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Abstract: Submarine recognition plays a critical role in maritime security and military defense.
However, traditional submarine recognition algorithms face limitations in feature representation
capability and robustness. Additionally, deploying deep learning methods on embedded and mobile
platforms presents a bottleneck. To address these challenges, we propose an innovative and practical
approach—an improved YOLOv5-based lightweight submarine automatic recognition detection
algorithm. Our method leverages the Feature Pyramid based on MobileNetV3 and the C3_DS module
to reduce computation and parameter complexity while ensuring high precision in submarine
recognition. The integration of the adaptive neck from the SA-net strategy further mitigates missed
detections, significantly enhancing the accuracy of submarine target detection and recognition. We
evaluated our improved model on a submarine dataset, and the results demonstrate remarkable
advancements in Precision, Recall, and mAPO0.5, with respective increases of 8.54%, 6.02%, and
3.36%. Moreover, we achieved a notable reduction of 34.1% in parameter quantity and 67.9%
in computational complexity, showcasing its lightweight effects. Overall, our proposed method
introduces novel improvements to submarine recognition, addressing existing limitations and offering
practical benefits for real-world deployment on embedded and mobile platforms. The enhanced
performance in precision and recall metrics, coupled with reduced computational requirements,
emphasizes the significance of our approach in enhancing maritime security and military applications.

Keywords: C3_DS; SA-net; light weight

1. Introduction

Recognizing submarines [1,2] holds significant importance within the realms of mar-
itime security and national defense. It plays a crucial role in ensuring the safety of maritime
traffic and upholding national security [3-5]. Traditional approaches to submarine recogni-
tion [6-8] heavily depend on manually crafted features and intricate algorithmic processes,
leading to limitations in accuracy and efficiency, especially in large-scale and complex
scenarios. The imperative is to achieve highly automated submarine target recognition,
enhancing both accuracy and real-time performance while concurrently minimizing com-
putational costs and memory overhead [9].

Some scholars have conducted research on traditional submarine recognition meth-
ods. Xu Yinghao [10] and others conducted simulation studies on the sea surface wave
and target characteristics of the hydrodynamic wake of a fully appended submarine by
combining laser radar imaging and pattern recognition technology. Munteanu [11] and
others have successfully achieved high-precision detection of floating and underwater
sea mines, offering potential application possibilities in real-time scenarios, especially in
regions with frequent economic activities along the Black Sea coastline. Yi Zhihang [12]
and others achieved multimodal recognition in submarine recognition by using different
sensors and detection methods at different stages of submarine motion. Manjula R B [13]
and their team proposed a sensor deployment design scheme based on Particle Swarm
Optimization, aiming for optimal coverage with the minimum number of sensor nodes for
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anti-submarine detection in Underwater Acoustic Sensor Networks. The scheme was simu-
lated and analyzed to study the impact of various factors on the coverage area. Zhu L [14]
and colleagues conducted an in-depth literature review on the evolution of mainstream ob-
ject detection algorithms, proposing an approach based on modifying the YOLOv5 model
by altering receptive fields through the addition of asymmetrical pooling layers. This
modification enhances accuracy while maintaining speed. The comprehensive evaluation
of its performance across various parameters and scenarios is presented, offering insights
into future research directions. Yadav, PK [15] and colleagues present the application of
YOLOv5m and a customized Unmanned Aircraft System (UAS) for detecting and locating
volunteer cotton (VC) plants in the middle of cornfields. This approach achieves high accu-
racy and speed, demonstrating effective spot-spray applications for efficient management
of boll weevil pest infestations. The research holds significant importance for assessing
cotton yield and crop management, showcasing the potential application of YOLOV5 in the
agricultural domain.

These studies have made certain contributions in the field of submarine recognition.
However, there are issues with traditional detection algorithms, such as difficulties in
feature design, poor robustness, limited generalization ability, as well as the large com-
putational and parameter requirements of existing deep learning-based methods, and the
difficulty of deploying them on embedded devices and mobile platforms [16,17]. Therefore,
this paper aims to propose a lightweight submarine target recognition method based on
improved YOLOvV5. By optimizing the network structure and designing more compact
and efficient convolution operators, we reduce the model’s parameter and computational
requirements while maintaining high accuracy, in order to adapt to resource-constrained
environments on embedded devices and mobile platforms, and achieve efficient and real-
time submarine recognition. The improved YOLOv5-based lightweight submarine target
recognition algorithm has significant advantages over traditional algorithms in terms of
submarine recognition performance. Firstly, we address the issue of large parameter and
computational requirements when using YOLOv5 by optimizing the network structure and
parameter count, thereby improving the algorithm’s real-time performance. Secondly, we
adaptively adjust the network’s weights based on the characteristics of submarine targets,
allowing the network to focus more on the important features of submarine target regions,
further enhancing accuracy. In summary, our algorithm not only demonstrates advantages
in accuracy and real-time performance but also provides an efficient, accurate, and practical
solution for submarine target recognition through improvements in lightweight design and
attention mechanisms. This is of great significance to the fields of maritime security and
national defense, and it provides strong technical support for the research and practical
applications of submarine target recognition.

