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Abstract: Contactless continuous blood pressure (BP) monitoring is of great significance for daily
healthcare. Radar-based continuous monitoring methods typically extract time-domain features
manually such as pulse transit time (PTT) to calculate the BP. However, breathing and slight body
movements usually distort the features extracted from pulse-wave signals, especially in long-term
continuous monitoring, and manually extracted features may have limited performance for BP
estimation. This article proposes a Transformer network for Radar-based Contactless Continuous
Blood Pressure monitoring (TRCCBP). A heartbeat signal-guided single-beat pulse wave extraction
method is designed to obtain pure pulse-wave signals. A transformer network-based blood pressure
estimation network is proposed to estimate BP, which utilizes convolutional layers with different
scales, a gated recurrent unit (GRU) to capture time-dependence in continuous radar signal and multi-
head attention modules to capture deep temporal domain characteristics. A radar signal dataset
captured in an indoor environment containing 31 persons and a real medical situation containing
five persons is set up to evaluate the performance of TRCCBP. Compared with the state-of-the-art
method, the average accuracy of diastolic blood pressure (DBP) and systolic blood pressure (SBP)
is 4.49 mmHg and 4.73 mmHg, improved by 12.36 mmHg and 8.80 mmHg, respectively. The
proposed TRCCBP source codes and radar signal dataset have been made open-source online for
further research.

Keywords: contactless continuous monitoring; blood pressure; IR-UWB radar; pulse wave; transformer

1. Introduction

Continuous blood pressure (BP) monitoring is of great significance for the prevention
of hypertension in healthcare applications. Besides the commonly used sphygmomanome-
ter that needs to apply relatively high pressure from the skin to local arteries, methods
based on biosensors have gained attention in academia [1]. Wearable sensors such as
photoplethysmography (PPG) have been researched to predict coronary artery diseases
(CADs) [2] and heart diseases [3]. Amjed S.Al Fahoum [2] used PPG signals and featured
selection-based classifiers to identify cardio-respiratory disorders based on the extraction
of time-domain features. Existing studies utilizing PPG rely on pulse transit time (PTT) or
pulse arrival time (PAT) for BP estimation [4,5]. However, these methods require attaching
sensors to the human body surface, which can cause discomfort to participants. Recent
advancements in remote photoplethysmography (rPPG) have opened up new possibilities
for contactless continuous BP measurement. rPPG is a technique that utilizes the specular
and diffused components of incident light, captured by optical devices, such as camera
sensors, to measure physiological signals. Several remote techniques have been developed
to estimate heart rate [6] or BP [7–9] from rPPG signals. However, these rPPG-based meth-
ods are highly sensitive to the lighting condition in environments and camera sensors may
have privacy-concerning issues, thus limiting their usage in daily healthcare applications.
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Compared to rPPG, a radar does not rely on lighting conditions and preserves privacy.
Moreover, a radar with a wide bandwidth, such as the Impulse Radio Ultra-WideBand
(IR-UWB) radar, is sensitive to micro cardiac and pulmonary motions such as respiration,
heartbeat and arterial pulse. Pulse wave resulting from arterial pulse has been exploited
to estimate blood pressure in recent years. Y. Ma [10] proved the relation between blood
pressure and pulse wave velocity for human arteries. H.U. Chuan [11] monitored the skin
vibrations and extracted pulse waves to estimate BP using electrode patches that attached
to the skin. Since arterial pulse waves introduce vibrations on the body surface that could
be carried on by a reflected radar signal, it is feasible to estimate BP using a radar. In recent
years, several radar-based BP measurement methods have been proposed. Z. Zheng [12]
estimated BP in a contactless manner with two continuous-wave (CW) radars. M. Kuwa-
hara [13] proposed a BP estimation method based on a Doppler radar and a piezoelectric
finger pulse sensor. M.-C Tang [14] detected wrist and chest movements using a CW radar.
In [15], PTT was extracted from the small displacement on the body surface induced by the
central aortic artery to estimate BP. T. Ohata [16] used a Doppler radar to obtain the cycle of
cardiac dilation and contraction for BP estimation. With the advancement of deep learning
technology, various methods automatically extract signal features through neural networks
to calculate blood pressure [17–19]. S. Ishizaka [20] obtained clean pulse waves strongly
correlated with PTT and BP using a deep learning model with long short-term memory
(LSTM). However, due to breathing and slight body movements, pulse waves are distorted
and have a low signal-to-noise ratio (SNR), especially in long-term continuous monitoring.
Extracting features directly from distorted pulse waves is challenging. Therefore, contact-
less BP measurement methods often require participants to lie on a bed or even hold their
breath, making continuous BP monitoring difficult.

