
Citation: Hendry, D.; Rohl, A.L.;

Rasmussen, C.L.; Zabatiero, J.; Cliff,

D.P.; Smith, S.S.; Mackenzie, J.;

Pattinson, C.L.; Straker, L.; Campbell,

A. Objective Measurement of Posture

and Movement in Young Children

Using Wearable Sensors and

Customised Mathematical

Approaches: A Systematic Review.

Sensors 2023, 23, 9661. https://

doi.org/10.3390/s23249661

Academic Editors: Alberto Ranavolo

and Mariano Serrao

Received: 28 September 2023

Revised: 28 November 2023

Accepted: 4 December 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Objective Measurement of Posture and Movement in Young
Children Using Wearable Sensors and Customised
Mathematical Approaches: A Systematic Review
Danica Hendry 1,2, Andrew L. Rohl 2,3 , Charlotte Lund Rasmussen 1,2, Juliana Zabatiero 1,2 , Dylan P. Cliff 2,4,
Simon S. Smith 2,5 , Janelle Mackenzie 2,6 , Cassandra L. Pattinson 2,5, Leon Straker 1,2

and Amity Campbell 1,2,*

1 School of Allied Health, Curtin University, Perth, WA 6102, Australia; danica.hendry@curtin.edu.au (D.H.);
charlotte.rasmussen@curtin.edu.au (C.L.R.); juliana.zabatiero@curtin.edu.au (J.Z.);
l.straker@curtin.edu.au (L.S.)

2 ARC Centre of Excellence for the Digital Child, Brisbrane, ACT 2609, Australia;
andrew.rohl@curtin.edu.au (A.L.R.); dylanc@uow.edu.au (D.P.C.); simon.smith@uq.edu.au (S.S.S.);
janelle.mackenzie@qut.edu.au (J.M.); c.pattinson@uq.edu.au (C.L.P.)

3 School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University,
Perth, WA 6845, Australia

4 Early Start, School of Education, University of Wollongong, Keiraville, NSW 2522, Australia
5 Institute for Social Science Research, The University of Queensland, Brisbane, QLD 4006, Australia
6 School of Computer Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
* Correspondence: a.campbell@curtin.edu.au

Abstract: Given the importance of young children’s postures and movements to health and
development, robust objective measures are required to provide high-quality evidence. This study
aimed to systematically review the available evidence for objective measurement of young
(0–5 years) children’s posture and movement using machine learning and other algorithm methods on
accelerometer data. From 1663 papers, a total of 20 papers reporting on 18 studies met the inclusion
criteria. Papers were quality-assessed and data extracted and synthesised on sample, postures and
movements identified, sensors used, model development, and accuracy. A common limitation of
studies was a poor description of their sample data, yet over half scored adequate/good on their
overall study design quality assessment. There was great diversity in all aspects examined, with
evidence of increasing sophistication in approaches used over time. Model accuracy varied greatly,
but for a range of postures and movements, models developed on a reasonable-sized (n > 25) sample
were able to achieve an accuracy of >80%. Issues related to model development are discussed and
implications for future research outlined. The current evidence suggests the rapidly developing
field of machine learning has clear potential to enable the collection of high-quality evidence on the
postures and movements of young children.

Keywords: posture; movement; activity tracking; children; machine learning; review

1. Introduction

The first five years of a child’s life are characterised by substantial and rapid neu-
rophysiological development. An important aspect of development is the ability to as-
sume different postures and perform a range of movements. Infants typically develop
rapidly to be able to roll from supine to prone (~3–6 months), sit (~5–8 months), and crawl
(~6–11 months) [1]. Movement capacity continues to develop throughout the toddler to
preschooler phases of childhood, including learning to walk, then more dynamic and
challenging tasks like climbing stairs, running, and jumping. Achieving these posture
and movement abilities signals healthy development [2]. Failure or substantial delay in
developing these abilities hinders full participation in society [3] and may increase risks
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for physical and mental health issues, for example, by reducing the ability to be suffi-
ciently physically active [4]. There is therefore much interest from health and education
professionals and parents in measuring the posture and movement of young children
(0–5 years of age).

The most common method of measuring the quantity of a child’s posture and move-
ment in clinical and research settings is through subjective interview or a survey completed
by a child’s caregiver. However, these methods are known to be imprecise and biased [5].
Observation methods, either directly or from video, can be very accurate [6] and are the
current gold standard. However, these approaches are limited in only capturing what
a child does during the short period they are being observed/videoed, and a child may
modify their behaviour when they know they are under observation [7]. Additionally,
observational methods have a high human resource requirement, meaning population
surveillance is not practical. Objective yet low-burden methods that can measure postures
and movements over longer periods of time and in a child’s natural environment are
therefore desirable.

