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Abstract: Fetal heart rate (FHR) monitoring, typically using Doppler ultrasound (DUS) signals, is an
important technique for assessing fetal health. In this work, we develop a robust DUS-based FHR
estimation approach complemented by DUS signal quality assessment (SQA) based on unsupervised
representation learning in response to the drawbacks of previous DUS-based FHR estimation and
DUS SQA methods. We improve the existing FHR estimation algorithm based on the autocorrelation
function (ACF), which is the most widely used method for estimating FHR from DUS signals.
Short-time Fourier transform (STFT) serves as a signal pre-processing technique that allows the
extraction of both temporal and spectral information. In addition, we utilize double ACF calculations,
employing the first one to determine an appropriate window size and the second one to estimate
the FHR within changing windows. This approach enhances the robustness and adaptability of the
algorithm. Furthermore, we tackle the challenge of low-quality signals impacting FHR estimation
by introducing a DUS SQA method based on unsupervised representation learning. We employ a
variational autoencoder (VAE) to train representations of pre-processed fetal DUS data and aggregate
them into a signal quality index (SQI) using a self-organizing map (SOM). By incorporating the SQI
and Kalman filter (KF), we refine the estimated FHRs, minimizing errors in the estimation process.
Experimental results demonstrate that our proposed approach outperforms conventional methods in
terms of accuracy and robustness.

Keywords: fetal heart rate; Doppler ultrasound; signal quality assessment; autocorrelation function;
unsupervised representation learning

1. Introduction

Fetal heart rate (FHR) serves as a vital metric for assessing the well-being of a fetus. It
aids in identifying high-risk pregnancies and reducing fetal mortality rates. Cardiotocog-
raphy (CTG) is a commonly employed method that allows the simultaneous recording
of both maternal and fetal heartbeats. Among the techniques used to extract FHR from
CTG recordings, the Doppler ultrasound (DUS) technique has gained prominence [1].
This involves attaching an ultrasound (US) transducer to the mother’s abdomen to enable
continuous monitoring, as depicted in Figure 1. Previous studies [2,3] have established
that the most accurate FHR estimation relies on invasive fetal electrocardiogram (ECG),
with non-invasive fetal ECG representing the second most precise method. While FHR
estimation based on DUS signals does not attain the same level of accuracy as fetal ECG, it
offers distinct advantages. Notably, invasive fetal ECG is restricted to specific cases due to
the undesirability of long-term attachment of fetal scalp electrodes for FHR monitoring.
Conversely, non-invasive fetal ECG signals obtained by placing electrodes on the mother’s
abdomen necessitate expensive equipment and expert operation [4]. To capture a DUS
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signal, the ultrasound (US) transducer is positioned on the mother’s abdomen. The primary
technique for estimating fetal heart rate (FHR) from these DUS signals is based on the
autocorrelation function (ACF) [5–7]. This method leverages the inherent periodicity of
the DUS signals to extract the FHR information accurately. Another notable approach for
FHR estimation involves empirical mode decomposition (EMD). By employing EMD, it
becomes possible to identify signal components associated with the valve motion of the
fetal heart [8,9]. The ACF-based approaches have demonstrated superior consistency and
applicability compared to EMD-based methods, primarily due to their simpler compu-
tations and fewer parameters. However, current approaches still face several challenges
that warrant attention. Firstly, prior studies [5–7] have predominantly focused on a single
domain (time or frequency) during ACF calculations, potentially resulting in the loss of
valuable information from the other domain. Moreover, DUS signals are susceptible to
various interferences, including maternal, fetal, and instrument movements, leading to
a degradation in the signal-to-noise ratio (SNR). Accurately estimating FHR using noisy
DUS data becomes challenging, as the quality of the fetal DUS signals significantly impacts
the accuracy of the FHR estimation [10]. To enhance FHR estimation accuracy, a common
technique employed is signal quality assessment (SQA), which involves identifying seg-
ments of low-quality signals and subsequently eliminating or interpolating erroneous FHR
values derived from these segments. Presently, the available literature on signal quality
assessment (SQA) methods for DUS signals remains limited, with only a few approaches
published [10,11]. However, these approaches based on supervised machine learning
techniques usually require large labeled datasets, and there are few public DUS datasets
with professional annotations. Furthermore, the existing SQA methods primarily focus on
removing the estimated fetal heart rates (FHRs) from the identified segments of low-quality
DUS signals. However, this approach may result in a reduced proportion of reserved FHRs
in relation to the overall number of estimated FHRs within a record. Hence, alternative
strategies are required to address this issue effectively.

Figure 1. DUS signal measurement. The US transducer is placed on the maternal abdomen to extract
DUS signals.

