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Abstract: The development of spectral sensors (SSs) capable of retrieving spectral information have
opened new opportunities to improve several environmental and agricultural practices, e.g., crop
breeding, plant phenotyping, land use monitoring, and crop classification. The SSs are classified
as multispectral and hyperspectral (HS) based on the number of the spectral bands resolved and
sampled during data acquisition. Large-scale applications of the HS remain limited due to the cost
of this type of technology and the technical difficulties in hyperspectral data processing. Low-cost
portable hyperspectral cameras (PHCs) have been progressively developed; however, critical aspects
associated with data acquisition and processing, such as the presence of spectral discontinuities,
signal jumps, and a high level of background noise, were reported. The aim of this work was to
analyze and improve the hyperspectral output of a PHC Senop HSC-2 device by developing a general
use methodology. Several signal gaps were identified as falls and jumps across the spectral signatures
near 513, 650, and 930 nm, while the dark current signal magnitude and variability associated with
instrumental noise showed an increasing trend over time. A data correction pipeline was successfully
developed and tested, leading to 99% and 74% reductions in radiance signal jumps identified at 650
and 830 nm, respectively, while the impact of noise on the acquired signal was assessed to be in
the range of 10% to 15%. The developed methodology can be effectively applied to other low-cost
hyperspectral cameras.

Keywords: hyperspectral sensors; hyperspectral output optimization; precision agriculture; plant
phenotyping

1. Introduction

Improving the detection and monitoring of ecosystem conditions is a critical issue as
the Earth’s biodiversity loss due to human activities is accelerating at an unprecedented
rate [1,2]. Recent advantages in data processing and data mining, simultaneously with the
development of spectral sensors (SSs) capable of retrieving spectral information from the
Earth’s biosphere using the electromagnetic radiation reflected by a terrestrial target, have
opened new opportunities in environmental monitoring. Several ecological variables and
ecosystem traits have been successfully retrieved from SSs installed on satellite or airborne
platforms, e.g., the productivity of forest ecosystems, specific plant traits of crops, and the
health status of marine ecosystems [3-5]. Advances in precision agriculture techniques
have demonstrated how analyzing the spectral information in the electromagnetic spectrum
can be a valuable tool to monitor the growth and health status of crops and agricultural
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products [6]. The SSs have been applied to agricultural production to improve the efficiency
of processes during all supply chain operations, such as monitoring leaf water content
during crop growth in the field and the quality control process during the post-harvest
phases [7,8]. The application of SSs in agriculture field have permitted improvements in
several agricultural practices, e.g., crop breeding and phenotyping in high-throughput
phenotyping application [9], agricultural land use monitoring and crops classification from
satellites or airborne platforms [10,11], cereal yield forecasting [12], and ecosystem services
focused on soil and water resources or losses in biodiversity [13]. The SSs are classified
as multispectral (MS) and hyperspectral (HS) based on the number of the spectral bands
resolved and samples in the same data acquisition, where the simultaneous acquisition of
more or less than fourteen spectral bands is considered as the conventional threshold [1,14].
The spectral range suitable for MS and HS instruments is usually classified into several
spectral regions, including the visible light spectrum (VIS) characterized by a spectral range
from 350 to 700 nm, the near-infrared (NIR) light spectrum ranging from 700 to 1100 nm,
and the infrared-shortwave (SWIR) light spectrum highlighted by a light spectrum ranging
from 1200 to 2500 nm [14]. SSs are divided in spectrometers and imaging spectrometers.
Spectrometers are generally composed of an optical fiber to collect electromagnetic radiation
from a defined area, returning a single spectral signature. Imaging spectrometers collect
data with a “push broom” line-scan able to compose an image with the movement of the
sensor (on aircraft or UAV) or the movement of the target (on industrial conveyor belts)
or a “snapshot” approach when an image of n x n pixels is acquired simultaneously [15].
Hyperspectral imaging technologies based on a snapshot sensor consist of an imaging
detector that collects an image composed of a specific number of pixels and a defined
number of spectral bands. A hyperspectral image (HI) is the result of the acquisition, and
each pixel is composed of the spectral information for each band selected [15,16]. The
spectral information is expressed in digital counts (DCs), which are also called counts;
as a digital unit; or in radiance (mW-nm~!-sr~!-m~2) *as a measure of the intensity of
the electromagnetic radiation for a defined area [17]. The data obtained are structured in
a 3-dimensional hyperspectral data cube, also described as a hypercube (HC). Here, the
image size is the optical resolution of the hyperspectral camera expressed in megapixels
(MP) [18], and the spectral resolution is the sampling rate and bandwidth in which the
sensor collects the information about the target [19].