2. Principle of YOLOV5 Algorithm

YOLOVS5 [18] is a popular object detection algorithm that is improved and optimized
based on YOLOv4 [19]. The principle of YOLOVS5 is based on the idea called “You Only
Look Once” (YOLO), which treats object detection as a regression problem and predicts
bounding boxes and class labels simultaneously in a single neural network, as shown in
Figure 1. Compared to traditional two-stage detectors like Faster R-CNN [20], YOLOvV5
adopts a simpler and more direct approach, striking a better balance between speed and
accuracy. YOLOVS introduces new data augmentation strategies such as Auto Augment and
Multi-Scale Training. These strategies increase the diversity of training data, improving the
model’s robustness and generalization capability. YOLOv5 adapts to different application
scenarios and hardware requirements by introducing model variants of different scales,
such as YOLOv5s, YOLOv5m, YOLOV5I, and YOLOv5x. This scaling approach allows users
to flexibly choose models according to their specific needs, balancing speed and accuracy.
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Figure 1. Overall architecture of YOLOVS5.

The backbone network is one of the core components of the object detection algorithm,
employing a deep convolutional neural network structure and playing a vital role in
extracting feature representations from input images. The backbone network gradually
reduces the size of the feature maps and extracts multi-scale feature information at different
levels through a series of convolutional and pooling layers. The backbone network typically
consists of multiple convolutional and pooling layers. The convolutional layers slide
convolutional kernels over the feature maps to extract low-level features such as edges
and textures. As the depth of the network increases, the convolutional layers enhance the
abstract representation capability of the input images. Pooling layers are used to reduce
the size of the feature maps while preserving important feature information and reducing
computational complexity. By stacking and combining convolutional and pooling layers
progressively, the backbone network constructs a multi-level feature representation that
facilitates capturing object information in the images effectively.

“Neck” is an intermediate layer structure that connects the backbone network and
the detection head in object detection. It plays a crucial role in further processing the
features extracted by the backbone network to generate feature representations suitable
for object detection. Firstly, the neck implements feature fusion to integrate features
from different levels of the backbone network. This fusion effectively combines feature
information at different scales, enhancing the perception of multi-scale objects by the object
detection algorithm. Secondly, the neck is responsible for building a feature pyramid [21]
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to handle objects of different scales. By introducing multiple branches or multi-level
feature extraction, the feature pyramid can extract features at different levels, aiding in
improving the algorithm’s robustness to scale variations and enabling effective detection
and recognition of objects of different sizes. Additionally, the neck performs upsampling
and downsampling operations to adjust the size of the feature maps. Upsampling can
enlarge low-resolution feature maps to recover detailed information of the targets, while
downsampling can reduce the size of high-resolution feature maps, increasing the receptive
field and capturing a broader context.

The “head” typically refers to the last part of the network, which is responsible
for processing and interpreting the features passed from the backbone network and the
intermediate layer (neck) to achieve object localization and classification. The head network
usually consists of a classifier, a regressor, a prior box generator, and non-maximum
suppression (NMS) [22]. The classifier is the core component of the head network, which
receives the features transmitted from the intermediate layer and utilizes operations such
as fully connected layers, convolutional layers, and pooling layers to classify the objects
within the detection boxes and output the probability distribution of object categories. The
regressor is used to predict the position and size information of the detection boxes. It
generates accurate regression parameters through fully connected layers or convolutional
layers combined with appropriate activation functions and normalization operations. The
prior box generator is responsible for generating a set of candidate detection boxes in the
image based on the scale and aspect ratios of the input features, providing a reference for
subsequent classification and regression. Finally, the NMS algorithm selects the best boxes
among multiple overlapping detection boxes, eliminating redundancy and improving
detection accuracy and recall. The goal of the head network design is to effectively convert
the features extracted by the backbone network and intermediate layer into the final object
detection results. Through the collaboration of the classifier, regressor, and prior box
generator, the head network can accurately predict the object categories and positions.
Meanwhile, the application of the NMS algorithm removes overlapping detection boxes to
ensure accurate and reliable final detection results.