In this article, a Transformer network for Radar-based Contactless Continuous
Blood Pressure monitoring (TRCCBP) is proposed, as shown in Figure 1. After signal
pre-processing, we select the column with the maximum energy in the radar matrix
as the vital signs signal. Then, we remove the interference of breathing and slight
body movements based on the consistency of heartbeats and pulses, and recover pulse-
wave signals using variational mode decomposition (VMD). Subsequently, we choose
single-beat pulse waves strongly correlated with the heartbeat signals as the input
for the transformer network-based blood pressure estimation network. The network
utilizes convolutional layers with different scales and a gated recurrent unit (GRU)
to capture time-dependence in continuous radar signals. The deep temporal domain
characteristics are captured through the multi-head attention module. Finally, extracted
features are mapped to BP using fully connected (FC) layers. We have conducted
experimental verification in two different scenarios: an indoor environment and a real
medical environment. Results from both scenarios demonstrate that TRCCBP achieves
high accuracy in blood pressure estimation and enables contactless continuous blood
pressure monitoring. The contributions of this work are as follows:

1. We present a heartbeat signal-guided single-beat pulse wave extraction method that
differs from existing denoising methods. It effectively extracts pure pulse-wave
signals and provides a basis for blood pressure estimation.

2. We propose a transformer-based blood pressure estimation network suitable for pro-
cessing continuous temporal radar signals. It can automatically capture appropriate
time-domain characteristics of radar signals and map them to BP.

3. We have established an IR-UWB radar signal dataset for blood pressure measurement
captured in an indoor environment and a real medical situation, which includes radar
signal data and corresponding BP values from 36 persons in total. The proposed
TRCCBP source codes and radar signal dataset are available at https://github.com/
bupt-uwb/TRCCBP (accessed on 11 October 2023).

https://github.com/bupt-uwb/TRCCBP
https://github.com/bupt-uwb/TRCCBP
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Figure 1. Flowchart of the proposed TRCCBP. The BP extraction method mainly consists of two
parts: radar signal processing and blood pressure estimation network. After signal preprocessing
and single-beat pulse wave extraction, the radar signal is denoised and the single-beat pulse wave is
extracted as the input into the proposed blood pressure estimation network. Eventually, the output
of TRCCBP is the estimated BP value extracted from the radar signal during a certain period of time.

The remainder of this article is organized as follows. Section 2 describes the methods
of TRCCBP. Section 3 presents the experimental setup and dataset. Section 4 presents
experimental results and analysis. Section 5 concludes the article.

2. The Proposed TRCCBP Method
2.1. Signal Model

The IR-UWB radar periodically transmits narrow impulse signals with a wide band-
width. The received signal can be expressed as the sum of the channel’s response and
variation caused by vital signs:

r(t, τ) = ∑
i

ai p(τ − τi) + av p(τ − τd(t)), (1)

where t is the pulse accumulative time, τ is the pulse sampling time, p(τ) is the transmitted
pulse, ai is the amplitude of each multipath component and av is the amplitude of the vital
signs. τi and τd denote the time delay in the process of signal transmission and reception,
and τd(t) =

2dc(t)
c .

The received radar data are stored in the form of matrix R[n, m] after sampling:

R[n, m]′ = r
(

nTs, mTf

)
− 1

M

M

∑
i

r
(

nTs, iTf

)
, (2)

where Ts and Tf are the sampling intervals in slow-time and fast-time, respectively. Each
row of matrix R represents the n-th received frame with M fast-time sampling points
(n = 1, 2, 3, . . . , N; m = 1, 2, 3, . . . , M). The signal propagation environment is static, and
the movements in the environment are caused by human activities. To distinguish the static
components of the radar signal from the dynamic components, the first step is to remove
the average value of the signal, also known as the DC offset, from the received signal.
This removes ambient static echoes that may interfere with the dynamic components of
the signal.

After subtracting the DC offset, the signal is then filtered with a band-pass filter that
matches the radar’s operating band, which is 6–8.5 GHz of the Novelda X4M03 IR-UWB
radar (NOVELDA Oslo in Oslo, Norway) in Section 3. The filter helps to remove additional
noise from the signal. To extract the human body signal from a raw data signal that may
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contain background noise and stationary clutter, the running average algorithm is used.
This algorithm helps to generate a clutter-suppressed signal by subtracting the estimated
clutter from the received raw data signal. The estimated clutter signal can be expressed as

C[n, m] = αC[n− 1, m] + (1− α)R[n, m]′, (3)

where C[n, m] denotes the estimated clutter signal at the n-th slow-time, and α is the gain
factor which can determine the renewing ratio of the clutter signal.