Inspired by the shortcomings of existing DUS-based FHR estimation and DUS SQA
methods, we present a robust DUS-based FHR estimation method supported by DUS
SQA based on unsupervised representation learning. By means of a band-pass filter and
a short-time Fourier transform (STFT), the DUS signals are pre-processed in the form of
spectrograms. The spectra are integrated over the spectrograms to produce integrated
spectral data. The ACF is applied to a 3.75 s integrated spectrum segment and a peak is
detected. An approximate fetal RR interval (FRRI) is first determined from the detected
ACF peak, which is used to resize the window for the second ACF calculation. The detected
peak of the second ACF is defined as the FRRI of that segment. In addition, the length of the
window movement is determined based on the FRRI estimated from the previous window.
Our DUS SQA uses a fully convolutional network (FCN)-based variational autoencoder
(VAE) to obtain learning representations of pre-processed DUS signals by integrating the
autoencoder (AE) models mentioned in [12,13]. By feeding these learned representations
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into a self-organizing map (SOM), we generate a combined signal quality indicator (SQI)
that incorporates the quantization error (QE) of the SOM [14]. The combined SQI is used to
modify the measurement noise covariance, and a Kalman filter (KF) is then used to correct
the inaccurate FRRIs computed from low-quality signals [15,16]. We would like to mention
that our DUS SQA method has been previously reported [17], serving as a foundation for our
current research. In this paper, we utilize the DUS SQA method proposed in our previous
work [17]. However, the fetal heart rate estimation section is entirely novel and presented
for the first time. Additionally, we include a comparative analysis of the experimental results
between our approach and a conventional method, which remains unpublished.

We conducted a thorough evaluation of the proposed method using DUS recordings
obtained from ten subjects. The experimental results clearly demonstrated that our method
outperformed the conventional approach [7] in terms of FHR estimation accuracy. Further-
more, the integration of our DUS SQA method led to a substantial reduction in the estimation
errors of FHRs. The main contributions of our work can be summarized as follows:

• We combine time and frequency information using STFT for DUS signal pre-processing
so that the ACF-based FHR estimation algorithm does not focus only on a single
domain as in previous works.

• This method is robust to DUS recordings of different qualities because it is supported
by DUS SQA.

• An unsupervised representation learning-based DUS SQA approach is proposed in
this paper, which eliminates the need for a large dataset of quality labels. Furthermore,
representation learning enables our method to exploit deeper information than human-
defined features.

The structure of this paper is as follows. Section 2 summarises and discusses related
work. Subsequently, the preliminary work is presented in Section 3. The proposed method
is described in Section 4. In Section 5, we evaluate the performance of our proposed method
and discuss its strengths and limitations. Finally, we conclude this paper in Section 6.

2. Related Work

Some FHR estimation techniques using DUS signals have been reported [5–9]. ACF-
based FHR estimators are the most commonly used, which have been shown to be com-
putationally inexpensive and can achieve accurate FHR estimation. A two-step approach
for FHR extraction using DUS signals has been proposed by Peter et al. [5], based mainly
on the ACF technique. The cardiac cycle times are roughly estimated based on low-pass
filtering of the envelope signals, and then the FHRs are calculated using ACF in the fre-
quency domain. However, they mentioned that this method has a relatively high sensitivity
to signal-to-noise ratio (SNR), which means that low SNR can lead to inaccurate results.
Jezewski et al. [6] presented an ACF-based technique for FHR estimation from DUS signals,
which includes three main steps: dynamic adjustment of the ACF window, adaptive ACF
peak detection, and determination of beat-to-beat intervals. The ACF windows are continu-
ously adjusted based on the most recent FHR estimate. In addition, if ACF peaks fall within
the previously identified FHR range, they are assigned a higher probability of correlating
with the correct cardiac cycle. To assess the quality of DUS signals, they also propose
that a lower ACF peak indicates lower signal quality, which increases the possibility of
inaccurate estimation of cardiac cycle duration. Although Jezewski et al. [6] introduced
an indicator to reduce the negative effects of low-quality signals, a single indicator is not
reliable enough to remove all low-quality signals. Another research paper [7] provides a
generalizable, reproducible, open-source ACF-based technique that can accurately estimate
FHR from 1D-DUS obtained using a low-cost handheld transducer. A total of 721 DUS
signal segments of 3.75 s length were used to train an FHR estimator, and the parameters of
the estimator were adjusted by Bayesian optimization. In addition, it has been mentioned
in this paper that only high-quality signal segments are selected for experiments based
on the SQA method proposed in [10]. However, by using a rectangular window, the ACF
was calculated only in the time domain, so some information in the frequency domain
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may be lost. Moreover, the fixed window length for ACF calculation limits the accuracy of
FHR estimates.