In summary, YOLOVS is an efficient and accurate object detection algorithm charac-
terized by its lightweight design, multi-scale inference, improved backbone network, and
optimized data augmentation and training strategies. It exhibits significant improvements
in both speed and performance, enabling fast object detection while maintaining high accu-
racy. YOLOV5 has broad application prospects in various real-time object detection tasks.

3. Improved YOLOV5
3.1. Feature Pyramid Based on MobileNetV3

MobileNetV3 [23] follows the design principles of reduced width, increased input
resolution, and stronger non-linearity. By reducing the width of the network, which refers
to reducing the number of channels in each convolution operation, the computational
complexity can be decreased. Additionally, increasing the input resolution improves the
model’s ability to perceive details and small objects. MobileNetV3 also introduces stronger
non-linear activation functions such as Hard-Swish [24] and linear bottlenecks [25] to
enhance feature representation. RELUS is an extension of the ReLU function that limits the
output to zero or above for negative input values and restricts the output to six or below
for positive input values, resulting in an output range of [0, 6] as shown in Equation (1).

ReLU6(x) = min(max(0, x),6) 1)

This makes ReLU6 more suitable for certain application scenarios, such as object
detection, where it can be used to limit the coordinate range of bounding boxes, ensuring
that the bounding box positions remain within a reasonable range. In comparison to ReLU6,
the SWISH function can provide smoother activation characteristics in some cases, which
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may help reduce the gradient vanishing problem during training and potentially improve
model performance, as shown in Equation (2).

SWISH(x) = x x sigmoid(x) )

However, SWISH function has a high computational complexity. It involves the
calculation of the sigmoid function, which is relatively complex and involves exponential
operations. This leads to a higher computational burden for SWISH, especially in large-
scale neural networks, increasing the computational load.

sigmoid(x) = 1/(1+exp(—x)) (©)]

The “h_sigmoid” activation function is obtained by applying the ReLU6 function to
the input value x + 3 and then dividing the result by 6. It has a similar shape to the sigmoid
function, as shown in Figure 2 but with simpler calculations and derivative computations.

h_sigmoid(x) = relu6(x+3)/6 4)
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Figure 2. Activation function.

Replacing the sigmoid function in the swish activation function with the h_sigmoid
function not only results in a similar shape to the swish function, as shown in Figure 2, but
also improves inference speed and facilitates the quantization process.

h_swish(x) = x x h_sigmoid(x) )

In terms of network architecture, MobileNetV3 utilizes grouped convolution [26] and
depth-wise separable convolution [27]. Grouped convolution divides the input feature map
into multiple groups and performs convolution operations on each group, then concate-
nates the results. By employing grouped convolution, the parameter and computational
complexity can be effectively reduced. This is particularly useful when using larger convo-
lutional neural network models with limited computational resources, such as real-time
image processing on mobile devices.

Furthermore, grouped convolution can also improve the parallelism of the model to
some extent, allowing for parallel computation on multiple GPUs or processors, thereby
accelerating the speed of training and inference. Depth-wise separable convolution decom-
poses the standard convolution into two steps: depth-wise convolution and point-wise
convolution, further reducing the computational complexity.

The core idea of the inverted residuals structure is to map low-dimensional feature
maps to a high-dimensional space and then compress them back to a low dimension
through linear projection, as shown in Figure 3. Its design goal is to address the issue
of excessive parameters and computational complexity in traditional residual structures
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(Residuals) [28] in lightweight networks. It consists of an expansion layer and a linear
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Figure 3. Reverse residual.

The expansion layer is used to increase the number of channels, while the linear
bottleneck layer is used to reduce the dimensionality and introduce non-linear activation
functions. This structure enables more effective utilization of the model’s parameters
and enhances the representation capability of features, as shown in the figure. Through
the inverted residuals structure, the network can perform feature extraction and non-
linear transformations at a lower dimension, and then increase the feature representation
capability through high-dimensional mapping and linear projection. This design reduces
the number of parameters and computational complexity of the network while improving
its representation capability, making lightweight networks more efficient while maintaining
high performance.

In addition, the Squeeze-and-Excitation (SE) [29] module is used for channel-wise
attention weighting of feature maps. The SE module learns the importance weights of each
channel in the feature map through global average pooling and two fully connected layers,
and applies them to each spatial position in the feature map. This enhances the network’s
sensitivity to different channels and further improves the representation capability of
features, as shown in Figure 4.
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l average pooling T
0.65 073 | —» [FC(Relu.c/4) [ [FC@E-sigc)[—»| 05 0.6

Figure 4. SE-net.