2.2. Heartbeat Signal-Guided Single-Beat Pulse Wave Extraction

In a static situation, the chest vibration resulting from heartbeat and breathing repre-
sents the primary source of energy. Consequently, the radar matrix identifies the column
with the highest energy as the vital signs signal. This signal comprises the pulse wave,
respiratory, and heartbeat signals, along with their corresponding harmonic waves and
slight movements interferences. VMD can decompose the mixed signal into several modal
signals with different frequencies [21], allowing for the separation of the pulse wave from
these modal signals. The objective is to solve the following constrained variational problem:

L({µk}, {ωk}, λ) = α ∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
× µk(t)

]
e−jωkt

∥∥∥∥2

2

+

∥∥∥∥∥ f (t)−∑
k

µk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−∑

k
µk(t)

〉
,

(4)

Here, µk represents the k-th modal signal, and ωk denotes its center frequency. δ(t) is
the Dirac function, ∂t is the partial differential to t, α is the quadratic penalty factor, λ is the
Lagrange multiplier operator and f (t) is the input signal. The normal heart rate range is
0.8–2 Hz; thus, the modal signal with a center frequency within this range is considered as
the heartbeat signal.

The aortic pulse wave has the same frequency as the heartbeat because it results
directly from the heartbeat. However, its intensity is relatively low compared with the
heartbeat signal, breath signal and other interferences. In order to obtain more character-
istics related to blood pressure, the modal signals corresponding to breath, slight body
movements and environmental noise derived from Equation (4) are removed from the vital
signs signal. The remaining modal signals are added and considered as the pulse-wave
signal. Considering that body movements and breathing correspond to modal signals
with large energy, and stationary environmental noise corresponds to signals with the
minimum energy, we arrange the decomposed signals from high to low energy in order
first. Supposing that the heartbeat signal is the n-th signal, the pulse-wave signal can be
expressed as

fp(t) =
m−1

∑
i=n

µi(t), (5)

where µi(t) is the sorted i-th modal signal, and m is the number of modal signals decom-
posed from the original radar signal by the VMD algorithm. The first to (n− 1)-th modal
signals are signals with large energy which could be considered as breaths or slight body
movements. The m-th signal is considered as environmental noise with lowest energy. The
example of final extracted pulse-wave signal fp(t) is shown in Figure 2, which shows clear
periodic characteristics.

In order to ensure the effectiveness of the extracted pulse-wave signal, we first slice
the pulse wave and heartbeat signal with a certain length into several one-period signals.
Specifically, we slice the pulse-wave signal based on the minimum points to obtain one
complete single-beat heartbeat signal. However, single-beat pulse wave from signals of
low SNR could be distorted severely and could not be utilized to estimate BP. Since the
single-beat heartbeat signal is highly relevant to the single-beat pulse-wave signal, we
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could select the pulse waves with a high fitting degree as the input of the neural network
by calculating the correlation coefficient between single-beat pulse waves and single-beat
heartbeat signals. The correlation coefficient is calculated as

r(gp, gh) =
Cov(gp, gh)√
Var[gp]Var[gh]

, (6)

where gp denotes the single-beat pulse-wave signal, gh denotes the single-beat heartbeat
signal, Cov(·) is covariance formula and Var[·] is variance formula. Only single-beat pulse-
wave signals with coefficients higher than a certain threshold could be reserved and others
were abandoned due to distortion. In this article, the threshold is empirically set as 0.6.

Figure 2. Heartbeat signal-guided single-beat pulse-wave extraction.

2.3. Transformer Network-Based Blood Pressure Estimation Network

The blood pressure estimation network architecture is shown in Figure 3. The net-
work is trained in batch with a scale of N. The input of the network is 1× 30 single-beat
pulse-wave vectors for N batches. A four-layer CNN is introduced to capture the hid-
den features in the single-beat pulse wave. The input is fed into two convolution layers
with different kernel sizes, which are 3 and 5, specifically. The small convolution kernel
has a limited receptive field and can be utilized to dig into local features, while a larger
convolution kernel has the ability to sense overall features. Each convolution layer is
succeeded by a convolution layer with a kernel of size 1 to improve the network depth.
The BatchNormalization (BN) layer is added before the activation layer ReLU to accelerate
the convergence rate and prevent gradient explosion. Max-pooling layers with a kernel
of size 2 are used to prevent over-fitting. The output features at two different scales are
concatenated and fed into a one-layer gate recurrent unit with 128 features to improve the
temporal expression ability.

