, ver-
satility, high precision, and real-time sensing [18], providing powerful information for the 
automated control of welding [19]. However, extracting depth information is challenging 
in the application of vision sensors. Depth perception is the ability to perceive the three-
dimensional (3D) world through measuring the distance to objects [20,21] by using a vis-
ual system [22–24] mimicking human stereoscopic vision and the accommodative mech-
anism of the human eye [25–28]. Depth perception has a wide range of applications 
[29,30], such as intelligent robots [31,32], facial recognition [33,34], medical imaging [35], 
food delivery robots [36], intelligent healthcare [37], autonomous driving [38], virtual re-
ality and augmented reality [39], object detection and tracking [40], human–computer in-
teraction [41], 3D reconstruction [42], and welding robots [43–45]. 

Figure 1. A classification of depth perception for welding robots.

A vision sensor may also include other features such as lighting systems to enhance
image quality, communication interfaces for data exchange, and integration with control
systems or robots. It works in a variety of lighting conditions for detecting complex patterns,
colors, shapes, and textures. Vision sensors can process visual information in real time,
allowing automated systems to make decisions and take actions.

Vision sensors for welding have the characteristics of non-contact measurement, ver-
satility, high precision, and real-time sensing [18], providing powerful information for the
automated control of welding [19]. However, extracting depth information is challenging
in the application of vision sensors. Depth perception is the ability to perceive the three-
dimensional (3D) world through measuring the distance to objects [20,21] by using a visual
system [22–24] mimicking human stereoscopic vision and the accommodative mechanism
of the human eye [25–28]. Depth perception has a wide range of applications [29,30], such
as intelligent robots [31,32], facial recognition [33,34], medical imaging [35], food delivery
robots [36], intelligent healthcare [37], autonomous driving [38], virtual reality and aug-
mented reality [39], object detection and tracking [40], human–computer interaction [41],
3D reconstruction [42], and welding robots [43–45].

The goal of this review is to summarize and interpret the research in depth perception
and its application to welding vision sensors and evaluate some examples of robotic
welding based on vision sensors.
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Review [46] focuses on structured light sensors for intelligent welding robots. Re-
view [47] focuses on vision-aided robotic welding, including the detection of various groove
and joint types using active and passive visual sensing methods. Review [48] focuses on
visual perception for different forms of industry intelligence. Review [49] focuses on deep
learning methods for vision systems intended for Construction 4.0. The difference our
review provides is a comprehensive analysis of visual sensing and depth perception. We
contribute to visual sensor technology, welding robot sensors, computer vision-based depth
perception methods, and the industrial applications of perception to welding robots.

2. Research Method

This article focuses on visual sensing and depth perception for welding robots, as well
as the industrial applications. We conducted a literature review and evaluated from several
perspectives, including welding robot sensors, machine vision-based depth perception
methods, and the welding robot sensors used in industry.

We searched for relevant literature in the Web of Science database using the search
term “Welding Sensors”. A total of 2662 articles were retrieved. As shown in Figure 2, these
articles were categorized into subfields and the top 10 fields, and their respective number of
articles were plotted. From each subfield, we selected representative articles and reviewed
them further. Valuable references from their bibliographies were subsequently collected.
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Figure 2. Top ten fields and the number of papers in each field. The number of retrieved papers
was 2662.

In total, we selected 152 articles as references for this review. Our criterion for literature
selection was the quality of the articles, specifically focusing on the following:

1. Relevance to technologies of visual sensors for welding robots.
2. Sensors used in the welding process.
3. Depth perception methods based on computer vision.
4. Welding robot sensors used in industry.

3. Sensors for Welding Process

Figure 3 shows a typical laser vison sensor used for a welding process. If there are
changes in the joint positions, the sensors used for searching the welding seam will provide
real-time information to the robot controller. Commonly used welding sensors include
thru-arc seam tracking (TAST) sensors, arc voltage control (AVC) sensors, touch sensors,
electromagnetic sensors, supersonic sensors, laser vision sensors, etc.
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Figure 3. (a) A typical laser vison sensor setup for arc welding process; (b) a video camera as a vision
sensor; (c) a vision sensor with multiple lenses.

3.1. Thru-Arc Seam Tracking (TAST) Sensors

In 1990, Siores [50] achieved weld seam tracking and the control of weld pool geometry
using the arc as a sensor. The signal detection point is the welding arc, eliminating sensor
positioning errors and being unaffected by arc spatter, smoke, or arc glare, making it a cost-
effective solution. Comprehensive mathematical models [51,52] have been developed and
successfully applied to automatic weld seam tracking in arc welding robots and automated
welding equipment. Commercial robot companies have equipped their robots such sensing
devices [53].

Arc sensor weld seam tracking utilizes the arc as a sensor to detect changes in the
welding current caused by variations in the arc length [54]. The sensing principle is because
when the arc position changes, the electrical parameters of the arc also change, primarily in
the distance between the welding nozzle and the surface of the workpiece. From this, the
relative position deviation between the welding gun and the weld seam can be derived from
the arc oscillation pattern. In many cases, the typical thru-arc seam tracking (TAST) control
method can optimize the weld seam tracking performance by adjusting various variables.

The advantages of TAST as a weld seam tracking method are its low cost, as it only
requires a welding current sensor as hardware. However, it requires the construction of a
weld seam tracking control model, where the robot adjusts the torch position in response to
the welding current feedback.