Neural Architecture Search (NAS) methods utilize an automated search process to
discover the optimal network structure and parameter configuration. By employing re-
inforcement learning algorithms and search strategies, MobileNetV3 explores different
combinations of network structures, including the number of layers, width diversity, and
branching structures, among others, to optimize performance. The automated search pro-
cess of NAS alleviates the burden of manual network design, enhances search efficiency,
and improves performance. This enables MobileNetV3 to automatically search for the best
network structure and parameter configuration, leading to better performance and results.

3.2. Combining with the Adaptive Neck of SA-Net

SA-NET [26] (Shuffle Attention for Deep Convolutional Neural Networks) is a deep
convolutional neural network based on attention mechanisms. It aims to improve the
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network’s representational power and feature selection ability to better capture important
features in images. The core idea of SA-NET includes grouped convolution and channel
shuffling to enhance interactions between features, and it utilizes attention modules to
adaptively adjust the weights of feature maps.

In traditional deep convolutional neural networks, convolution operations are usually
performed simultaneously across all channels, resulting in independence between different
channels in the feature maps. To enhance interactions between features, SA-NET introduces
the concept of grouped convolution. It divides the input feature maps into multiple groups
and performs independent convolution operations on each group. Specifically, when using
grouped convolution, the input feature maps are divided into g groups, each containing
c/g channels. Assuming the input feature map is X, the parameters of grouped convolution
are denoted as W, and the output feature map is Y. The calculation formula for grouped
convolution can be represented as follows:

Y = Concatenate([Conv(Xy1, Wi), Conv(Xa, Wa), ..., Conv(Xg, Wi))]) (6)

In this context, Conv represents the standard convolution operation, X; represents the
input feature map i of the group, and W; represents the convolutional kernel associated
with the group i. The purpose of this approach is to gradually capture specific semantic
responses in each sub-feature map during the training process. Subsequently, individual
convolution operations are performed on each subset, and their outputs are concatenated
to form the final output feature map, enabling better fusion and transmission of feature
information among different groups. Additionally, grouped convolution offers advantages
in significantly reducing the computational complexity and parameter count of the model.
Compared to traditional convolution operations, grouped convolution decomposes the
convolution operation into smaller operations, with each operation handling only a subset
of the channels. This approach reduces the computational load of each convolution opera-
tion and fully leverages the capabilities of parallel computing. The grouped processing of
convolution operations also decreases the level of parameter sharing, thereby reducing the
parameter count of the model.

Furthermore, SA-NET introduces channel shuffling to enhance the interaction between
features. Channel shuffling rearranges the results of grouped convolution, allowing feature
maps from different groups to interleave with each other. Through channel shuffling,
information between different channels can interact and fuse more effectively. Adjacent
channels originate from different groups, enriching the correlation between features and
aiding in capturing more feature information and patterns. This operation increases the
expressive power of the model while reducing computational and parameter requirements
to a certain extent, resulting in a more lightweight network. Assuming the input feature
map is X;, and the output feature map after grouped convolution is Y, the channel shuffling
operation can be represented as follows:

Y = Concatenate([Shuf fle(X71), Shuffle(Xy), ..., Shuffle(Xg)]) (7)

In this context, shuf fle represents the channel shuffling operation; X; represents
the input feature map 7 of the group. Channel shuffling has been widely applied in
lightweight network architectures, particularly in mobile devices and embedded systems,
to provide high-performance computation and recognition capabilities. It is an effective
design strategy that reduces computational and storage requirements while maintaining
model accuracy, making it suitable for various computer vision tasks.

Channel attention aims to capture the dependencies between different channels to
better control the representational capacity of feature maps. In the SA network, for each
sub-feature map, the global average pooling (GAP) operation is applied to compute the
average along the spatial dimensions, obtaining the global statistics of the channels:
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Next, a simple gating mechanism is used to generate channel weights. Specifically, the
parameters Wi and by are used for linear transformation, followed by a sigmoid activation
function to obtain the weight parameter:

weights = o(Wy - s + bl) 9)

Finally, the weight parameter is applied to Xk1 linearly transforming the sub-feature
map, resulting in the final output Xpk1 of channel attention. This step can be represented as:

Xokl = weights - Xk1 (10)

Through this computation process, channel attention can model the importance of
different channels and adjust the representation of sub-feature maps based on the weight
parameters. This helps to enhance the model’s representational capacity and better capture
the correlations between features.