In addition to ACF-based approaches, the empirical mode decomposition (EMD)
method has also been used for FHR estimation. Rouvre et al. [8] proposed that the per-
formance of FHR estimation can be improved by applying ACF to the intrinsic mode
functions (IMFs) after empirical mode decomposition. However, they also mentioned that
this method has not yet been fully formalized theoretically and that the computational
complexity is highly dependent on the intrinsic signal properties. Furthermore, an EMD
kurtosis method for FHR extraction from DUS signals was presented by Al-Angari et al. [9].
In their work, the kurtosis function is calculated on the FHRs extracted from the DUS
signal. It is worth mentioning that the most important indicator of this approach is the
appropriate window size used to apply the kurtosis function. It has been shown that
the EMD-based methods have better performance than the ACF-based methods when
processing signals with relatively high SNR, in other words, the EMS-based methods are
more robust. However, it is very possible that some related parameters, including the
number of IMFs and the size of the window used to calculate kurtosis, may be overfitted
during optimization due to the limited amount of data.

Compared to EMD-based techniques, ACF-based methods show higher reproducibility
and practicality due to the relatively low computational complexity and a small number of
parameters. However, there are still several drawbacks to the existing methods that can
be improved:

• The ACF calculations in these existing works only focus on one domain, time, or frequency.
Thus, the information about the other domain may be lost during the calculation.

• The performance of ACF-based FHR estimation techniques is highly dependent on the
quality of the DUS signal. Although some papers [6,7] use simple SQA approaches to
solve this problem, these DUS SQA methods can still be enhanced.

So far, a small number of SQA methods for DUS signals have been introduced. A DUS
SQA based on the Support Vector Machine was proposed by C. E. Valderrama et al. [10].
Some innovative template-based SQIs derived from correlation coefficients between DUS
signals and the fetal heartbeat-based template signals are used for DUS SQA. The Naive
Bayes classifier was also used for DUS SQA [11], where twelve SQIs were used. These SQIs
are mostly related to the range of valve movement. Although it has been demonstrated
that these DUS SQA approaches can discriminate between different quality levels, there
are still certain limitations:

• Large labeled datasets are usually required for these research works based on super-
vised machine learning methods. However, there are few DUS datasets with quality
annotations. In addition, annotation of DUS quality levels is laborious and requires
expert knowledge.

• The human-defined signal quality features used in these works limit the ability to
mine deeper signal quality information in DUS signals.

• These existing methods simply eliminate the estimated FHRs from the detected low-
quality DUS signal segments, which may result in a reduction in the proportion of
reserved FHRs to all estimated FHRs in each recording.

Although not for DUS signals, some unsupervised learning-based SQA methods
have been introduced to improve signal analyzing performance. A paper [18] evaluates
photoplethysmography signal quality by computing seven SQIs associated with entropy
and waveform morphology and training a SOM for quality-level classification. In addi-
tion, two AE-based ECG SQIs associated with reconstruction errors and reconstruction
reliabilities have been proposed by N. Seeuws et al. [12]. Recently, unsupervised rep-
resentation learning has gained popularity for time series classification tasks. In the
paper [19], time series data can be transformed into an instance-feature matrix using a
proposed effective unsupervised representation learning methodology, where they also
demonstrated that these features can be used to perform precise time series clustering tasks.
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J. Pereira et al. [13] have also proposed a VAE-based representation learning strategy for
anomaly identification. How to appropriately apply the SQA results for achieving better
FHR estimation accuracy is another crucial task, in addition to the evaluation of the signal
quality. Li et al. [15] introduced a method that utilizes KF to correct heart rate estimates,
incorporating four ECG SQIs to adaptively adjust the measurement noise covariance. In
addition, for non-invasive fetal ECG signals, another paper [16] also uses KF to enhance
the precision of FHR estimation.

3. Preliminaries
3.1. Doppler Ultrasound (DUS) Signal

For continuous recording, the US transducer is placed on the maternal abdomen to
extract DUS signals, as shown in Figure 1. When US waves are reflected from an object,
the frequency of the US waves changes, which is called the Doppler frequency shift. This
frequency shift, fs, is given by:

fs =
2 f0v cos θ

c
, (1)

where c is the US propagation velocity and f0 is the transmission frequency. θ is the angle
of the object along the direction of the US wave, and v cos θ is the velocity of the object
along that direction [4]. The US waves propagate through the mother’s skin and some
tissues. The transmitted US waves are reflected by the fetal chest wall. During reflection,
the frequency of the US waves changes due to the movement of the heart wall and valves
of the fetal heart and, in some cases, blood flow. The reflected US waves are received
by the transducer on the mother’s abdomen. The received US waves contain such fetal
physical movements, including heart activity, and thus it is possible to estimate the FHR by
analyzing the received US wave, i.e., a DUS signal.