3.2. Arc Voltage Control (AVC) Sensors

In gas tungsten arc welding (GTAW), there is a proportional relationship between the
arc voltage and arc length. AVC sensors are used to monitor changes in the arc voltage when
there are variations in the arc length, providing feedback to control the torch height [55].
Due to their lower sensitivity to arc length signals, AVC sensors are primarily used for
vertical tracking, and, less frequently, are used for horizontal weld seam tracking. The
establishment of an AVC sensing model is relatively simple and can be used in both pulsed
current welding and constant current welding.
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3.3. Laser Sensors

Due to material or process limitations, certain welding processes, such as thin plate
welding, cannot utilize arc sensors for weld seam tracking. Additional sensors on the
robotic system are required; a popular choice are laser sensors.

Laser sensors do not require an arc model and can determine the welding joint position
before welding begins. When there are changes in the joint, the robot dynamically adjusts
the welding parameters or corrects the welding path deviations in real time [56]. Laser
sensor systems are relatively complex and have stringent requirements for the welding
environment. Since the laser sensor is installed on the welding torch, it may limit the
accessibility of the torch to the welding joint. An associated issue is that it introduces the
inconsistency between the position of the laser sensor’s detection point and the welding
point, known as sensor positioning lead error.

3.4. Contact Sensing

Contact sensors do not require any weld seam tracking control functions. Instead, they
find the weld seam before initiating the arc and continuously adjust the position deviation
along the entire path. The robot operates in a search mode, using contact to gather the
three-dimensional positional information of the weld seam. The compensation for the
detected deviation is then transmitted to the robot controller.

Typical contact-based weld seam tracking sensors rely on probes that roll or slide
within the groove to reflect the positional deviation between the welding torch and the weld
seam [57]. They utilize microswitches installed within the sensor to determine the polarity
of the deviation, enabling weld seam tracking. Contact sensors are suitable for X-and
Y-shaped grooves, narrow gap welds, and fillet welds. Contact sensors are widely used in
seam tracking, because of their simple system structure, easy operation, low cost, and the
fact they are not affected by arc smoke or spatter. However, they have some drawbacks,
including different groove types requiring different probes, and the probes potentially
experiencing significant wear and deform easily, which are not suitable for high-speed
welding processes.

3.5. Ultrasonic Sensing

The detection principle of ultrasonic weld seam tracking sensors is as follows: Ul-
trasonic waves are emitted by the sensor and when they reach the surface of the welded
workpiece, they are reflected and received by the ultrasonic sensor. By calculating the time
interval between the emission and reception of the ultrasonic waves, the distance between
the sensor and the workpiece can be determined. For weld seam tracking, the edge-finding
method is used to detect the left and right edge deviations of the weld seam. Ultrasonic
sensing can be applied in welding methods such as GTAW welding and submerged arc
welding (SAW) and enable the automatic recognition of the welding workpiece [58,59]. Ul-
trasonic sensing offers significant advantages in the field of welding, including non-contact
measurement, high precision, real-time monitoring, and wide frequency adaptability. By
eliminating interference with the welding workpiece and reducing sensor wear, it ensures
the accuracy and consistency of weld joints. Furthermore, ultrasonic sensors enable the
prompt detection of issues and defects, empowering operators to take timely actions and
ensure welding quality. However, there are limitations to ultrasonic sensing, such as high
costs, stringent environmental requirements, material restrictions, near-field detection sen-
sitivity, and operational complexities. Therefore, when implementing ultrasonic sensing, a
comprehensive assessment of specific requirements, costs, and technological considerations
is essential.

3.6. Electromagnetic Sensing

Electromagnetic sensors utilize the changes in induced currents in sensing coils caused
by variations in the induced currents in the surrounding metal near the sensor. This allows
the sensor to perceive the position deviations for the welding joint. Dual electromagnetic
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sensors can detect the offset of the weld seam from the center position of the sensor [60,61].
They are particularly suitable for butt welding processes of structural profiles, especially
for detecting position deviations in welding joints with painted surfaces, markings, and
scratches. They can also achieve the automatic recognition of gapless welding joint posi-
tions. Kim et al. [62] developed dual electromagnetic sensors for the arc welding process
of I-shaped butt joints in structural welding. They performed weld seam tracking by
continuously correcting the offset of the sensor’s position in real time.

3.7. Vision Sensor

Vision sensing systems can be divided into active vision sensors and passive vision
sensors according to the imaging light source in the vision system. Passive vision sensors
are mainly used for extracting welding pool information, analyzing the transfer of molten
droplets, recognizing weld seam shapes, and weld seam tracking. In [63], a passive optical
image sensing system with secondary filtering capability for the intelligent extraction of
aluminum alloy welding pool images was proposed based on spectral analysis, which
obtained clear images of aluminum alloy welding pools.

Active vision sensors utilize additional imaging light sources, typically lasers. The
principle is to use a laser diode and a CCD camera to form a vision sensor. The red light
emitted by the laser diode is reflected in the welding area and enters the CCD camera. The
relative position of the laser beam in the image is used to determine the three-dimensional
information of the weld seam [64–66]. To prevent interference from the complex spectral
composition of the welding arc, and to improve the imaging quality, specific wavelength
lasers can be used to isolate the arc light. Depth calculation methods include Fourier
transform, phase measurement, Moiré contouring, and optical triangulation. Essentially,
they analyze the spatial light field modulated by the surface of the object to obtain the
three-dimensional information of the welded workpiece.

Both passive and active vision sensing systems can achieve two-dimensional or three-
dimensional vision for welding control. Two-dimensional sensing is mainly used for weld
seam shape recognition and monitoring of the welding pool. Three-dimensional sensing
can construct models of important depth information for machine vision [67,68].