HS applications in agricultural activities typically consist of the elaboration of veg-
etation indices (Vis) obtained by spectral vegetation reflectance, as the the widely used
normalized difference vegetation index (NDVI) based on the ratio between red and near-
infrared spectral bands [17]. In recent years, several Vis were elaborated and tested to
retrieve multiple biochemical parameters, e.g., chlorophyll content, anthocyanins, pig-
ments, and carotenoids, and to monitor biotic and abiotic stress during the crop’s life
cycle [20,21]. Therefore, the HS application has progressively become a very interesting
tool to acquire data from a broad spatial scale within short intervals of time; remote sensing
application are still mostly related to scientific research with some industrial applications,
e.g., the production of intelligent farming apps for farmers aimed to provide support for
the use of fertilizers, the volume of the irrigation supply, and the characterization of land
covers [22-25]. Nevertheless, the large-scale uses of HS remain limited due to the cost of
this type of technology and the technical difficulties in hyperspectral data processing [26].

Since the early 2000s, a new generation of low-cost portable hyperspectral cameras
(PHCs) has been progressively developed, increasing the possibilities of deploying applica-
tions and developing products given their minor cost, higher versatility, and easiness of
application with respect the hyperspectral technologies installed on satellite or airborne
platforms and their ability to acquire data with a super-high-spatial resolution (e.g., centi-
metric or sub-centimetric level) [26-28]. Indeed, PHCs can be installed on a ground-based
platform or on an Unmanned Aerial Vehicle (UAV) permitting the acquisition of hyperspec-
tral data at narrow temporal acquisition intervals on a defined area [28,29]. The low-cost
devices reported the following characteristics. PHCs are composed of a frame detector
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to acquire spectral images into a specific field of view (FOV) expressed in degrees, which
defines the spatial resolution of the instrument [27,30]. The spectral resolution is calcu-
lated by the full width at half maximum (FWHM) of the spectral sensor, where FWHM
is defined as the width of a spectral band below which the signal would overlap [31].
Imaging chip technology commonly found in the PHCs are charged coupled devices (CCD)
and complementary metal oxide semiconductors (CMOS). Both sensor types allow the
acquisition of a million pixels in a single image with high spectral and spatial resolution.
Nevertheless, CMOS sensors show higher sensitivity and low power consumption but also
higher background noise and dark current [32]. The PHCs collect images using the natural
light, and the imaging system cannot function in a dark or low-light environment [33].
Despite the technological developments of the low-cost PHCs, critical aspects are reported
during acquisition and data processing, such as the long instrumental warm-up time, the
presence of spectral discontinuities in correspondence of the spectral border region of dif-
ferent CMOS sensors, signal jumps, and high levels of background noise. The unavoidable
limitations due to the low cost cannot be resolved with technology; thus, it is crucial to
reduce them with careful and optimized data processing and sensor operation [34-36].

In this work, the low-cost PHC Senop HSC-2 (HSC-2) and the Ocean Optics USB 2000
reference spectrometer with a VIS/NIR spectral range were used to collect hyperspectral
data on a white reference and a vegetation target during multiple acquisitions conducted
under controlled conditions during a phenotyping experiment. The spectral outputs
obtained using the PHC and the spectrometer were used to develop a novel data processing
pipeline capable of improving the PHC data quality and calibrated spectral radiances.
Subsequently, critical issues associated with the PHC, such as spectral signal jumps, dark
current magnitude and temporal variability, dark current noise level and noise impact
on the radiometric signal, and measurement limits due to the loss of sensitivity by the
CMOS sensors, were analyzed and discussed. The correction methodology proposed here
is suitable for use on other types of PHCs affected by similar issues and for applications
other than plant phenotyping.