3.2. Autocorrelation Function (ACF)

It provides a statistical representation of the similarity between a time series and its
delayed version. By utilizing the ACF, the analysts can compare the current value of a
dataset with its past values. This function operates by comparing a given time series with
a lagged version of itself across one or multiple time periods [20]. For a given time series
data [Y1, Y2, . . . , YN ], the ACF with a lag of k is defined as follows:

ac fk =
∑N−k

i=1 (Yi − Y)(Yi+k − Y)

∑N
i=1 (Yi − Y)2 . (2)

3.3. Variational Autoencoder (VAE)

Autoencoder (AE), which is a neural network consisting of an encoder and a decoder,
can extract representations from the inputs and reconstruct the inputs from these represen-
tations [21]. By inputting a vector x into AE, a representation vector z in the latent layer
(between encoder and decoder) can be compressed by the encoder neural network and
reconstructed to the reconstructed vector x̂ by the decoder neural network. The redun-
dancies associated with unnecessary information can be eliminated during representation
learning, while the most important information of the input data can be retained. Therefore,
the reconstruction of the input vector x from the representation vector z is possible after
training for several epochs. The proposal of VAE [22] rapidly promoted the development
of AE technology to a great extent. The most significant difference between VAE and AE is
that the representation vector z in the latent layer of VAE is a random variable with a Gaus-
sian distribution, N (µz, σ2

z). In addition, it is worth noting that while the reconstruction
error typically serves as the primary loss function for AE, VAE introduces an additional
loss component based on the Kullback–Leibler divergence (KLD) between the Gaussian
distribution N (µz, σ2

z) and the standard normal distribution N (0, I). This KLD loss term
further enhances the capability to capture and model the latent space distribution.
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3.4. Self-Organizing Map (SOM)

To address the challenges of SQA, SOM, a clustering method based on unsupervised
learning, has been used in some papers [18,23]. SOM employs a two-layer neural network to
map an N-dimensional input layer onto a two-dimensional output layer. The output layer
consists of multiple neurons, each serving as a potential match for an input sample, thereby
identifying a winning neuron. SOM training typically involves competitive learning. The
QE of an input vector can be regarded as the Euclidean distance between that vector and its
corresponding winning neuron. T. Kohonen et al. [14] noted that a smaller QE signifies a
better alignment between the input sample and the trained SOM model [14]. By leveraging
the QE of a set of input data, it becomes possible to identify anomalies within the data.
For instance, it can be utilized to detect low-quality signal segments when the majority of
signal segments exhibit high quality.

4. Proposed Method

As shown in Figure 2, four components make up the framework of the robust FHR
estimation approach assisted by DUS SQA. These four blocks are described separately
as follows.

Figure 2. The overview of the proposed method. Four components make up the framework of the
robust FHR estimation approach assisted by DUS SQA: pre-processing, FRRI estimation, SQA, and
refinement of FRRI.
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4.1. Pre-Processing

In general, fetal heart activity occurs at frequencies below 500 Hz. In addition, fre-
quencies below 25 Hz are primarily correlated with noise generated by fetal movement or
equipment. Thus, we apply a bandpass filter to raw DUS signals with cutoff frequencies
of 25 Hz and 500 Hz to focus on fetal heartbeats [7]. In addition, 2D spectrograms are
generated using the short-time Fourier transform (STFT) with a window length of 64 ms
and a step size of 1 ms. To generate integrated spectrum data from spectrograms, which
are time series data, the spectra are integrated over the spectrograms in the frequency
range [25, 500] Hz [24]. An example of filtered DUS data, spectrograms, and integrated
spectrum data is shown in Figure 3.

(a) Filtered DUS signal and integrated spectrum (b) Spectrogram

Figure 3. An example of filtered DUS data, spectrograms, and corresponding integrated spectrum
data. The actual fetal heartbeat timings (R-peaks) are marked in red.

4.2. FRRI Estimation

Figure 4 demonstrates the workflow for FRRI estimation from integrated spectrum
data. To calculate the FRRI from the integrated spectrum data, the ACF of an integrated
spectrum segment is calculated using a window of length S, which is set to 3.75 s in
this work. The selection of a 3.75 s window was based on its standard usage in the
computerized analysis of fetal non-stress tests [7]. This window length has been widely
adopted and proven to yield consistent and reliable results in related studies. Before
calculating the ACF, it is necessary to minimize the effects of noise spikes. To achieve this,
we employ a spike removal algorithm, as introduced in [25], which effectively eliminates
these undesirable noise spikes. In the calculated ACF, the maximum peak is detected from
the range [FRRImin, FRRImax], which is assumed to be a reasonable range of FRRIs. To
ensure that the peaks are not harmonic, an additional procedure is performed if there are
more than two distinct peaks within a window. The value of FRRImin and FRRImax is set
to be the same as the optimized values in [7]. We also use the algorithm proposed by [7]
to identify whether a peak is harmonic and to determine the prominent peak. The time
(the horizontal axis of the ACF) of the detected peak of the ACF can be considered as an
approximate estimate FRRIapp in the window of length W. To determine the FRRI for each
heartbeat, we use the approximate estimate FRRIapp to adjust the window width for the
second calculation of the ACF. The adjusted window length Snew is defined as shown in
Equation (3), which includes two heartbeats.