4. Depth Perception Method Based on Computer Vision

Currently, 3D reconstruction has been widely applied in robotics [69], localization and
navigation [70], and industrial manufacturing [71]. Figure 4 illustrates the two categories of
methods for deep computation. The traditional 3D reconstruction algorithms are based on
multi-view geometries. These algorithms utilize image or video data captured from multi-
ple viewpoints and employ geometric calculations and disparity analysis to reconstruct
the geometric shape and depth information of objects in the 3D space. Methods based on
multi-view geometry typically involve camera calibration, image matching, triangulation,
and voxel filling steps to achieve high-quality 3D reconstructions.

Figure 5 describes the visual perception for welding robots based on deep learning,
including 3D reconstruction. Deep learning algorithms leverage convolutional neural
networks (CNNs) to tackle the problem of 3D reconstruction. By applying deep learning
models to image or video data, these algorithms can acquire the 3D structure and depth
information of objects through learning and inference. Through end-to-end training and
automatic feature learning, these algorithms can overcome the limitations of traditional
approaches and achieve better performance in 3D reconstruction.
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4.1. Traditional Methods for 3D Reconstruction Algorithms

Traditional 3D reconstruction algorithms can be classified into two categories accord-
ing to whether the sensor actively illuminates the objects or not [72]. The active methods
utilize laser, sound, or electromagnetic waves to emit toward the target objects and to
receive the reflected waves. The passive methods rely on cameras capturing the reflection
of the ambient environment (e.g., natural light), and specific algorithms to calculate the 3D
spatial information of the objects.

In the active methods, by measuring the changes in the properties of the returned light
waves, sound waves, or electromagnetic waves, the depth information of the objects can be
inferred. The precise calibration and synchronization of hardware devices and sensors are
required to ensure the accuracy and reliability.

In contrast, for the passive methods, the captured images are processed by algorithms
to obtain the objects’ 3D spatial information [73,74]. These algorithms typically involve
feature extraction, matching, and triangulation to infer the depth and shape information of
the objects in the images.

4.1.1. Active Methods

Figure 6 shows schematic diagrams of several active methods. Table 1 summarizes the
relevant literature on the active methods.

Table 1. Active approaches in the selected papers.

Year Method Description References

2019 Structured light A new active light field depth estimation method is proposed. [75]

2015 Structured light A structured light system for enhancing the surface texture of objects is proposed. [76]

2021 Structured light A global cost minimization framework is proposed for depth estimation using
phase light field and re-formatted phase epipolar plane images. [77]

2024 Structured light A novel active stereo depth perception method based on adaptive structured light
is proposed. [78]

2023 Structured light A parallel CNN transformer network is proposed to achieve an improved depth
estimation for structured light images in complex scenes. [79]

2022 Time-of-Flight (TOF) DELTAR is proposed to enable lightweight Time-of-Flight sensors to measure
high-resolution and accurate depth by collaborating with color images. [80]

2020 Time-of-Flight (TOF)
Based on the principle and imaging characteristics of TOF cameras, a single pixel
is considered as a continuous Gaussian source, and its differential entropy is
proposed as an evaluation parameter.

[81]

2014 Time-of-Flight (TOF) Time-of-Flight cameras are presented and common acquisition errors
are described. [82]

2003 Triangulation A universal framework is proposed based on the principle of triangulation to
address various depth recovery problems. [83]

2021 Triangulation Laser power is controlled via triangulation camera in a remote laser
welding system. [84]

2020 Triangulation A data acquisition system is assembled based on differential laser
triangulation method. [85]

2017 Laser scanning The accuracy of monocular depth estimation is improved by introducing 2D plane
observations from the remaining laser rangefinder without any additional cost. [86]

2021 Laser scanning
An online melt pool depth estimation technique is developed for the directed
energy deposition (DED) process using a coaxial infrared (IR) camera, laser line
scanner, and artificial neural network (ANN).

[87]

2018 Laser scanning An automatic crack depth measurement method using image processing and laser
methods is developed. [88]
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Structured light—a technique that utilizes a projector to project encoded structured
light onto the object being captured, which is then recorded by a camera [75]. This method
relies on the differences in the distance and direction between the different regions of the
object relative to the camera, resulting in variations in the size and shape of the projected
pattern. These variations can be captured by the camera and processed by a computational
unit to convert them into depth information, thus acquiring the three-dimensional contour
of the object [76]. However, structured light has some drawbacks, such as susceptibility
to interference from ambient light, leading to poor performance in outdoor environments.
Additionally, as the detection distance increases, the accuracy of structured light decreases.
To address these issues, current research efforts have employed strategies such as increasing
power and changing coding methods [77–79].

Time-of-Flight (TOF)—a method that utilizes continuous light pulses and measures the
time or phase difference of the received light to calculate the distance to the target [80–82].
However, this method requires highly accurate time measurement modules to achieve
sufficient ranging precision, making it relatively expensive. Nevertheless, TOF is able to
measure long distances with a minimal ambient light interference. Current research efforts
are focused on reducing the yield and cost of time measurement modules while improving
algorithm performance. The goal is to lower the cost by improving the manufacturing
process of the time measurement module and enhance the ranging performance through
algorithm optimization.

Triangulation method—a distance measurement technique based on the principles
of triangulation. Unlike other methods that require precise sensors, it has a lower overall
cost [83–85]. At short distances, the triangulation method can provide high accuracy,
making it widely used in consumer and commercial products such as robotic vacuum
cleaners. However, the measurement error of the triangulation method is related to the
measurement distance. As the measurement distance increases, the measurement error
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also gradually increases. This is inherent to the principles of triangulation and cannot be
completely avoided.