Figure 3. The architecture of the transformer network-based blood pressure estimation network.
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Considering the insufficient effective information of the waves, the attention mech-
anism from the transformer network is adopted to assign appropriate weights to the
temporal signal. Compared with traditional manual feature extraction methods, the at-
tention mechanism effectively focuses on valuable features, enabling neural networks to
focus on their feature subsets. Multi-head attention is from the encoder module in the
transformer. It can capture the time-related information of features and is widely used
in machine translation, natural language processing and other fields. The problem of the
model excessively focusing its attention on its own position when encoding information
about the current position will be solved. The module is formed by the combination of sev-
eral self-attention layers. The significant parameters of the self-attention layer are matrices
Query (Q), Key (K) and Value (V). The three matrices are obtained by linear transformation
through the same input. Multi-head makes it possible to obtain information from different
representation sub-spaces at different positions. Each head is similar to the self-attention
layer. Then, the multi-head attention concatenates all the heads and obtains the output
through a linear transformation. It can be expressed as

headi = Score(Qi, Ki)Vi = softmax
(

QKT
√

dk

)
Vi

Multi-head(Q, K, V) = Concat(head1, . . . , headn)Wo
(7)

where dk is the column number of Q. The final output is obtained by multiplying the score
matrix and V. Wo is a weight matrix which is used for linear transformation.

Finally, through two FC layers, the BP value for the corresponding period of time is
estimated in the form of a vector with two elements, which are SBP and DBP.

3. Experimental Setting and Dataset

In the experiments, a commercial IR-UWB radar (X4M03, Novelda Inc., Oslo,
Norway) is used to collect data in the real-world scenario. The transmitting antenna
transmits short Gaussian pulses with a 7.29 GHz center frequency and a 1.4 GHz band-
width. The sampling frequency is 23.328 GHz, which determines the sampling interval
as 0.0064 m. Considering the amount of training samples and the actual situation, the
number of received frames per second is set as 20 and the detection range is set as
0.2–3 m. For references, aN FDA-approved sphygmomanometer is utilized to collect
blood pressure as the ground-truth value.

The experiments are conducted in two environments. The first environment is an
indoor environment, as shown in Figure 4a. The indoor environment dataset was collected
from 31 participants marked as ID 1 to 31. The physical conditions of these participants
are summarized in Table 1. At one point in the data collection, they were required to sit
still with their chests facing the radar placed 60 cm away. The sphygmomanometer was
installed on the participant’s left arm and collected blood pressure values simultaneously.
Radar signals of 30 s together with the corresponding blood pressure value were recorded
during the time of collection. In order to demonstrate the applicability of TRCCBP in
different physical situations, three scenarios were designed:

A. Relaxation: The participant was asked to breathe regularly during 30 s for data
collection.

B. Apnea: During 30 s for data collection, the participant was asked to hold their breath
for 10 s, then breathe regularly for 10 s and hold their breath again for 10 s.

C. Post-exercise: Before data collection, the participant was asked to run for 30 s to
produce a hypertension state and then breathe rapidly during 30 s for data collection.
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Table 1. Physical conditions of participants.

Demographics
Gender Age

Height

(cm)

Weight

(kg)

Male Female >24 ≤24 >175 ≤175 >70 ≤70

Num 20 11 10 21 16 15 18 13

(a) (b)

Figure 4. The experimental environment. (a) The indoor environment. (b) The stationary ambulance
medical environment.