Snew = 2 × FRRIapp + ∆, (3)

where ∆ in this case is set to 1/2× FRRIapp. Using the adjusted window, we apply the ACF
again and use the same procedure as before to detect the peak in the ACF to derive the FRRI.
Different from the peak detection of the first ACF, in the second ACF, the maximum peak is
detected within the range [FRRIapp − range, FRRIapp + range]. The detected peak of the
second ACF is the estimated FRRI in the new window, called FRRIest. As the objective of
the second ACF calculation and peak detection is to further refine the approximate estimate
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FRRIapp, it is expected that the value of FRRIest should be in close proximity to FRRIapp.
After conducting several experiments, a value of 0.1 s is chosen as the value of range to
ensure that FRRIest remains around FRRIapp. After estimating the FRRIest in this window,
the window length S is initialized as 3.75 s for the next window. In addition, the window is
shifted for half the time of the previous FRRIest. Each subsequent window goes through
the same operation to estimate FRRIs.

Figure 4. The workflow for FRRI estimation. This figure only presents the workflow for estimating
FRRI in window 1 and determining window 2. The FRRI estimation procedure for each following
window follows this workflow.

4.3. SQA

As shown in Figure 2, there are two procedures, including representation learning
based on VAE and combined SQI generation based on SOM. In our work, representation
learning from the integrated spectrum is on the basis of an FCN-based VAE neural network.
The integrated spectrum data are slid through a 1.2 s window (average value of resized
windows after the first ACF for FRRI estimation). Each time the window is slid, the
window is moved to align the start time stamps of the resized window recorded during
FRRI estimation. As shown in Figure 5, the input vector x = [x1, x2, . . . , xL] is an integrated
spectrum segment that has been resampled to 1024 samples, while the output vector
x̂ = [x̂1, x̂2, . . . , x̂L] represents a reconstructed integrated spectrum segment. In addition,
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the VAE neural network is a slight modification of an AE neural network used for noise
reduction in ECG signals [26], where there are several FCN layers in both the encoder and
decoder parts. Every FCN layer comprises three key components: (1) convolutional layer,
(2) batch normalization layer, and (3) activation layer based on the exponential linear unit
(ELU) function. Together, these components form the building blocks of each FCN layer,
enabling effective feature extraction and non-linear transformations within the network.
Furthermore, two dense layers and a sampling function are used to link the encoder and
decoder. The mean and variance of the latent vector z, called µz and σ2

z , are generated
by the dense layers. The sampling function is then used to generate z from µz and σ2

z . In
the encoder neural network, after five convolutional layers with a stride of 2, the input
vector x is compressed to a vector of dimension 32 × 40. Using the dense layers and the
sampling function, µz, σ2

z , z are all of dimension 32 × 1. The VAE decoder takes the latent
representation vector z as input and generates the reconstructed vector x̂ as output. We use
transposed convolutional layers throughout the decoder neural network for upsampling.
All convolutional and transposed convolutional layers have a kernel size 16, and all batch
normalization layers have a batch size 64.

Figure 5. The proposed VAE and SOM-based SQA. Both the encoder and decoder of VAE have
multiple FCN layers. Each FCN layer consists of a convolutional layer, a batch normalization layer,
and an exponential linear unit-based activation layer. Two dense layers and a sampling function are
used to connect the encoder and decoder.

Since the purpose of VAE training is to minimize reconstruction errors and enable z
to approximate standard normal distribution N (0, I) as much as possible, the VAE loss
function is given as Equation (4):

Loss =
1
L

L

∑
l=1

(xl − x̂l)
2 + KLDµz ,σ2

z
, (4)
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where L is the length of the input vector x and the reconstructed vector x̂, KLDµz ,σ2
z

is KLD
between N (µz, σ2

z) and N (0, I), which is given as follows:

KLDµz ,σ2
z
=

1
2

d

∑
i=1

(µ2
z(i) + σ2

z(i) − log σ2
z(i) − 1), (5)

where the dimension of z is d. After 100 training epochs, the latent representation vec-
tor z captures significant information about fetal cardiac activities, facilitating precise
reconstruction of the input data.

By the trained FCN-based VAE neural network, the integrated spectrum segments are
processed to the representation vectors with the dimension of 32 × 1. µz is input to the
SOM to compute the combined SQI (means combining a 32 × 1 vector to a single value),
which is introduced as follows. Considering that high-quality DUS signal segments make
up more than 80% of all segments in our dataset, it is important to note that there is a
significant imbalance between these two types of low- and high-quality segments. This
imbalance allows the identification of low-quality segments as a task for outlier detection.
Within the trained SOM neural network, the outliers exhibit considerable distance from
their corresponding winning neuron, in stark contrast to the majority of samples which are
positioned in close proximity to their respective winning neurons. Therefore, for detecting
outliers, we use QE as the output of the SOM neural network and calculate the combined
SQI based on QE.