Spatial attention is used to determine which positions in the feature map contain infor-
mative content. In the SA network, the computation process of spatial attention is as follows:
firstly, for each sub-feature map Xk2, its spatial statistics are obtained by applying group
normalization (GN) operation, which enhances the representation capability of the feature map.

(Xk2 — )

GN(Xk2) = ==
- —¢&

(11)

where Xk2 represents the sub-feature map, u represents the mean within each group Xk2, ¢
represents the standard deviation within each group Xk2, and is a small constant for numerical
stability. The adjusted feature map "Xk2 is further enhanced by applying function Fc(-):

Xk2 = Fc(GN(Xk2)) (12)

where Fc(-) is a non-linear transformation function, such as the ReLU activation func-
tion. The aggregation of the adjusted sub-feature maps X0k1 and XO0k2 is achieved by
concatenating them:

X0k = [X0k1; XO0k2] (13)

where X0k1 is the sub-feature map adjusted by channel attention, and X0k2 is the sub-
feature map adjusted by spatial attention. Finally, the output of the SA module has the
same size as the original feature map, which allows easy integration of the SA module with
modern architectures, as shown in Figure 5.
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Figure 5. SA-net.
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3.3. C3_DS_Conv

Deep neural networks have achieved tremendous success in computer vision, natural
language processing, and other fields. However, their complexity and large number of
parameters lead to high computational and storage requirements. The main goal of quanti-
zation techniques is to reduce the precision of parameters and activation values, thereby
reducing the computational and storage demands. Traditional deep neural networks
use 32-bit floating-point numbers to represent parameters and activation values, while
quantization techniques can represent them as lower-precision integers or binary forms.
For example, parameters and activation values can be represented using 8-bit integers
or binary, significantly reducing the computational and storage overhead. Quantization
serves multiple purposes. Firstly, it can reduce computational costs. Lower-precision repre-
sentations can decrease the complexity of multiplication and addition operations, speeding
up inference, which is crucial for real-time applications and resource-constrained devices
such as mobile devices and embedded systems. Secondly, quantization can reduce storage
costs. Deep neural networks typically have a large number of parameters, requiring sig-
nificant memory space for storage. Through quantization, parameters can be represented
in compact integer or binary form, significantly reducing storage requirements, which
is important for deploying and running deep neural networks in resource-constrained
environments. Additionally, quantization can improve energy efficiency. By reducing
computational demands, quantization can reduce energy consumption, prolong battery
life, and enhance device efficiency, which is beneficial for power-sensitive applications like
mobile devices and wireless sensor networks.

During the inference process of neural networks, adopting quantization methods
with low-precision representations can significantly reduce computational and storage
overhead. However, how to quantize weights and activations without sacrificing accuracy
remains a challenge. DS_Conv [30] employs a strategy called block-wise quantization,
where weights and activations are divided into different blocks and quantized separately.
By converting floating-point values into fixed-bit integer values and using floating-point
scaling factors to preserve the quantized precision, it achieves low-precision representation
without compromising the accuracy of the network. The core principle of it is based on
the relative distribution invariance of quantized weights and activations. It utilizes the
block-wise strategy in quantization operations, representing weights and activations using
integer values and employing floating-point scaling factors to maintain the quantized
precision. By minimizing the Kullback-Leibler (KL) divergence or L2 norm, it computes
the scaling factor for each block to re-map the quantized values back to the original range.

The specific structure of it consists of two key components: Variable Quantization
Kernel (VQK) and Kernel Distribution Shifting (KDS), as shown in Figure 6. VQK is an
integer tensor of the same size as the original weight tensor, represented in 2’s complement
format, with its range determined by a preselected number of bits. KDS is a floating-point
tensor used to store the scaling factors for each block. By multiplying the integer values of
weights and activations with their respective scaling factors, the distribution of each block
is readjusted to the correct range. It also employs an activation quantization method called
Block Floating-Point (BFP). It partitions the activation tensor into blocks and performs
clipping and shifting on other activations based on the maximum exponent within each
block. This allows the use of fewer bits in the activation tensor and enables low-precision
integer operations between weights and activations.

By appropriately selecting the values of block size B and number of bits b, it achieves
a trade-off between computational and storage efficiency and inference accuracy. A larger
block size B can reduce storage overhead and the depth of KDS but may increase clipping
errors. A smaller number of bits b can lower storage costs but may result in greater
computational complexity.