Laser scanning method—an active visual 3D reconstruction method that utilizes the
interaction between a laser beam emitted by a laser device and the target surface to obtain
the object’s three-dimensional information. This method employs laser projection and
laser ranging techniques to capture the position of laser points or lines and calculate their
three-dimensional coordinates, enabling accurate 3D reconstruction. Laser scanning offers
advantages such as high precision, adaptability to different lighting conditions, and real-
time data acquisition, making it suitable for complex shape and detail reconstruction [82].
However, this method has longer scanning times for the large objects, higher equipment
costs, and challenges in dealing with transparent, reflective, or multiply scattered surfaces.
With further technological advancements, laser scanning holds a vast application potential
in engineering, architecture, cultural heritage preservation, and other fields. However,
limitations still need to be addressed, including time, cost, and adaptability to special
surfaces [86–88].

4.1.2. Passive Methods

Figure 7 displays schematic diagrams of several passive methods. Table 2 summarizes
relevant literature on passive methods.

Monocular vision—a visual depth recovery technique that uses a single camera as the
capturing device. It is advantageous due to its low cost and ease of deployment. Monocular
vision reconstructs the 3D environment using the disparity in a sequence of continuous
images. Monocular vision depth recovery techniques include photometric stereo [89],
texture recovery [90], shading recovery [91], defocus recovery [92], and concentric mosaic
recovery [93]. These methods utilize variations in lighting, texture patterns, brightness
gradients, focus information, and concentric mosaics to infer the depth information of
objects. To improve the accuracy and stability of depth estimation, some algorithms [94,95]
employ depth regularization and convolutional neural networks for monocular depth
estimation. However, using monocular vision for depth estimation and 3D reconstruction
has inherent challenges. A single image may correspond to multiple real-world physical
scenes, making it difficult to estimate depth and achieve 3D reconstruction solely based on
monocular vision methods.

Table 2. Passive approaches in the selected papers.

Year Method Description References

2010 Monocular vision Photometric stereo [89]
2004 Monocular vision Shape from texture [90]
2000 Monocular vision Shape from shading [91]
2018 Monocular vision Depth from defocus [92]
2003 Monocular vision Concentric mosaics [93]

2014 Monocular vision Bayesian estimation and convex optimization techniques are combined
in image processing. [94]

2020 Monocular vision Deep learning-based 3D position estimation [95]

2023 Binocular/multi-view vision Increasing the baseline distance between two cameras to improve the
accuracy of a binocular vision system. [96]

2018 Multi-view vision Deep learning-based multi-view stereo [97]

2020 Multi-view vision A new sparse-to-dense coarse-to-fine framework for fast and accurate
depth estimation in multi-view stereo (MVS) [98]

2011 RGB-D camera-based Kinect Fusion [99]
2019 RGB-D camera-based ReFusion [100]
2015 RGB-D camera-based Dynamic Fusion [101]
2017 RGB-D camera-based Bundle Fusion [102]
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Binocular/Multi-view Vision—an advanced technique based on the principles of
stereo geometry. It utilizes the images captured by the left and right cameras, after rec-
tification, to find corresponding pixels and recover the 3D structural information of the
environment [96]. However, this method faces the challenge of matching the images from
the left and right cameras, as inaccurate matching can significantly affect the final imaging
results of the algorithm. To improve the accuracy of matching, multi-view vision introduces
a configuration of three or more cameras to further enhance the precision of matching [97].
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This method has notable disadvantages, including longer computation time and a poorer
real-time performance [98].

RGB-D Camera-Based—in recent years, many researchers have focused on utilizing
consumer-grade RGB-D cameras for 3D reconstruction. For example, Microsoft’s Kinect
V1 and V2 products have made significant contributions in this area. The Kinect Fusion
algorithm, proposed by Izadi et al. [99] in 2011, was a milestone in achieving real-time 3D
reconstruction with RGB cameras. Subsequently, algorithms such as Dynamic Fusion [100],
ReFusion [101], and Bundle Fusion [102] have emerged, further advancing the field [103].
These algorithms have provided new directions and methods using the RGB-D cameras.

4.2. Deep Learning-Based 3D Reconstruction Algorithms

In the context of deep learning, image-based 3D reconstruction methods leverage large-
scale data to establish prior knowledge and transform the problem of 3D reconstruction
into an encoding and decoding problem. With the increasing availability of 3D datasets
and improvement in computational power, deep learning 3D reconstruction methods can
reconstruct the 3D models of objects from single or multiple 2D images without the need for
complex camera calibration. This approach utilizes the powerful representation capabilities
and data-driven learning approach of deep learning, bringing significant advancements
and new possibilities to the field of image 3D reconstruction. Figure 8 illustrates schematic
diagrams of several deep learning-based methods.

In 3D reconstruction, there are primarily four types of data formats: (1) The depth
map is a two-dimensional image that records the distance from the viewpoint to the object
for each pixel. The data is represented as a grayscale image, where darker areas correspond
to closer regions. (2) Voxels are like the concept of pixels in 2D and are used to represent
volume elements in 3D space. Each voxel can contain 3D coordinate information as well as
other properties such as color and reflectance intensity. (3) Point clouds are composed of
discrete points, where each point carries 3D coordinates and additional information such
as color and reflectance intensity. (4) Meshes are two-dimensional structures composed
of polygons and are used to represent the surface of 3D objects. Mesh models have the
advantage of convenient computation and can undergo various geometric operations
and transformations.