2. Materials and Methods
2.1. Experimental Activities

The work activities were conducted during the years 2020 and 2021 at CNR (National
Research Council of Italy) in the facilities of Florence and Follonica (Italy) as well as ALSIA
(Agenzia Lucana di Sviluppo ed Innovazione in Agricoltura, S.S. Jonica Km 448,2, 75012
Metaponto MT, Italy), a node of the European Plant Phenotyping Network (EPPN) (https:
/ /emphasis.plant-phenotyping.eu, accessed on 20 June 2023).The experimental activities,
consisting of the simultaneous hyperspectral acquisitions from a reference and vegetation
targets, were conducted using the HSC-2 and the USB 2000 reference spectrometer.

2.2. Hyperspectral Devices
2.2.1. Ocean Optics USB 2000 Reference Spectrometer

The USB 2000 (Ocean Insight, Rochester, NY, USA) is a portable spectrometer able
to collect continuous spectral information from a surface (Figure 1). The USB 2000 is
characterized by a spectral sampling interval ranging from 350 to 1000 nm with 0.2 nm of
spectral resolution. The spectrometer is based on a Sony ILX511 linear silicon CCD array
(Ocean Insight, Rochester, NY, USA).
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Figure 1. USB 2000 acquisition set. The electromagnetic radiations are collected using an optical fiber
(1) connected to the body of the spectrometer (2). The hyperspectral data can be visualized online
using the Ocean View software version 2.0.7 (3) (Ocean Insight, Rochester, NY, USA).

2.2.2. Hyperspectral Camera Senop HSC-2

The HSC-2 (Senop Oy, Kangasala, Finland) (Figure 2) is a hyperspectral device with
snapshot approach and a VIS/NIR spectral range already used in research activities,
e.g., the acquisition of high-resolution hyperspectral images acquired in flight by a UAV
platform [29,37], the assessments of plant health status through the detection of potassium
concentration on leaves [38], and the development of a pathological tissue database in
biomedical applications [39,40].

The hyperspectral data cube can be explored and converted in actual radiance
(mW-nm~!.sr~1-m~2) by means of gain values specific for each spectral band adopted
using the software Senop (version HSI-2 2019.04.10.1) HIS-2 provided by the manufacturer.
At the end of every acquisition, the derived HC was stored in a specific directory containing
the raw HC and the metadata necessary to handle the spectral information contained in the
HC, such as the gain values applied to convert the HC saved in DCs in the radiometric units,
the FWHM for each band, and the sampled measurement bands. The general specification
for optics, image size, and spectral capability of the instrument are reported in Table 1.

2.3. Hyperspectral Correction Methodology

The hyperspectral correction methodology was specially designed and developed
(i) to take into account the background dark current signal generated by the HSC-2 and
(ii) to calculate the corrected correction factors (CF) to be applied to DCs obtained using
the HSC-2 and so resulting in corrected radiance values. The correction methodology was
developed using Matlab R2021a (MathWorks, Natick, USA), and the related algorithm is
called “ImportSenop”. The workflow of the correction methodology is reported in Figure 3.
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Figure 2. Hyperspectral camera HSC-2. The HSC-2 is a frame-based digital hyperspectral camera
equipped with a true global snapshot sensor that can collect the entire 3-dimensional data cube in a
single integration period (1). The operator can set several acquisition parameters, such as spectral
range and resolution, and exposure. The hyperspectral device has a total weight of 990 g, and it
can be installed on a tripod (2). The hyperspectral data, combined in a HC, are stored in an internal
memory of one terabyte size. The instrument can transfer the hyperspectral data through an ethernet
connection (3).

Table 1. Specifications of the HSC-2.

Optics Imaging Capability Spectral Capability
FOV 36.8 degrees.
Focus distance: 30 cm to oo, limited FOV Image frame size: 1024 x 1024 pixels. Wavelength area: from 400 to 1000 nm.

with less than 30 cm distances.

2.3.1. Inputs

The methodology requires three inputs: (1) The target signal in DC obtained with the
reference target using the hyperspectral camera HSC-2; (2) The dark current signal in DC
obtained using the HSC-2 in complete darkness conditions, which is obtained by covering
the HSC-2 optic; (3) The calibrated radiance obtained with the reference target using the
USB 2000. The spectral output of the USB 2000 was interpolated at the exact spectral bands
of the HSC-2 to consistent and comparable spectral signatures.