It is a quantization method for neural network inference that achieves low-precision
representation without sacrificing network accuracy through block-wise quantization and
floating-point scaling factors. It employs the two key components, VQK and KDS, to store
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quantized weights and activations, and utilizes the BFP method for activation quantization.
By appropriately selecting the block size and number of bits, it strikes a balance between
computational and storage efficiency and inference accuracy. This approach demonstrates
good performance even without training data and has broad prospects for applications.
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Figure 6. DS_Conv.

4. Experimental Results and Analysis
4.1. Data Collection and Processing

The dataset used in this experiment consists of full-color images collected from a port,
with a resolution of 1024 x 1024 x 24. The dataset comprises a total of 1000 images, and
the labels are in Pascal VOC format (XML). The values for hsv_h, hsv_s, and hsv_v are
set to 0.015, 0.7, and 0.4, respectively. The horizontal or vertical translation ratio of the
images is set to 0.5, and there is a 0.5 probability of horizontally flipping the images. The
mosaic data augmentation technique is employed, as shown in Figure 7. The purpose
of applying image augmentation methods is to increase the diversity of data during the
training phase, thereby improving the performance and robustness of the object detection
model. By applying various transformations and perturbations to the images, it is possible
to simulate various situations and scenarios in the real world, enabling the model to better
adapt to different environments and variations.

7

s,ubménne-oo'l-0133vjpg s,ggmanne—OO1-0443J;:g

Figure 7. Data enhancement display.

4.2. Training Parameter Setting

In order to achieve a fair experimental comparison, no pre-trained weight files were
loaded during both the original training phase of YOLOv5 and the improved network
structure. The YOLOv5s model was used as the baseline for the experiments. The number
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of epochs was set to 80, with a batch size of 32. The learning rate was dynamically adjusted
using cosine annealing, with an initial learning rate of 0.0036 and a momentum parameter
of 0.937. The weights for bounding box loss, object loss, and binary cross-entropy loss for
object classification were set to 0.5, 1.0, and 0.1, respectively. The loss function includes
bounding box loss, class loss, object presence loss, and object absence loss.

The bounding box loss is measured using the Smooth L1 loss, which evaluates the
model’s accurate prediction of bounding box positions. The class loss uses the cross-
entropy loss function to measure the model’s accurate prediction of target classes. The
object presence loss encourages the model to make accurate predictions regarding the
presence of objects using binary cross-entropy loss, while the object absence loss utilizes
the negative log-likelihood loss function to reduce false positives. By simultaneously
optimizing these loss functions, the YOLOv5 model can achieve accurate object detection,
accurately predicting bounding box positions, target classes, and object presence. The
weights of the loss functions can be adjusted based on the requirements of the task to
balance the contributions of different losses, thereby improving the model’s performance
and robustness. With the parameter settings and loss optimization mentioned above, the
training of the model before and after improvement on the same dataset resulted in the
relationship between loss and epochs as shown in Figure 8.
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Figure 8. LOSS before and after improvement.

4.3. Results

The experimental results are an essential part of evaluating and comparing the perfor-
mance of the YOLOv5 model before and after improvement in the object detection task.
Next, we will thoroughly present the experimental results, including performance metrics
of the models before and after improvement (such as accuracy, recall rate, average precision,
lightweightness, etc.), and conduct comparisons and analysis.

4.3.1. Overall Performance

By plotting the curves of mAP0.5 and mAP0.5:0.95 metrics, the impact of the improve-
ment on the model’s performance can be clearly demonstrated, as shown in Figure 9.

First, let us focus on the mAP0.5 metric, which measures the accuracy of the model
at a relatively relaxed prediction threshold. By observing the curves before and after the
improvement, we can see a significant improvement in the performance of the model in
terms of mAPO0.5. This means that the improved model has higher accuracy in detecting
objects and can better locate and recognize object bounding boxes. On the other hand, the
mAP0.5:0.95 metric measures the accuracy of the model at a stricter prediction threshold,
requiring more precise detection of objects. By observing the curves before and after
the improvement, we can also observe a significant improvement in the performance of
the improved model in terms of mAP0.5:0.95. This means that the improved model can
maintain high precision at a higher recall rate and predict the position and category of
objects more accurately.
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Figure 9. mAP0.5 and mAP0.5:0.95.

Overall, by comparing the curves of the model’s performance before and after the im-
provement in terms of mAP0.5 and mAP0.5:0.95, we can clearly observe the positive impact
of the improvement on the model’s performance. These results validate the effectiveness of
the improvement method and demonstrate its significant effect in enhancing object detec-
tion performance in the YOLOv5 model. These findings further support and strengthen
our arguments regarding the reliability and effectiveness of the improvement method.