The choice of an appropriate data format depends on the specific requirements and
algorithm demands, providing diverse options and application areas in 3D reconstruction.
Table 3 summarizes the relevant literature on deep learning-based methods. According
to the different forms of processed data, we will briefly explain three types, (1) based on
voxels [104–108], (2) based on point clouds [109–115], and (3) based on meshes [116–122].

Table 3. Approaches based on deep learning in the selected papers.

Year Method Description References

2014 Voxel A supervised coarse-to-fine deep learning network is proposed, consisting of two networks,
for depth estimation. [104]

2015 Voxel A method is proposed to represent geometric 3D shapes as a probabilistic distribution of
binary variables in a 3D voxel grid. [105]

2016 Voxel
The proposed 3D-R2N2 model utilizes an Encoder-3DLSTM-Decoder network architecture
to establish a mapping from 2D images to 3D voxel models, enabling voxel-based
single-view/multi-view 3D reconstruction.

[106]

2016 Voxel Predicting voxels from 2D images and performing 3D model retrieval becomes feasible. [107]

2016 Voxel A novel encoder–decoder network is proposed, which incorporates a new projection loss
defined by projection transformations. [108]

2017 Point cloud Exploring 3D geometric generation networks based on point cloud representations. [109]

2018 Point cloud A novel 3D generation model framework is proposed to effectively generate target shapes
in the form of dense point clouds. [110]

2019 Point cloud
A novel point cloud-based multi-view stereo network is proposed, which directly processes
the target scene as a point cloud. This approach provides a more efficient representation,
especially in high-resolution scenarios.

[111]
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Table 3. Cont.

Year Method Description References

2023 Point cloud An attention-based deep sparse prior cascade multi-view stereo network is proposed for
3D reconstruction. [112]

2019 Point cloud
This study proposes the use of a data-driven deep learning framework to automatically
detect and classify building elements from point cloud scenes obtained through
laser scanning.

[113]

2019 Point cloud Three-dimenional LMNet is proposed as a latent embedding matching method for
3D reconstruction. [114]

2023 Point cloud A learning-based method called GeoUDF is proposed to address the long-standing and
challenging problem of reconstructing discrete surfaces from sparse point clouds. [115]

2018 Mesh Using 2D supervision to perform gradient-based 3D mesh editing operations. [116]

2018 Mesh The state-of-the-art incremental manifold mesh algorithm proposed by Litvinov and
Lhuillier has been improved and extended by Romanoni and Matteucci. [117]

2019 Mesh
A passive translation-based method is proposed for single-view mesh reconstruction,
which can generate high-quality meshes with complex topological structures from a single
template mesh with zero genus.

[118]

2020 Mesh
Pose2Mesh is proposed as a novel system based on graph convolutional neural networks,
which can directly estimate the 3D coordinates of human body mesh vertices from 2D
human pose estimation.

[119]

2020 Mesh By employing different mesh parameterizations, we can incorporate useful modeling priors
such as smoothness or composition from primitives. [120]

2021 Mesh
A novel end-to-end deep learning architecture is proposed that generates 3D shapes from a
single color image. The architecture represents the 3D mesh in graph neural networks and
generates accurate geometries using progressively deforming ellipsoids.

[121]

2021 Mesh A deep learning method based on network self-priors is proposed to recover complete 3D
models consisting of triangulated meshes and texture maps from colored 3D point clouds. [122]
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4.2.1. Voxel-Based 3D Reconstruction

Voxels are an extension of pixels to three-dimensional space and, similar to 2D pixels,
voxel representations in 3D space also exhibit a regular structure. It has been demonstrated
that various neural network architectures commonly used in the field of 2D image analysis
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can be easily extended to work for voxel representations. Therefore, when tackling problems
related to 3D scene reconstruction and semantic understanding, we can leverage pixel-
based representations for research. In this regard, we categorize voxel representations
into dense voxel representations, sparse voxel representations, and voxel representations
obtained through the conversion of point clouds.

4.2.2. Point Cloud-Based 3D Reconstruction

Traditional deep learning frameworks are built upon 2D convolutional structures,
which efficiently handle regularized data structures with the support of modern parallel
computing hardware. However, for images lacking depth information, especially under
extreme lighting or specific optical conditions, semantic ambiguity often arises. As an
extension of 3D data, 3D convolution has emerged to naturally handle regularized voxel
data. However, compared to 2D images, the computational resources required for process-
ing voxel representations grow exponentially. Additionally, 3D structures exhibit sparsity,
resulting in significant resource waste when using voxel representations. Therefore, voxel
representations are no longer suitable for large-scale scene analysis tasks. On the contrary,
point clouds, as an irregular representation, can straightforwardly and effectively capture
sparse 3D data structures, playing a crucial role in 3D scene understanding tasks. Conse-
quently, point cloud feature extraction has become a vital step in the pipeline of 3D scene
analysis and has achieved unprecedented development.

4.2.3. Mesh-Based 3D Reconstruction

Mesh-based 3D reconstruction methods are techniques used for reconstructing three-
dimensional shapes. This approach utilizes a mesh structure to describe the geometric
shape and topological relationships of objects, enabling the accurate modeling of the objects.
In mesh-based 3D reconstruction, the first step is to acquire the surface point cloud data of
the object. Then, through a series of operations, the point cloud data is converted into a
mesh representation. These operations include mesh topology construction, vertex position
adjustment, and boundary smoothing. Finally, by optimizing and refining the mesh, an
accurate and smooth 3D object model can be obtained.