2.3.2. Process

The first operation of the pipeline is an automatic subtraction of the DC dark current
values from the DC target signal values (Figure 3) for each pixel and for each spectral band.

Subsequently, for each spectral band, the radiance value obtained using the USB 2000
was divided by the corresponding DC value measured by the HSC-2 to obtain the CF, which
is to be used in place of the original gain value reported in the header of the metadata
file generated for each HSC-2 snapshot. This operation is based on the MATLAB function
interpl. Subsequently, a 3-dimension signal filter working both in the spectral and spatial
domains was applied to the HC using the medfilt3 MATLAB function.
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Input Process Output

Target radiance
(TRS) BY
Senop HSC-2

Creation of new Hyperspectral
Dark current gain values data cube
radiance (DR) corrected
BY
Senop HSC-2

Target radiance
By
Ocean Optics
USB 2000

Figure 3. Workflow of the correction methodology.

2.3.3. Outputs

The result of the correction methodology is a set of CF values strictly related to the set
of adopted spectral bands and to the camera setup in terms of optic aperture and exposition
time. The output of the pipeline is a new hypercube composed of the corrected radiance
value for each spectral band. In addition, the function can be set to convert automatically
the radiance obtained in reflectance (Ref) as follows:

Ref = Rad/Rw (1)

where Rad is the radiance obtained using the target, and Rw is the radiance obtained using
the white reference target.

2.4. Hyperspectral Correction Methodology Test
2.4.1. Acquisition Setup

The efficiency of the correction methodology developed here was computed during an
acquisition test. The acquisition setup used during the test was composed of an acquisition
chamber (Figure 4) based on the LemnaTec Scanalzer 3D system (LemnaTec GmbH, Aachen,
Germany) [41]. A white Lambertian reference target with a 75% reflectance was placed in
the acquisition chamber in an orthogonal position compared to the light source. The light
source comprised 120 Osram GmbH halogen lamps with a maximum level variation of
2%. Every lamp produced a net power of 35 Watts. The USB 2000 was placed a few inches
from the reference at an angle of 45° to the reference target. During the acquisition process,
the HSC-2 was installed with a horizontal camera axis at 1.50 m from the white reference
target in a nadiral position with respect the target and light source. The exposure was set to
80 milliseconds for every spectral band. The HSC-2 underwent a warm-up time of 20 min
to stabilize thermal operating conditions.
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Figure 4. The acquisition chamber used in the experiment. In the image, the light source, the HSC-2,
and a vegetation target are visible in the background.

2.4.2. Dark Current Computation and Analysis

The HSC-2 instrumental background signal, also called dark current, was assessed
through multiple acquisitions conducted every 10 min for a total of 130 min, posing the
optic of the hyperspectral camera in complete darkness condition. After every dark current
acquisition, the optics dark enclosure was removed, and the white reference target was
immediately acquired. The dark current and reference signals were processed as the mean
value of the HSC-2 full spectrum, expressed in DC units. Finally, the dark current and
reference trends were compared to retrieve the impact of the dark current signal on the
total radiance in different conditions.

2.4.3. Calibration on a White Reference Target

The hyperspectral correction methodology was calibrated using the white reference
target previously described. The reference target was acquired using the HSC-2 and the
USB 2000 spectrometer. Subsequently, the trend of the radiance obtained using the USB 2000
was compared to the HSC-2 radiance computed using the radiance correction methodology
developed here.
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2.4.4. Dark Current and White Reference Noise Assessment

The radiometric signal noise level was estimated for the dark current and the white
reference target, representing the two extremes of null and full reflectivity, respectively. The
noise for selected spectral bands was computed as the variance of the frequency distribution
of the camera output in DC units, after subtracting the average. A Gaussian distribution was
fitted on the noise frequency distribution to assess whether it well represents experimental
data. The contribution to total noise measured on the white reference target was partitioned
into a component related to the dark current and a component related to the radiometric
signal itself, under the assumption of Gaussian noise distribution as follows:

2 2 2
OWHITE~ = ODARK” *+ ORAD ()

where owprre? and opark? are the variances measured on the white reference and dark
current signals, respectively, and ograp? is the variance of the radiometric signal computed
using the Equation (2).