For participants whose IDs were from 1 to 11, they were asked to collect data in
scenario A 30 times. For participants whose IDs were from 12 to 31, they were asked to
collect data in scenario A 10 times, scenario B for 10 times and scenario C for 10 times.
Based on the description in Section 2.2, we select a total of 27,679 effective single-beat
pulse waves with a correlation coefficient higher than 0.6, accounting for 80.3% of the
total. Considering that one single-beat pulse-wave cycle is typically no more than
1.5 s, which corresponds to 30 slow-time sampling points, we fill zero values at the
end of each pulse-wave signal sequence to scrape 30 slow-time sampling points, and
standardize pulse waves with the absolute maximum value of all valid pulse-wave data
in three dataset as the input of the neural network. In the indoor dataset consisting of
31 individuals, we divide the data of 28 individuals (ID 1 to 28) as Dataset 1 into training
and testing sets with a ratio of 80%:20%. Additionally, we reserve the data from the
remaining three individuals (ID 29, 30, 31) as Dataset 2, whose data are not included in
the training set. In order to validate the blood pressure estimation ability of the TRCCBP
algorithm for people in the real medical environment, we also collect the data of five new
participants in a stationary ambulance (Dataset 3), as shown in Figure 4b. Each one was
asked to collect data in scenario A 30 times. The physical conditions of five participants
in this environment cannot be listed and their dataset cannot be open-source concerning
privacy issues, while the radar signal data can be used for research purposes in our article
after gaining permission. The data of Dataset 3 are also not included into the training set
to demonstrate the generalization performance of the propose TRCCBP when facing a
different environment.

Overall, a total of three datasets containing 36 persons in two environments were
collected to evaluate the performance of the proposed TRCCBP method.

The processing terminal is a desktop server equipped with Intel Core i9-10940X CPU
(main frequency 3.3 GHz, 28 cores), NVIDIA TITAN RTX graphics card (video memory
24 GB, 384 bit width, 32.62 TFLOPS for FP16 calculation) and 128 GB of running memory.
The Adam optimizer is selected for the network training with a initial learning rate of
1 × 104. We select the mean absolute error (MAE) as one of the evaluation indicators and
the accuracy of SBP and DBP are equally important in BP estimation. Therefore, L1 Loss
is selected as the loss function to calculate the average MAE of SBP and DBP between
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estimated BP values and their corresponding label. The batch size is set to 32 and the
number of training epochs is 50. Dataset 1 is divided into training set and testing set with a
ratio of 80%:20%. Variations in train loss and test loss on Dataset 1 over epochs are shown in
Figure 5. The training and testing losses remain overall steady from the 10th training epoch.
The lowest testing loss is 4.61 mmHg appearing in 21st epoch and the lowest training loss
is 4.52 mmHg appearing in 27th epoch, which only differ by 0.09 mmHg. This indicates
that the proposed TRCCBP network and the training setting could handle the over-fitting
issues well.

The results of the ablation experiments are shown in Table 2, which show the impor-
tance of CNN, GRU and multi-head attention for the blood pressure estimation network. It
can be concluded that each component of the TRCCBP algorithm has positive influences
on the overall performance.

Figure 5. The architecture of transformer network-based blood pressure estimation network.

Table 2. TRCCBP ablation experiments. A: TRCCBP, B: Using LSTM to replace GRU, C: Without
Multi-head attention, D: Without GRU, E: Without CNN.

Methods (MAE) A B C D E

SBP (mmHg) 4.73 5.19 6.49 6.96 8.05

DBP (mmHg) 4.49 4.82 5.21 5.54 6.43

4. Experimental Results and Analysis

In this article, MAE and standard deviation error (STD) are used as the evaluation
indicators. We select the average value of blood pressure estimated by the single-beat
pulse waves of each participant as the estimated blood pressure. The evaluation results
of the TRCCBP algorithm and method proposed by T.Ohata [16] based on three datasets
are shown in Table 3. In Dataset 1, the average MAE with the TRCCBP algorithm of DBP
is 4.49 mmHg, and that of SBP is 4.73 mmHg, which are 8.80 mmHg and 12.36 mmHg
better than T.Ohata’s method. The average STD with the TRCCBP algorithm of DBP is
5.25 mmHg, and that of SBP is 5.52 mmHg. In Dataset 2, the results are 5.88 mmHg,
5.97 mmHg, 6.12 mmHg and 6.31 mmHg, respectively, which are slightly worse than that of
Dataset 1 because the data in Dataset 2 are not included in the training set and the identities
of three participants are different from the remaining twenty-eight participants in Dataset
1.However, in Dataset 3, because the multipath interference caused by the metal wall in
the ambulance is relatively serious, the performance decreases, while the average MAE
value still maintains a relatively low level compared with T.Ohata’s corresponding results.
The results indicate that the TRCCBP algorithm can effectively predict BP for all of the
participants in two different environments without prominent losses in estimation accuracy.
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Table 3. Blood pressure estimation performance comparison on three datasets.