Mesh-based 3D reconstruction methods offer several advantages. The mesh structure
preserves the shape details of objects, resulting in higher accuracy in the reconstruction
results. The adjacency relationships within the mesh provide rich information for further
geometric analysis and processing. Additionally, mesh-based methods can be combined
with deep learning techniques such as graph convolutional neural networks, enabling
advanced 3D shape analysis and understanding.

5. Robotic Welding Sensors in Industrial Applications

The development of robotic welding sensors has been rapid in recent years, and their
application in various industries has become increasingly widespread [123–125]. These
sensors are designed to detect and measure various parameters such as temperature, pres-
sure, speed, and position, which are crucial for ensuring consistent and high-quality welds.
The combination of various sensors enables robotic welding machines to better perceive
the welding object and control the robot to reach places that are difficult or dangerous for
humans to access. As a result, robotic welding machines have been widely applied in vari-
ous industries, including shipbuilding, automotive, mechanical manufacturing, aerospace,
railroad, nuclear, PCB, construction, and medical equipment, due to their ability to improve
the efficiency, accuracy, and safety of the welding process. Table 4 summarizes the typical
applications of welding robot vision sensors in different fields.
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Table 4. Research on sensor technologies for welding robots in different industrial fields.

Year Area Key Technology Description References

2015 Shipyard Human–robot interaction mobile
welding robot

Human–machine interaction mobile welding
robots successfully remotely produced welds. [126]

1999 Shipyard Ship welding robot system A ship welding robot system was developed
for welding process technology. [127]

2017 Shipyard Super flexible welding robot A super flexible welding robot module with
9 degrees of freedom was developed. [128]

2014 Shipyard Welding vehicle and six-axis robotic arm A new type of welding robot system
was developed. [129]

2017 Automobile Multi-robot welding system
An extended formulation of the design and
motion planning problems for a multi-robot
welding system was proposed.

[130]

2021 Automobile Robot-guided friction stir welding gun A new type of robot-guided friction stir
welding gun technology was developed. [131]

2020 Automobile Friction welding robot A redundant 2UPR-2RPU parallel robotic
system for friction stir welding was proposed. [132]

2010 Automobile Arc welding robot

A motion navigation method based on feature
mapping in a simulated environment was
proposed. The method includes initial
position guidance and weld seam tracking.

[133]

2017 Machinery Visual system calibration program

A visual system’s calibration program was
proposed and the position relationship
between the camera and the robot
was obtained.

[134]

2010 Machinery Robot system for welding seawater
desalination pipes

A robotic system for welding and cutting
seawater desalination pipes was introduced. [135]

2021 Aerospace Aerospace friction stir welding robot

By analyzing the system composition and
configuration of the robot, the loading
conditions of the robot’s arm during the
welding process were accurately simulated,
and the simulation results were used for
strength and fatigue checks.

[136]

2021 Aerospace New type of friction stir welding robot
An iterative closest point algorithm was used
to plan the welding trajectory for the most
complex petal welding conditions.

[137]

2010 Aerospace Industrial robot

Using industrial robots for the friction stir
welding (FSW) of metal structures, with a
focus on the assembly of aircraft parts made
of aluminum alloy.

[138]

2014 Railway Industrial robot

The system was developed and implemented
based on a three-axis motion device and a
visual system composed of a camera, a laser
head, and a band-pass filter.

[139]

2017 Railway Rail welding path grinding robot A method for measuring and reconstructing a
steel rail welding model was proposed. [140]

2000 Railway Industrial robot

Automation in welding production for
manufacturing railroad car bodies was
introduced, involving friction stir welding,
laser welding, and other advanced
welding techniques.

[141]

2018 Nuclear New type of underwater welding robot
An underwater robot for the underwater
welding of cracks in nuclear power plants and
other underwater scenarios was developed.

[142]

2017 Nuclear Robot TIG welding
Manual and robotic TIG welding used in key
nuclear industry manufacturing
was compared.

[143]

2020 PCB Flexible PCB welding robot
A deep learning-based automatic welding
operation scheme for flexible PCBs
was proposed.

[144]
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Table 4. Cont.

Year Area Key Technology Description References

2023 PCB Soldering robot
The optimized PCB welding sequence was
crucial for improving the welding speed and
safety of robots.

[145]

1997 Construction Steel frame structure welding robot
Two welding robot systems were developed
to rationalize the welding of steel
frame structures.

[146]

2020 Construction Steel frame structure welding robot

The adaptive tool path of the robot system
enabled the robot to generate welds at
complex approach angles, thereby increasing
the potential of the process.

[147]

2020 Medical
equipment Surgical robot performing remote welding

The various challenges of using surgical
robots equipped with digital cameras for
remote welding, used to observe welding
areas, especially the difficulty of detecting
weld pool boundaries, were described.

[148]

2020 Medical
equipment

Intelligent welding system for human
soft tissue

By combining manual welding machines with
automatic welding systems, intelligent
welding systems for human soft tissue
welding could be developed in medicine.