2.4.5. Test on a Vegetation Target

The proposed correction methodology was finally tested on a vegetation target. A
maize plant was positioned in the acquisition chamber using the acquisition setup previ-
ously described. The hyperspectral camera was set to its maximum spectral range from 400
to 1000 nm for a total of 203 spectral bands.

The acquired hyperspectral dataset was post-processed to obtain three outputs:

i  The hypercube computed in DC units.
ii ~ The HC converted in radiance units, using the original gain values reported in the
HSC-2 header file.
iii ~ The HC computed in radiance units obtained using the novel CF after dark current correction.

Finally, the results obtained using the three different processes were compared and discussed.

3. Results and Discussions
3.1. Dark Current Assessment

The dark current average value (Figure 5) constantly increases for the first 90 min
of the acquisition, showing a stabilization at a value that is approximately double the
initial dark current value. Indeed, at the start of the experiment a mean dark value near
3000 digital counts was registered. At the end of the experiment, a dark value near
7000 digital counts was registered highlighting the presence of a relatively long warm-
up phase. Variable warm-up times were reported for other hyperspectral cameras, e.g.,
Zhu et al. [35] reported 30 min as sufficient warm-up time for the “GaiaSorter” I system
produced by Zolix Co., Ltd. (Beijing, China). The dark current appears stable from 90 min
to the end of the experiment.

The spectral signature of the dark current was computed, and the results registered at
20 and 130 min from the beginning of the experiment are reported in Figure 6.

The spectral signature shows a pattern clustered on three spectral regions (from 400
to 513 nm, from 513 to 650 nm, and from 650 to 1000 nm, separately) divided by two
spectral jumps at 513 and 650 nm. The three regions and the associated signal jumps
are likely related to the presence of two spectral detectors that the camera contains. The
spectral regions from 400 to 513 nm and 650 to 1000 nm show a mean of 2000 and more
than threefold (6900 digital counts) for the 20 and 130 min measurements, respectively. In
both the intervals, the measured standard deviation was higher at 130 min than at 20 min,
and the related coefficient of variations (standard deviation/mean value) were 12.5% and
7.2%, respectively. A similar behavior was observed within the spectral region from 513 to
650 nm with a mean value near 3100 and 9300 digital counts at 20 and 130 min, respectively.
Again, the related coefficients of variation were 12.5% and 7.2%, respectively. To assess the
possible presence of dark current spatial patterns on the detector, the HI obtained from the
three spectral regions defined above is reported in Figure 7.
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Figure 5. Mean of the dark current values expressed in DC (counts) units for a sample area
(100 x 100 pixels) for a total of 203 spectral bands from 400 to 1000 nm. The values were obtained
from a time ranging from 20 to 130 min. The first 20 min were dedicated to the instrument warm-up,
and the data were not reported. The standard deviations of the spectral data cube are reported as
error bars.
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Figure 6. Example of the dark current HSC-2 spectral signatures obtained at 20 and 130 min. Each
spectral signature (reported in DC) for each spectral band is the mean of data from 1024 x 1024 pixels
(HSC-2 full spatial resolution). The standard deviation of the image acquired in each spectral band is
reported as shaded area.



Sensors 2023, 23, 9685

10 0of 18

(a)

100

200

300

400

500

pixel

600

700

800

900

1000

470 nm (b) 600 nm (c) 800 nm

400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

11,000

100 100 10,000

200 200 9000

300 300 8000

400 400 7000

500 500

6000

600 5000

700 700

4000

800 800

3000

900 900

2000

1000 1000

1000

pixel

Figure 7. HIs obtained using a dark current acquisition collected after 20 min from the start of the
experiment. The HIs were acquired from the three spectral regions at 470 (a), 600 (b), and 800 nm (c).
The HIs were obtained with 1024 x 1024 pixel size (HSC-2 full spatial resolution), and each pixel
shows a DC level evidenced by the color bar.

Results show differences between Hls regarding sharpness, uniformity, and back-
ground noise level. Subfigure b shows lower DC values and lower uniformity of the pixel’s
DC values than subfigures a and c in agreement with results obtained in Figure 6. Figure 7b
shows higher levels of background noise than Figure 7a,c reporting image discontinuities
highlighted by vertical stripes. The Hls obtained at 470 and 800 nm (Figure 7a,c) show
higher image sharpness and uniformity compared to the HI at 600 nm. The HI at 470 nm
(Figure 7a) shows a decrease in the DC level from the left to the right side of the image
(from light blue to dark blue). Generally, the HI at 800 nm appears more uniform than
the HIs at 470 and 600 nm. The lower image uniformity in the edge spectral regions and
the spectral jumps at 513 and 650 nm could be interpreted as an effect of the presence of
different CMOS sensors, affecting the acquisition of sharpness HlIs in the edge spectral
regions [33].