The combined SQI is defined based on the QE. A QE value can be computed for
each integrated spectrum segment by feeding it into the trained SOM. Then, the QEs
are normalized in the range [0, 1] based on the min–max normalization algorithm. The
combined SQI based on the normalized QE is defined as follows:

SQI(x) =

{
1, QE(µz(x)) <= th,

1 − QE(µz(x))−th
1−th , QE(µz(x)) > th,

(6)

where SQI(x) is the combined SQI generated from the input vector of VAE x, th is a
threshold used to determine the quality of data that can be used to generate acceptably
accurate FHR estimates. th is specifically set to the 9-th decile of all SQI values. This choice
is based on the observation that approximately 90% of the segments within our dataset
exhibit high quality. For different datasets, th can be set to different values. The combined
SQI has a range of [0, 1], and the larger value corresponds to the higher quality.

4.4. FRRI Estimation Refinement

KF is a common and effective tool for estimating the optimal state of stochastic
signals [27]. Inspired by previous studies [15,16], a KF is applied to the rough FRRI
estimates generated from the FRRI estimation block explained in Section 4.2 to further
rectify the FRRI estimation. Our model is defined as a first-order autoregressive process,
where the time series estimates are determined by the linear regression of the preceding
measurement, establishing a relationship between the current estimate and its previous
measurement. In this process, there are two noise metrics: process noise W ∈ Rn and
measurement noise V ∈ Rn, where W ∼ N (0, Q) and V ∼ N (0, R). In addition, we set
the coefficient state transition metrics to be unitary. To merge the combined SQI into the KF,
we modify the measurement noise covariance metric Rm using the non-linear weighting
function [15] based on the combined SQI, as shown in Equation (7). The measurement Zm
should be less trusted when the combined SQI is low.

Rm = R0 · e
1

SQI2
m
−1

, (7)

where SQIm refers to the m-th combined SQI, while R0 represents the initial value of the
measurement noise covariance. As SQIm approaches 0, indicating low quality, Rm tends
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towards infinity. This adjustment serves to decrease the Kalman gain Km, leading to
reduced reliance on the current measurement compared to the previous measurement.
Conversely, Rm approaches R0 while SQIm approaches 1, and Km is increased to reflect
greater reliance on the current measurement. By incorporating this adaptive mechanism,
the algorithm assigns less trust to measurements with lower quality, prioritizing the more
reliable information for improved estimation accuracy.

We first use a conventional KF with fixed Rm and Qm to smooth the rough FRRI
estimates, where we calibrate R0 = 1 and Q0 = 0.1. In addition, a KF with changing
Rm based on Equation (7) is applied to refine the FRRIs with relatively large errors which
are estimated from low-quality DUS segments. Through calibration, we assign R0 = 1
and Q0 = 1 for the second KF. In addition, we then eliminate the FRRIs from where the
low-quality segments are continuous since it is difficult to correct FRRIs generated from
such signals. To detect low-quality segments, a combined SQI threshold is established,
specifically the 8th decile of all combined SQI values. Any FHR estimates obtained from
more than three consecutive segments of low quality are discarded.

5. Results and Discussion
5.1. Experimental Setup

The DUS recordings and invasive fetal ECG recordings of ten subjects are collected
simultaneously by Atom Medical Corporation. The fetal R-peaks are annotated by the
experts to obtain the ground truth of the FRRIs and FHRs. The relationship between an
FHR and an FRRI is given by

FHRi =
60 · Fs

FRRIi
(8)

where Fs is the sampling frequency of the DUS signal recordings. For each subject, there
is a DUS recording of 60 s with a sampling frequency of 1 kHz. As for VAE, we used the
Adam optimizer and trained for 100 epochs. In addition, to achieve optimal performance of
the SOM training, we experimented with different values of each parameter while keeping
the other parameters constant. A 30 × 30 output space and the Gaussian neighborhood
function are used to train the SOM neural network for 15,000 iterations. The number of
training samples for VAE and SOM neural network is 2466, where each training sample is a
1.2 s integrated spectrum, as mentioned in Section 4.3.

To evaluate the performance of the proposed robust FHR estimation method, three
performance metrics are considered, which are given below:

• Root mean square error (RMSE): RMSE is calculated between the estimated value and
the ground truth value of FRRI, which is calculated as follows:

RMSE =

√√√√ 1
Γ

Γ

∑
i=1

|| ˆFRRIi − FRRIi||22, (9)

• Averaged absolute error (AAE): AAE is calculated between the estimated value and
the ground truth value of FHR, which is calculated as follows:

AAE =
1
Γ

Γ

∑
i=1

|| ˆFHRi − FHRi||

=
1
Γ

Γ

∑
i=1

|| 60 · Fs
ˆFRRIi

− 60 · Fs

FRRIi
||,

(10)

• Coverage: Since some rough FRRI estimates may be removed based on the results of
the SQA, the ratio of reserved FRRI estimates to all FRRI estimates is a critical indicator
of whether as many FRRI estimates as possible have been retained.