[149]

In the shipbuilding and automotive industries, robotic welding vision sensors play
a crucial role in ensuring the quality and accuracy of welding processes [126–133]. These
sensors are designed to detect various parameters such as the thickness and shape of
steel plates, the position and orientation of car parts, and the consistency of welds. By
using robotic welding vision sensors, manufacturers can improve the efficiency and accu-
racy of their welding processes, reduce the need for manual labor, and ensure that their
products meet the required safety and quality standards. Figure 9 shows the application
of welding robots in shipyards. Figure 10 shows the application of welding robots in
automobile factories.
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In other fields, robotic welding vision sensors can easily address complex, difficult-to-
reach, and hazardous welding scenarios through visual perception [134–149]. By accurately
detecting, recognizing, and modeling the object to be welded, the sensors can comprehen-
sively grasp the structure, spatial relationships, and positioning of the object, facilitating the
precise control of the welding torch and ensuring optimal welding results. The versatility
of robotic welding vision sensors enables them to adapt to various environmental condi-
tions, such as changing lighting conditions, temperatures, and distances. They can also be
integrated with other sensors and systems to enhance their performance and functionality.

The use of robotic welding vision sensors offers several advantages over traditional
manual inspection methods. Firstly, they can detect defects and inconsistencies in real
time, allowing for immediate corrective action to be taken, which reduces the likelihood of
defects and improves the overall quality of the welds. Secondly, they can inspect areas that
are difficult or impossible for human inspectors to access, such as the inside of pipes or the
underside of car bodies, ensuring that all welds meet the required standards, regardless of
their location. Furthermore, robotic welding vision sensors can inspect welds at a faster rate
than manual inspection methods, allowing for increased productivity and efficiency [150].
They also reduce the need for manual labor, which can be time-consuming and costly.
Additionally, the use of robotic welding vision sensors can help to improve worker safety
by reducing the need for workers to work in hazardous environments [151].

We have analyzed the experimental results from the literature in actual work environ-
ments. In reference [144], the weighted function of the position error in the image space
transitioned from 0 to 1, and after active control, the manipulation error was reduced to
less than 2 pixels. Reference [147] utilized tool path adaptation and adaptive strategies in a
robotic system to compensate for inaccuracies caused by the welding process. Experiments
have demonstrated that robotic systems can operate within a certain range of outward
angles, in addition to multiple approach angles of up to 50 degrees. This adaptive tech-
nique has enhanced the existing structures and repair technologies through incremental
spot welding.

In summary, robotic welding vision sensors play a crucial role in assisting robotic
welding systems to accurately detect and recognize the objects to be welded, and then
guide the welding process to ensure optimal results. These sensors utilize advanced visual
technologies such as cameras, lasers, and computer algorithms to detect and analyze the
object’s shape, size, material, and other relevant features. They can be integrated into the
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robotic welding system in various ways, such as mounting them on the robot’s arm or
integrating them into the welding torch itself. The sensors provide real-time information
to the robotic system, enabling it to adjust welding parameters such as speed, pressure,
and heat input to optimize weld quality and consistency [152]. Customized approaches
are crucial when applying welding robots across different industries. The automotive,
aerospace, and shipbuilding sectors face unique welding challenges that require tailored
solutions. Customized robot designs, specialized parameters, and quality control should
be considered to ensure industry-specific needs are met.

6. Existing Issues, Proposed Solutions, and Possible Future Work

Visual perception in welding robots encounters a myriad of challenges, encompassing
the variability in object appearance, intricate welding processes, restricted visibility, sensor
interference, processing limitations, knowledge gaps, and safety considerations. Over-
coming these hurdles requires the implementation of cutting-edge sensing and perception
technologies, intricate software algorithms, and meticulous system integration. Within
the realm of industrial robotics, welding robots grapple with various visual perception
challenges. This encompasses current issues, potential solutions, and future prospects
within the field of welding robotics.

In the exploration of deep learning and convolutional neural networks (CNN) within
the realm of robot welding vision systems, it is crucial to recognize the potential of alterna-
tive methodologies and assess their suitability in specific contexts. Beyond deep learning,
traditional machine learning algorithms can be efficiently deployed in robot welding vision
systems. Support vector machines (SVMs) and random forests, for example, emerge as
viable choices for defect classification and detection in welding processes. These algorithms
typically showcase a lower computational complexity and have the capacity to exhibit
commendable performance on specific datasets.

Rule-based systems can serve as cost-effective and interpretable alternatives for certain
welding tasks. Leveraging predefined rules and logical reasoning, these systems process
image data to make informed decisions. Traditional computer vision techniques, including
thresholding, edge detection, and shape analysis, prove useful for the precise detection
of weld seam positions and shapes. Besides CNNs, a multitude of classical computer
vision techniques can find applications in robot welding vision systems. For instance,
template matching can ensure the accurate identification and localization of weld seams,
while optical flow methods facilitate motion detection during the welding process. These
techniques often require less annotated data and can demonstrate robustness in specific
scenarios. Hybrid models that amalgamate the strengths of different methodologies can
provide comprehensive solutions. Integrating traditional computer vision techniques with
deep learning allows for the utilization of deep learning-derived features for classification
or detection tasks. Such hybrid models prove particularly valuable in environments with
limited data availability or high interpretability requirements.

The primary challenges encountered by robotic welding vision systems include
the following:

1. Adaptation to changing environmental conditions: robotic welding vision systems
often struggle to swiftly adjust to varying lighting, camera angles, and other environ-
mental factors that impact the welding process.

2. Limited detection and recognition capabilities: conventional computer vision tech-
niques used in these systems have restricted abilities to detect and recognize objects,
causing errors during welding.

3. Vulnerability to noise and interference: robotic welding vision systems are prone to
sensitivity issues concerning noise and interference, stemming from sources such as
the welding process, robotic movement, and external factors like dust and smoke.