A white reference target was acquired simultaneously with the dark current acquisi-
tions, and results are shown in Figure 8.

The DC values obtained using a white reference target constantly increased for the
first 90 min of the acquisition, according to the results obtained in dark condition. Indeed,
from 20 to 90 min, a progressive increase in the magnitude of the DC values was reported.
The similar trend between Figures 5 and 8 is due to the effect of the dark current signal on
the total signal; therefore, considering the dark current trend and its temporal dynamic
during the warm-up phase is essential to obtain a clean spectral signal [34,35]. Our results
reveal an increasing dark current signal with time during the warm-up phase following the
camera switch on, until a stabilization is reached after about 90 min. Although specific to
the camera model object of this study, this pattern is likely characteristic of similar sensors
that do not implement a robust detector cooling system or a thermal stabilization hardware.
In terms of operational guidelines, on the one hand, using the camera in the initial phase
when its temperature is still relatively low would result in a lower dark current signal.
On the other hand, this condition would imply dealing with a dark current signal that is
highly unstable and increasing over time. Performing the acquisition after thermal stability
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is reached would instead result in a large but stable dark current signal to be managed.
Moreover, our results showed how the dark current changes its value for each pixel and
wavelength and must be processed on a pixel-by-pixel basis. Therefore, dark current
acquisition and subtraction from the target image is always recommended. However, for
warm-up times less than 90 min, it must be frequently repeated, considering the rapid
changes in the dark current values associated with the increasing temperature.

x10*

Counts [DC]
N = [} [e}
T T T T

w
T

26

24

1 1 1 1 1 1 1 1

20

30 40 50 60 70 80 90 100 110 120 130
Time [min]

Figure 8. Mean of the white reference target expressed in DC (counts) units for a region of interest
(ROI) of 100 x 100 pixels in size for a total of 203 spectral bands from 400 to 1000 nm. The ROI was
the same as that noted in Figure 5. The standard deviation is reported as error bars.

Noise Assessment

The noise level of the dark current signal and the white reference signal, computed at
the same three selected wavelengths as noted in Figures 6 and 7, was reported in Figure 9
as frequency distribution of the DC counts. The figure shows that overall the distributions
are well represented by a Gaussian law at all wavelengths for the white reference and at
600 and 800 nm for the dark current; however, it is skewed toward the right-end tail at a
wavelength of 400 nm (Figure 9a). The assumption of a Gaussian distribution could overall
be adopted to estimate noise level as the variance of the distribution and compute the noise
contribution of the dark signal on the total acquired signal using Equation (2). During the
warm-up, the variance of the dark current signal, representing its noise level, increased
with the same pattern as the signal itself, representing about 15% of the signal (Figure 5).
Over the white reference target, such a level decreased to about 10% of the signal (Figure 8).
By inverting the error propagation from the dark and white measurements under the
assumption of a Gaussian noise distribution using Equation (2), we estimated that the noise
OWHITE affecting the white reference signal after the stabilization is reached (e.g., 120 min)
with 10.7% originating from the dark current noise op ARk and the remaining 89.3% from
the radiometric signal noise ograp?, representing the noise associated with the radiometric
signal conversion and processing. On intermediate reflective targets that are commonly
encountered, we can therefore expect a total noise impact on the raw DC signal within this
range of 10% to 15%, stable across spectral bands as highlighted in Figure 6.
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Figure 9. DC frequency distributions of the dark current ((a,c,e) panels, entire data image) and white
reference (b,d,f) panels, 100 x 100 region corresponding to the reflective target) at the three spectral
bands: 470 nm (a,b), 600 nm (c,d), and 800 nm (e,f). A Gaussian law was fitted to each distribution
(red curve).