We compared these performance metrics in the following five scenarios:
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• Use the method proposed by Valderrama et al. [7].
• FHR estimation only: We performed only two steps to obtain rough FRRI estimates,

including preprocessing and FRRI estimation (described in Sections 4.1 and 4.2).
• Remove unreliable FRRIs: We eliminate the unreliable rough FRRIs if the correspond-

ing combined SQI is less than the 8th decile of all combined SQI values.
• Use conventional KF: A conventional KF with a fixed noise covariance metric was

applied to the rough FRRI estimates.
• Proposed method: The four steps described in Section 4 are all used to estimate and

refine FRRIs.

5.2. Experimental Results

The changing pattern of training loss throughout the training process of the FCN-
based VAE is illustrated in Figure 6. In this paper, our model operates as a reconstruction
model employing the principles of a VAE. The experimental results reveal a compelling
trajectory in the training loss throughout 100 epochs. From 1 to 100 epochs, the training
loss consistently decreases, underscoring the proficiency of the model in learning and cap-
turing intricate patterns within the dataset. As a reconstruction model based on VAE, this
observed reduction in loss attests to the success of the model in encoding and subsequently
reconstructing input data.

Figure 6. The training loss of the FCN-based VAE training process. The VAE neural network is
introduced in Section 4.3.

To demonstrate the performance of the combined SQI, inspired by [28], we defined a
normalized absolute error (NAE) calculated as Equation (11):

NAE =
|FRRIest − FRRItrue|

FRRItrue
, (11)

where FRRItrue and FRRIest represent the estimated FRRI and the ground truth of FRRI.
By establishing a threshold, we broadly categorize all integrated spectrum segments into
high-quality and low-quality. In our experiments, by manually observing low-quality
and high-quality segments using different thresholds, we selected the most appropriate
threshold of 0.03. It is important to note that the classification into high and low quality is
not based on expert annotations but rather roughly annotated based on the assumption
that “if the signal quality is low, the FRRI prediction is inaccurate”. Figure 7 illustrates
the combined SQI corresponding to high-quality and low-quality segments. Since the
number of low-quality segments is significantly less than that of high-quality segments, we
randomly selected an equivalent number of low-quality segments from high-quality signals
for illustration. From the figures, it is evident that the majority of combined SQI values for
high-quality segments are equal to or close to 1, while some low-quality segments exhibit
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considerably lower combined SQI values. Consequently, we can affirm that our proposed
combined SQI is effective in distinguishing between high-quality and low-quality signals.

Figure 7. The combined SQI values of the low- and high-quality integrated spectrum segments.

In Figure 8, we present an example of the pre-processed DUS signal segment, and the
combined SQI generated from this segment (20–25 s of subject 9). The figure illustrates the
presence of noise and relatively high amplitudes in both the filtered DUS signal and the
integrated spectrum within the time range of 22.5–23.5 s. Consequently, the estimated FRRI
based on such a signal segment is highly unreliable, leading to significantly lower composite
SQIs compared to the pre- and post-periods. This observation strongly suggests that the
combined SQI is closely associated with the quality level of the DUS signals. The figure
highlights the importance of signal quality assessment in accurately estimating the fetal heart
rate and emphasizes the role of the combined SQI as an indicator of DUS signal reliability.

Figure 8. The filtered DUS signal, the integrated spectrum, and the combined SQI values (from top to
bottom) of a 5 s signal segment (20 s–25 s of subject 9).

Table 1 and Figure 9 provide insights into the RMSE of FRRI, AAE of FHR, and
coverage in five scenarios. It is evident that without SQA, our FRRI estimation method
outperforms the method proposed by Valderrama et al. [7] for the majority of subjects.
However, there are a few exceptions (e.g., subjects 7 and 8) where our method may not
yield better results. The other three scenarios considered in the analysis also contribute to
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the reduction of estimation errors to varying extents. In the “Remove unreliable FRRIs”
scenario, the RMSE and AAE generally decrease, except for subjects 1, 4, and 10. However, it
is important to note that this scenario leads to a significant reduction in coverage, especially
for subject 9. In the “Use conventional KF” scenario, the FHR estimation errors are reduced
while maintaining 100% coverage. This is achieved by applying a conventional KF that
helps in smoothing out the rough FRRI estimates and handling sharp changes in the data.
Comparing all the scenarios, our proposed robust FHR estimation method demonstrates
the lowest RMSE and AAE. Additionally, our method maintains higher coverage for each
subject compared to the conventional approach of removing unreliable FRRIs, which is
commonly used for signal quality assessment tasks. Moreover, the experimental results
validate the effectiveness of our proposed technique in enhancing FHR prediction across
various scenarios. Notably, our method showcases significant improvements for recordings
encompassing a substantial proportion of low-quality data (e.g., subject 9), as well as for
recordings containing a smaller fraction of low-quality data (e.g., subject 1). These results
highlight the robustness of our approach, showcasing its ability to deliver reliable FHR
predictions across recordings with varying levels of data quality.