4.3.2. Better Performance

Here is a specific numerical comparison of the improvement effect on four models
before and after improvement in terms of P (Precision), R (Recall), and mAP0.5 (Mean
Average Precision):

As shown in the Table 1, the models show significant improvements in terms of P,
R, and mAPO0.5 after the improvement. P reflects the accuracy of the model’s predictions,
indicating how many of the predicted targets are actually true targets. Through the im-
provement, the P values of the models have increased to varying degrees, indicating that the
improved models can predict targets more accurately and reduce false positives. In terms
of R, the models before and after the improvement also show significant improvements.
R measures the model’s ability to detect true targets, indicating how many true targets
the model can correctly identify. Through the improvement, the R values of the models
have significantly increased, indicating that the improved models can detect targets more
comprehensively and improve recall. mAP0.5 measures the overall detection accuracy
of the model at a relatively relaxed prediction threshold. Through the improvement, the
mAPO0.5 values of each model have significantly increased, indicating that the improved
models have higher accuracy and localization ability in detecting targets. In conclusion, by
comparing the specific numerical improvement effects of the four models before and after
the improvement in terms of P, R, and mAP0.5, we can clearly observe the positive impact
of the improvement on the model’s performance. These results further validate the effec-
tiveness of the improvement method and demonstrate that the introduced improvements
in the YOLOvV5 model significantly enhance the accuracy, recall, and overall performance
of object detection.

Table 1. Comparison of evaluation indexes of the model before and after improvement. An upward
numeric arrow indicates that the value has improved from the original value.

Model P R mAP0.5
origin 0.822 0.769 0.874
improl 0.807 0.79 0.873
impro2 0.874 0.75 0.882

impro3 0.8931 0.8157 0.9031
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4.3.3. More Lightweight

In addition to the improvements in performance metrics, the improved model also
demonstrates outstanding results in terms of lightweightness. Here is a comparison of
the models before and after improvement in terms of network layers, parameters, and
computational complexity:

As shown in Table 2, Firstly, in terms of parameter count, the improved model sig-
nificantly reduces the number of parameters required. Reducing the parameter count
helps decrease the storage space requirements and computational complexity of the model,
making it more lightweight. Despite the reduction in parameter count, the improved model
is still able to maintain good detection performance, further validating the effectiveness of
the lightweight improvement.

Table 2. Comparison of lightweight degree of the model before and after improvement. An upward
numeric arrow indicates that the value has improved from the original value. A downward digital
arrow indicates that the value is reduced from the original value.

Model Layers Parameters GFLOPS
origin 214 7,022,326 15.9
improl 294 4,694,678 7.0
impro2 320 4,599,702 5.0
impro3 2981 4,627,590 5.1}

Secondly, in terms of computational complexity, the improved model also significantly
reduces the computational requirements. By reducing the parameter count, the improved
model can reduce the computational resource demands while maintaining high perfor-
mance. This is particularly important for deploying the model on resource-constrained
devices such as embedded systems or mobile devices.

Although the improved model has an increase in the number of network layers, it
still demonstrates remarkable lightweight performance. The increase in network layers
may increase computational and storage requirements, but the improved model, through
optimized design and parameter reduction, can still provide excellent object detection
performance under lightweight conditions.

In conclusion, the improved model has shown outstanding results in terms of lightweight
design. By reducing the parameter count and computational complexity, the improved
model can significantly reduce the complexity and resource requirements while maintaining
high performance. This makes the improved model have broader application prospects
in lightweight scenarios and provides an efficient object detection solution for resource-
constrained devices.

4.3.4. Focus More on the Outlook

The adaptive mechanism allows the network to dynamically adjust the weights and
representations of features based on the characteristics of the input data. Its purpose is to
enhance the model’s focus on important target regions and reduce attention to background
or minor regions, thereby improving the accuracy and robustness of object detection.
Specifically, we used a heatmap-based approach to visualize the performance of the network
before and after improvement, as shown in Figure 10. The heatmap provides an intuitive
display of the model’s attention to different regions, with brighter areas indicating higher
model focus on those regions.
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Figure 10. Model test effect before and after improvement.

By comparing the heatmaps before and after improvement, we can observe that
the improved model exhibits higher attention to the target regions. This means that the
improved model can more accurately locate and recognize objects, making it more robust
in complex backgrounds or occlusion situations. It helps the model focus on critical targets
and improves detection precision and recall. At the same time, by reducing attention to
the background and minor regions, it also reduces false detections, thereby enhancing the
model’s robustness and reliability.