Dataset 1 Dataset 2 Dataset 3

Method TRCCBP T.Ohata TRCCBP T.Ohata TRCCBP T.Ohata

SBP(mmHg)
MAE 4.73 13.53 5.97 14.14 7.75 17.20

STD 5.52 12.64 6.31 13.82 6.40 15.20

DBP(mmHg)
MAE 4.49 16.85 5.88 15.97 6.85 11.88

STD 5.25 16.55 6.12 16.35 6.35 10.98

Figure 6a,b, respectively, represent the performance of blood pressure estimation for
each participant in Dataset 1 in the testing set and under different scenarios. The third
participant has the lowest MAE for SBP (2.99 mmHg), and the ninth participant has the
lowest MAE for DBP (3.05 mmHg). The fourth participant has the highest MAE for SBP
(8.37 mmHg), and this participant also has the highest MAE for DBP (6.25 mmHg), so it
is almost the same level as the fifth participant. This is mainly because the fourth and
fifth participants are two females with relatively weak body conditions compared to the
other participants. The SNRs of the reflected radar signals from them are much lower
than those of others. This indicates that a certain kind of vital sign signal amplification
algorithm should be considered in the future work. Moreover, it maintains a low MAE
(<5 mmHg) in the test set in all three scenarios. It can be seen that TRCCBP exhibits good
robustness in various states, including respiratory abnormalities (apnea) and hypertension
(post-exercise), which meets the standard requirements of the FDA’s AAMI for a medical
BP device.

(a)

(b)

Figure 6. TRCCBP performance on Dataset 1 for different individuals and different states. (a) The
MAE of TRCCBP blood pressure estimation for 28 participants. (b) The MAE of TRCCBP blood
pressure estimation for 3 states.
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For all the data in the test set, we use the Bland–Altman plot to judge the consistency of
TRCCBP and the sphygmomanometer measurement method. As shown in Figure 7, DBPr
and SBPr are ground-truth BP measured by a sphygmomanometer. DBPe and SBPe are
blood pressure estimated by TRCCBP. The abscissa represents the mean of blood pressure
from two methods. The ordinate represents the difference in blood pressure between
two methods. SD is the standard deviation. The area covered by the dotted line is 95%
limits of agreement. When most of the differences fall within the region and the mean
value is close to zero, it shows that the two methods have good consistency. According to
Figure 7, the TRCCBP algorithm and the measurement method by a sphygmomanometer
have good consistency.

(a) (b)

Figure 7. Bland-Altman plot of estimated blood pressure by TRCCBP. (a) DBP Bland–Altman plot.
(b) SBP Bland-Altman plot.

Figure 8 shows the results of the continuous monitoring of BP by TRCCBP for 30 min.
From the figure, we can observe that the participants’ deep breathing activities resulted
in changes in blood pressure (at the twentieth minute). Deep breathing causes a gradual
decrease in blood pressure from over a few minutes up to 25 min, which is consistent
with the changes depicted in the figure on predicted SBP and DBP, which all decrease over
the following few minutes. This indicates that TRCCBP has the potential for long-term
contactless continuous BP monitoring. However, the MAE of long-term BP monitoring is
relatively high. This is mainly because big body movements such as twists and turns of
the body lead to interference in the extracted signal of a single-beat heart, which should be
considered and optimized in the future work.

Figure 8. Blood pressure variations for 1 participant for 30 min.
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5. Conclusions

Contactless continuous blood pressure monitoring holds great significance for dis-
ease prevention in indoor healthcare applications. To address this challenge, this article
proposes a transformer network for radar-based contactless continuous blood pressure
monitoring named TRCCBP. The proposed approach involves pre-processing, vital sign
signal extraction, elimination of movement and respiratory interference and extraction
of the single-beat pulse-wave signal as input for the blood pressure estimation network.
The estimation network utilizes convolutional layers with different scales, a GRU mod-
ule and a multi-head attention module to extract deep time-domain features, which are
then mapped to blood pressure values through a fully connected layer. To evaluate the
proposed method, we have created a radar dataset comprising data from 36 individuals,
with the potential for future expansion into a large-scale dataset. The average MAE of the
TRCCBP algorithm for diastolic blood pressure estimation is 4.49 mmHg, and 4.74 mmHg
for systolic blood pressure. These results demonstrate the high accuracy and robustness
of TRCCBP in blood pressure estimation. It can be concluded from the results that the
proposed TRCCBP still faces difficulties when addressing persons of relatively low SNR
radar signal and changing environments. The proposed TRCCBP presents a promising
approach for contactless continuous blood pressure monitoring, and further advancements
can be achieved by expanding the dataset and exploring specific application scenarios.
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