3.2. Hyperspectral Correction Methodology Application
3.2.1. Application of the Hyperspectral Correction Methodology on a White
Reference Target

The light reflected by the white reference target was acquired using the HSC-2 and
the USB 2000 spectroradiometer. The respective radiances were computed both using the
original gain values and the new gain values obtained using the CF procedure described
below (Figure 10).
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Figure 10. USB 2000 and HSC-2 spectral radiances (mW-nm~!-sr~1.m~2) obtained with the standard
gain values for HSC-2 (a) and with gain values obtained using the CF procedure (b). The spectral
data were obtained in a spectral range from 450 to 950 nm.

The USB 2000 and the HSC-2 radiances before the application of the CF showed
differences in trend and magnitude. The light spectrum obtained using the USB 2000 ap-
pears linear and homogeneous, reproducing a halogen lamp’s characteristic light spectrum,
which shows a steady increase from VIS to NIR [42]. Instead, the radiance obtained using
the HSC-2 shows several magnitudes jumps at the same wavelengths where jumps in the
dark current signal were also detected. In the spectral region from 450 to 515 nm, the
HSC-2 radiance equals zero, which is in the spectral region from 920 to 950 nm (plot a, blue
radiance). This result is due to the gain values automatically generated by HSC-2, which
are equal to zero in the same spectral regions. Two radiance jumps are shown around
650 nm and 830 nm.

After applying the correction methodology, the HSC-2 radiance matches the USB 2000
radiance as a result of the calibration procedure (Figure 10b).

3.2.2. Application of the Hyperspectral Correction Methodology on a Vegetation Target

The correction methodology was tested on a vegetation target. Results are shown in
Figure 11.

The spectral results in DC units (plot a) showed signal stability in the spectral range
from 400 to 513 nm and above 930 nm, where DC values near 2.2 x 10* were reported. The
DC trend (Figure 11a) showed a signal negative jump of approximately 1.0 x 10* DC at
513 nm and a positive jump of approximately 0.6 x 10* DC at 630 nm. Signal jumps were
observed at 513, 650, 830, and 930 nm of approximately 1.0 x 10%, 0.6 x 10*, 0.4 x 10%, and
0.6 x 10* DC, respectively. These jumps are likely related to different CMOS sensors in the
VIS and NIR spectral range, highlighting one of the main limits of the low-cost PHC based
on CMOS technology [33,34,43].
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Figure 11. Three spectral signatures obtained using the same ROI (11 x 11 pixels, for a total of
121 pixels) chosen from a leaf in a nadiral position compared to the light source and the optic of the
HSC-2. The spectral signatures were reported as follows: (1) As DC (plot (a)) automatically generated
by HSC-2. (2) As radiance (mW-nm~1-sr~1.m~2) obtained using the gain values in the HSC-2 header
file (plot (b)). (3) As radiance (mW-nm~!.sr~1.m~2) obtained applying the novel CF (plot (c)). The
spectral data were acquired from 400 to 1000 nm, using the full spectral range of the HSC-2. Standard
deviation is reported.

The radiance results obtained using the gain value provided by the HSC-2 header file
are shown in plot b. The radiance values are equal to zero from 400 to 513 nm, and this
result is due to the gain values automatically generated by HSC-2, which are equal to zero
from 400 to 513 nm and 920 to 1000 nm, according to the results described in the previous
paragraph. The radiance results show a plateau in the spectral range from 513 to 650 nm
(plot b) before the slope increase in the red-edge spectral region, as described in plot a.
Generally, the spectral discontinuities highlighted in plot a are not reduced by radiance
conversion obtained using the gain values automatic generated in the header file.