In conclusion, by employing an adaptive improvement scheme for the network and
visualizing the network’s performance before and after improvement using heatmaps,
we observed that the improved model exhibits stronger attention to target regions. This
significantly enhances the accuracy and robustness of object detection tasks.

4.3.5. Excellent Performance in Practice

This section will focus on showcasing the outstanding performance and improvement
of the model in the object detection task after the improvement. We present the accuracy,
confidence, and improvement regarding the issue of false negatives by comparing the
well-annotated dataset with the dataset predicted by the original model, as well as the
predicted results of the improved model.

By comparing the well-annotated dataset with the dataset predicted by the original
model and the predicted results of the improved model, as shown in Figure 11, we can
visually observe the superior performance of the improved model in the object detection
task. Firstly, the improved model can accurately detect objects in the well-annotated dataset
and provide predictions with higher confidence. Compared to the original model, the
improved model can more accurately localize objects and classify them correctly, indicating
higher accuracy and confidence. Secondly, we can observe that the issue of false negatives
that may exist in the original model has been effectively addressed or reduced in the
improved model. The improved model can better recognize and capture objects, ensuring
successful prediction and annotation of previously missed objects. This improvement
can be visually observed in the predicted results of the improved model. Compared
to the original model, the improved model can detect objects more comprehensively,
reducing the occurrence of false negatives and providing more complete and accurate
object detection results.
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Figure 11. Display the results before and after improvement. (a) Original label file, (b) original Yolov5
model, and (c) test results of improved YOLOVS.

4.3.6. Typical Algorithm Analogy

In order to highlight the effectiveness of the improvements made to YOLOV5 in
this study, we conducted comparisons with other object detection algorithms, including
Faster R-CNN, Single Shot Multibox Detector (55D), YOLOvV3, and the enhanced algorithm
proposed in this paper.

Faster R-CNN is an object detection algorithm based on region proposal networks,
with higher detection accuracy but relatively slower processing speed. We compared the
enhanced algorithm in this study with Faster R-CNN to validate the advantages of the
improved algorithm in terms of both accuracy and speed.

SSD is a one-stage object detection algorithm known for its faster detection speed, but
it may have limitations in detecting small objects. We compared the enhanced algorithm
in this study with SSD to showcase its performance in detecting small objects. YOLOv3
is an earlier version of the YOLO series, and it exhibits certain differences in speed and
accuracy compared to YOLOv5. We compared the enhanced algorithm in this study with
YOLOV3 to emphasize the improvements achieved over the earlier version. This is shown
in Table 3, we compared the enhanced algorithm in this study with YOLOV5 to showcase
its performance in terms of both accuracy and speed.

Table 3. Typical Algorithm Analogy.

Model P R mAP0.5/%
Faster-RCNN 86.1 79.2 68.7
SDD 84.9 75.3 72.8
YOLOvV3 80.4 81.2 84.1
YOLOvV5 82.2 76.9 87.4
Ours 89.3 81.5 90.3

Through these comparative experiments, we aim to establish the evident advantages of
the improved algorithm over other algorithms in object detection tasks, thereby highlighting
the effectiveness of the proposed enhancements.

5. Conclusions

This paper achieved significant performance improvement in submarine target de-
tection through the improvement of the object detection model. Compared to the original
model, the improved model showed an 8.54% increase in precision (P), a 6.02% increase
in recall (R), and a 3.36% increase in mean average precision (mAP0.5). This indicates a
significant improvement in accuracy in the improved model for object detection. Addi-
tionally, this paper emphasizes the importance of lightweight design in the model. The
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improved model reduced the parameter count by 34.1% and the computational complexity
by 67.9% compared to the original model, achieving a notable lightweight effect. This
enables the improved model to perform efficient object detection in resource-constrained
environments. Furthermore, this paper introduces an attention mechanism to enhance the
interaction between features and visually demonstrates the improvement of the improved
model in terms of confidence and the issue of missed detections. By adaptively adjusting
the weights of the feature maps, the improved model can accurately focus on important
features, thereby improving the accuracy and robustness of object detection.

In summary, this paper has achieved a dual improvement in accuracy and lightweight
design in the task of submarine target detection through the improvement of the model’s
design and performance analysis. The improved model not only significantly improves
accuracy but also enables efficient object detection in resource-constrained environments
through lightweight design. These research findings are significant for enhancing the accu-
racy and efficiency of object detection and provide valuable references for the development
of future lightweight object detection algorithms.
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