(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

(g) Subject 7 (h) Subject 8 (i) Subject 9

(j) Subject 10 (k) Average

Figure 9. Comparison of performances of five scenarios for each subject. S1: Use the method proposed
by Valderrama et al. [7]; S2: FHR estimation only; S3: Remove unreliable FRRIs; S4: Use conventional
KF; S5: Proposed method. RMSE of FRRI, AAE of FHR, and coverage for each subject and average
values are shown in this figure. In each sub-figure, the y-axis on the left corresponds to the values of
RMSE and MAE, and the one on the right corresponds to the values of coverage.
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Table 1. Comparison of performances of five scenarios: (1) Use the method proposed by
Valderrama et al. [7]; (2) FHR estimation only; (3) Remove unreliable FRRIs; (4) Use conventional KF;
(5) Proposed method. RMSE of FRRI, AAE of FHR, and coverage for each subject and average values
are shown in this table.

1 2 3 4 5 6 7 8 9 10 Average

Valderrama et al. [7]
RMSE [ms] 8.46 6.21 10.81 3.80 11.12 8.46 5.02 4.64 57.10 9.83 12.54
AAE [bpm] 1.98 1.51 2.54 0.90 1.34 1.80 1.11 1.04 10.79 2.09 2.51

Coverage (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

FHR estimation only
RMSE [ms] 6.20 6.30 7.26 3.58 10.83 6.48 5.52 5.03 32.36 6.78 9.03
AAE [bpm] 1.27 1.47 1.63 0.82 1.55 1.27 1.14 1.06 4.89 1.39 1.65

Coverage (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Remove
unreliable FRRIs

RMSE [ms] 6.22 6.27 7.25 3.62 9.42 6.43 5.06 4.50 12.62 6.90 6.83
AAE [bpm] 1.27 1.45 1.61 0.82 1.48 1.26 1.04 0.97 2.06 1.40 1.34

Coverage (%) 99.23 91.41 96.87 81.93 95.18 95.53 72.54 65.52 11.95 89.75 79.99

Use conventional KF
RMSE [ms] 4.42 4.12 5.15 1.64 9.96 3.40 3.07 2.49 27.77 3.87 6.59
AAE [bpm] 0.63 0.90 1.01 0.37 0.96 0.73 0.64 0.54 3.83 0.74 1.03

Coverage (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Proposed method
RMSE [ms] 4.35 3.97 5.00 1.62 9.95 3.31 3.07 2.41 9.22 3.75 4.67
AAE [bpm] 0.59 0.86 0.98 0.37 0.94 0.72 0.63 0.52 1.07 0.72 0.74

Coverage (%) 100.00 96.06 100.00 96.77 100.00 100.00 84.71 80.35 16.00 96.69 87.06

5.3. Limitation and Future Works

Several limitations still exist, although our proposed FHR estimation approach can
accurately estimate FHR from DUS signals and maintain robustness under different signal
qualities. To train VAE and SOM neural networks for the DUS SQA part, we use all signal
segments for training without a selection procedure. In fact, it is worth mentioning that
this strategy only works if the signal segments are mostly of high quality, in other words,
low-quality segments can be considered as outliers. If low-quality signal segments account
for more than 40% of a dataset, it is better to use some simple quality indicators to roughly
select high-quality data for training (e.g., entropy, skewness, or kurtosis). In addition,
we specifically developed and tested our methods using only one dataset consisting of a
small number of subjects, optimizing parameters for this dataset without retaining data
for validation, so it is not possible to verify that the developed algorithms would be
generalizable to the larger population of subjects studied. For our future work, some larger
datasets are needed to further verify the robustness.

6. Conclusions

We present a robust DUS-based FHR estimation method assisted by DUS SQA based on
unsupervised representation learning. By using STFT to generate integrated spectrum data,
information on DUS signals in both time and frequency domains is extracted simultaneously.
To achieve accurate FRRI estimation, we employ two ACF calculations on the integrated
spectrum data. The first ACF is utilized for approximate FRRI estimation and window
resizing, while the second ACF provides a more precise FRRI estimation. The length of
the FRRI estimation window is adjusted based on the previously estimated FRRI, enabling
adaptability to varying heart rates. In addition, we propose a DUS SQA method that uses an
FCN-based VAE to obtain learning representations and a SOM neural network for combined
SQI generation. The combined SQI is used to modify the measurement noise covariance, and
a KF is then used to refine the FRRIs estimated from low-quality signals. Through extensive
experiments, we demonstrate the superiority of our proposed approach in terms of accuracy
and robustness for DUS-based FHR estimation, surpassing conventional methods. Moreover,
our SQA approach can be extended to address various SQA challenges involving different
types of signals, as it is built entirely on unsupervised learning techniques.
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