The spectral results obtained by applying the novel CF are shown in plot c. The shape
of the spectral signal after the application of the CF showed an increase in slope in the
spectral region from 650 to 820 nm, in accordance with the well-known slope increase
in the red-edge spectral region on vegetation due to photochemical processes related to
chlorophyll light absorption [3,44]. The application of the CF resulted in nonzero radiance
values in the two spectral ranges from 400 to 513 and 920 to 1000 nm. The radiance trend
obtained by the application of the CF, compared to plot b, showed a peak near 500 nm
that corresponded with the pigment’s absorption spectral regions, in accordance with the
spectral leaf pigments analysis results (e.g., chlorophylls, carotenoids, and anthocyanins)
reported in the literature [45-47]. Nevertheless, the peak highlighted appears weak and not
very sharp, probably showing a measurement limit due to the CMOS VIS sensor previously
hidden by the gain value in the HSC-2 header file (imposed equal to zero). The application
of the CF allowed a clear spectral signal to be obtained due to a noise reduction compared
to the results shown in plot b. Indeed, the spectral signal has reported lower fluctuations
and more stability than the results obtained using the gain value generated by the header
file. Generally, the standard deviation in plot c is lower than that noted in plots a and
plot b, and the application of the CF has reported a reduction of the noise effects in the
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spectral signature compared to the results obtained using the gain values automatically
generated in the header file. Finally, the CF proposed here has significatively reduced the
radiance jumps due to the operation limits of the two CMOS sensors near 650 nm and
820 nm, improving the precision and reliability of the low-cost PHC tested here. Specifically,
while the spectral jumps at 513 and 930 nm could not be compared given that the factory
calibration did not provide spectral data before and after those bands (Figure 11b), the
jumps at 650 and 830 nm were reduced by factors of 99% and 74%, respectively (Figure 11c).

4. Conclusions

This work presents a novel methodology to improve the performance of a low-cost
PHC. The performances of the PHC HSC-2 were explored and tested through hyperspectral
acquisitions conducted on a white reference and a vegetation target under controlled
conditions of light and an acquisition set. The spectral results obtained using the HSC-2
were compared with the spectral results obtained using the USB 2000. Subsequently, a novel
hyperspectral correction methodology was successfully developed and tested. Therefore,
the conclusions of this study are as follows:

i Alow-cost PHC can be a powerful tool in hyperspectral applications. However, the
poor sensitivity of the two CMOS sensors in the margin’s sides of the VIS/NIR spectral
regions from 400 to 513 and 920 to 1000 nm contributed to reducing the performance
of the PHC. In addition, several signal gaps were identified as falls and jumps across
the spectral signatures near 513, 650, and 930 nm.

ii ~ The dark current signal magnitude increases over time. Therefore, the instrument’s
warm-up time must be considered, and applying an image correction based on frequent
dark current acquisitions is strongly recommended to obtain a clean spectral signal.

iii ~ The hyperspectral correction methodology developed in this work significantly im-
proves the qualities of the spectral output obtained using the PHC HSC-2. Indeed, the
radiance jumps and the signal noise were reduced, especially in the spectral region
from 650 to 830 nm.

This work can stimulate further studies to assess the proposed correction methodology
under different acquisition conditions and to investigate its sensitivity to parameter settings
and environmental conditions [48].

A framework for a sensitivity analysis to be performed on this and similar cameras
should be composed of the following;:

- Temperature static sensitivity: assess the variations of the method outputs (e.g., the
optimized set of band specific correction factors [CFs]) under a range of ambient
temperature conditions in a controlled environment, allowing the camera to stabilize
under each temperature condition;

- Temperature dynamic sensitivity: assess the variations in CFs under temperature
variations in a controlled environment, as temperature ramps that are likely to be
encountered in real applications;

- Stability: assess the variations in CFs by operating the camera in the same controlled
conditions at different times;

- Parameter sensitivity: assess the variations in calibrated spectral radiances related to
the variations in CFs obtained from the previous steps;

- These steps would permit estimations of the band-specific uncertainty of spectral
radiances and assessments of the temporal frequency at which updated CFs should
be computed. Additional studies are also recommended to test the methodology
on various spatial scales through field experiments conducted using fixed platforms
or UAVs and on different natural and artificial targets spanning from low to high
reflectivity. The results of this work can be applied to other areas of interest, such as
soil composition retrieval, material property detection, and biomedical applications,
and other low-cost hyperspectral cameras that may suffer from the same limitations.
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Abbreviations
Abbreviation Description
CCD Charged coupled devices
CF Correction factors
CMOS Complementary metal oxide semiconductors
DC Digital counts
FOV Field of view
FWHM Full width at half maximum
HC Hypercube
HI Hyperspectral image
HSC-2 Senop HSC-2
MP Megapixel
MS Multispectral
NDVI Normalized difference vegetation index
NIR Near-infrared
PHCs Portable hyperspectral cameras
SSs Spectral sensors
SWIR Shortwave infrared
UAV Unmanned aerial vehicle
VIS Visible light spectrum
VI Vegetation index
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