4. Challenges in depth estimation and 3D reconstruction: variations in material proper-
ties and welding techniques contribute to discrepancies in the welding process, leading
to difficulties in accurately estimating depth and achieving precise 3D reconstruction.
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5. The existing welding setup is intricately interconnected, often space-limited, and the
integration of a multimodal sensor fusion system necessitates modifications to accom-
modate new demands. Effectively handling voluminous data and extracting pertinent
information present challenges, requiring preprocessing and fusion algorithms. Inte-
gration entails comprehensive system integration and calibration, ensuring seamless
hardware and software dialogue for the accuracy and reliability of data.

To tackle these challenges, the following solutions are proposed for consideration:

1. Develop deep learning for object detection and recognition: The integration of deep
learning techniques, like convolutional neural networks (CNNs), can significantly
enhance the detection and recognition capabilities of robotic welding vision systems.
This empowers them to accurately identify objects and adapt to dynamic environmen-
tal conditions.

2. Transfer deep learning for welding robot adaptation: leveraging pre-trained deep
learning models and customizing them to the specifics of robotic welding enables the
vision system to learn and recognize welding-related objects and features, elevating
its performance and resilience.

3. Develop multi-modal sensor fusion: The fusion of visual data from cameras with
other sensors such as laser radar and ultrasonic sensors creates a more comprehensive
understanding of the welding environment. This synthesis improves the accuracy
and reliability of the vision system.

4. Integrate models and hardware: Utilizing diverse sensors to gather depth information
and integrating this data into a welding-specific model enhances the precision of
depth estimation and 3D reconstruction.

5. Perform a comprehensive requirements analysis and system evaluation in collabora-
tion with welding experts to design a multi-modal sensor fusion architecture. Select
appropriate algorithms for data extraction and fusion to ensure accurate and reliable
results. Conduct data calibration and system integration, including hardware config-
uration and software interface design. Calibrate the sensors and assess the system
performance to ensure stable and reliable welding operations.

Potential future advancements encompass the following:

1. Enhancing robustness in deep learning models: advancing deep learning models
to withstand noise and interference will broaden the operational scope of robotic
welding vision systems across diverse environmental conditions.

2. Infusing domain knowledge into deep learning models: integrating welding-specific
expertise into deep learning models can elevate their performance and adaptability
within robotic welding applications.

3. Real-time processing and feedback: developing mechanisms for real-time processing
and feedback empowers robotic welding vision systems to promptly respond to
welding environment changes, enhancing weld quality and consistency.

4. Autonomous welding systems: integrating deep learning with robotic welding vision
systems paves the way for autonomous welding systems capable of executing complex
welding tasks without human intervention.

5. Multi-modal fusion for robotic welding: merging visual and acoustic signals with
welding process parameters can provide a comprehensive understanding of the
welding process, enabling the robotic welding system to make more precise decisions
and improve weld quality.

6. Establishing a welding knowledge base: creating a repository of diverse welding
methods and materials enables robotic welding systems to learn and enhance their
welding performance and adaptability from this knowledge base.

7. Conclusions

The rapid advancement of sensor intelligence and artificial intelligence has ushered
in a new era where emerging technologies like deep learning, computer vision, and large
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language models are making significant inroads across various industries. Among these
cutting-edge innovations, welding robot vision perception stands out as a cross-disciplinary
technology, seamlessly blending welding, robotics, sensors, and computer vision. This
integration offers fresh avenues for achieving the intelligence of welding robots, propelling
this field into the forefront of technological progress.

A welding robot with advanced visual perception should have the following charac-
teristics: accurate positioning and detection capabilities, fast response speed and real-time
control, the ability to work in complex scenarios, the ability to cope with different welding
materials, and a high degree of human–machine collaboration. Specifically, the visual
perception system of the welding robot requires highly accurate image processing and
positioning capabilities to accurately detect the position and shape of the welded joint.
At the same time, the visual perception system needs to have fast image processing and
analysis capabilities, which can perceive and judge the welding scene in real time in a
short period of time and make correct control and feedback on abnormal situations in time.
Actual welding is usually carried out in a complex environment, including interference
factors such as lighting changes, smoke, and sparks. A good visually perceptive welding
robot should have a strong ability to adapt to the environment and can achieve accurate
recognition in complex environments. At the same time, the visual perception system of
the welding robot needs to have the ability of multi-material welding and can adapt to the
welding needs of different materials. Finally, with the development of smart factories, the
visual perception system of welding robots needs to have the ability of human–computer
interaction and collaboration.

At present, the most commonly used welding robot vision perception solution is based
on the combination of vision sensor and deep learning model, through depth estimation and
three-dimensional reconstruction methods to perceive the depth of the welding structure
and obtain the three-dimensional information of the welding structure. Deep learning-
based approaches typically use models such as convolutional neural networks (CNNS) to
learn depth features in images. By training a large amount of image data, these networks
learn the relationship between parallax, texture, edge, and other features in the image and
depth. Through the image collected by the vision sensor, the depth estimation model can
output the depth information of the corresponding spatial position of the image. This depth
model may solve the problem that the welding robot needs to be accurately positioned
in the space position, so that the attitude and motion trajectory of the welding robot can
be controlled.

In conclusion, in the pursuit of research on robot welding vision systems, a balanced
consideration of diverse methodologies is essential, with the selection of appropriate meth-
ods based on specific task requirements. While deep learning and CNNs wield immense
power, their universal applicability is not guaranteed. Emerging or traditional methods
may offer more cost-effective or interpretable solutions. Therefore, a comprehensive under-
standing of the strengths and limitations of different methodologies is imperative, and a
holistic approach should be adopted when considering their applications.
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