Small, wearable sensors known as accelerometers are commonly used to quantify
time spent at different physical activity intensities [8]. A recent systematic review con-
cluded that accelerometers and accompanying physical activity intensity software were
feasible for all-day assessment in children and can provide a good indication of the to-
tal amount of activity and temporal patterns of activity [8]. The commercially available
software often uses count-based algorithms that sum the data over pre-set time periods
(e.g., 15 s), and then uses thresholds to classify this data into different intensities of move-
ment, such as sedentary, light, moderate, or vigorous-intensity activity [9]. These algorithms
were established by comparing activity counts with gold standard energy expenditure
measures and have been found to be sufficiently accurate [9]. Studies utilising this tech-
nology have been pivotal in understanding the link between childhood physical activity
and health. However, categorising children’s movements into energy expenditure intensity
categories overlooks potentially important aspects of specific postures and movements
such as prone lying, sitting, standing, walking, and running [8]. For example, current
intensity-based measures typically are not able to differentiate sitting from standing, de-
spite these postures having different health implications [8]. Parents may also understand
posture- and movement-based messages (e.g., ‘tummy time’) better than intensity-based
measures (e.g., ‘moderate’ intensity). Thus, detailed information regarding the postures
and movements a child performs daily will help clarify links with health and development
outcomes, and refine policy, interventions, and public health messaging.

Accelerometry has also been the most frequently used hardware for posture and move-
ment tracking in children. However, a major challenge is to provide a software solution
that adequately recognises specific postures and movements. Traditionally, software was
developed to predict posture and movements from key features in the raw accelerometer
data, using mathematical approaches such as regression-based equations and thresholds.
Key features were selected based on knowledge of each posture and movement; for exam-
ple, the thigh is typically horizontal during sitting but vertical during standing. While these
relatively simple algorithm approaches have demonstrated activity recognition accuracy
often above 80% in adults, only limited postures and movements have been targeted [10].
Research using these approaches in young children (0–5 years old) is more limited, with
lower accuracies being suggested to be related to children spending more time in other
postures such as kneeling and crawling [11,12].

Recently, sophisticated machine learning computational approaches have evolved and
become more accessible. Machine learning is the overarching term used to define a branch
of artificial intelligence and is a rapidly advancing field [13]. When applied to wearable
sensor data such as accelerometers, the models are trained to learn from the data [13],
rather than follow simple rules based on human-defined key features. Machine learning
software algorithms have demonstrated reasonable accuracy (>80%) in the identification
of various postures and movements in adults [14]. There has been particular interest
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in applying machine learning to identify specific postures and movements in sporting
contexts [15] and daily activity monitoring for people with movement impairments [16].
Collectively, this research has shown that adult postures and movements can be identified
with reasonable accuracy (>80%) in a range of different contexts [14–16]. Whilst several
studies have focused on the accurate identification of postures and movements using
accelerometry data collected on young children, this information is yet to be synthesised.

Therefore, this systematic review aimed to answer the following research questions:

1. How has young children’s posture and movement been objectively classified and
measured using accelerometry and machine learning or other non-machine learning
algorithm-based methods?

2. What is the degree of accuracy of systems developed for the measurement of young
children’s posture and movement using machine learning models, or other non-
machine learning algorithm-based methods applied to accelerometry data?

2. Materials and Methods

This review was registered with Prospero (328600) and adheres to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for
systematic reviews.

2.1. Search Strategy

Six online databases (Medline, Pubmed, CINAHL, SCOPUS, EMBASE, and IEEE) were
systematically searched using terms related to the concepts of “accelerometer”, “postures
and movements”, “pre-school aged children”, and “machine learning”. See additional file
Table A1 for a sample search strategy. Searches were limited to the English language and
papers published since January 2010. The initial data base searches were completed in
October 2022.

2.2. Eligibility Criteria

To be included in this systematic review, studies needed to meet the following crite-
ria: to be published in a peer-review journal or conference proceedings; to use data from
accelerometers or inertial measurement units (IMUs) for machine learning model or algo-
rithm development; to use data processing and model development methods inclusive of
machine or deep learning algorithms and algorithm-based approaches for semi-automated
or automated posture and/or movement recognition; to have developed, validated, or
utilised machine learning models for the classification and measurement of posture and/or
movement; and to include data on children aged 0–5 years. Studies including typically
developing children or children with clinical diagnoses were included. Studies were ex-
cluded if they were protocol or review studies, and if they were studies that did not include
a posture or movement, for example, studies that were focused on the output of sleep time,
energy expenditure, or levels of physical activity intensity defined by thresholds or cut
points (e.g., moderate-intensity exercise).

2.3. Screening for Relevant Studies to Include in the Review

All retrieved papers were exported into Endnote (v20) and duplicates were removed.
Title and abstract screening was performed by two researchers (DH and LS) independently,
with assistance from “Research Screener version 1.0”, an artificial intelligence-based soft-
ware system that iteratively learns from screening decisions to reduce the need to review
irrelevant papers [17]. Any researcher disagreement on the eligibility of studies was re-
solved through discussion, without the need for escalation to a third reviewer. Following
title and abstract screening, full text screening of articles was completed independently by
the same two researchers.



Sensors 2023, 23, 9661 4 of 35

2.4. Quality Assessment of Individual Studies Included in the Review

Quality assessment for each paper was conducted by DH, LS, and ALR using the
COSMIN general recommendations for study design and criterion validity subscales [18].
These were modified slightly to fit the context and purpose of the study. For the general
recommendations regarding study design, items requiring a conceptual framework (#4) and
describing existing evidence (#6) were removed, as they were not necessarily representative
of the quality of a study in this area, and for the criterion validity items, continuous scores
(#4) and dichotomous scores (#5) were merged, as studies could appropriately use either
type of score. For each of the eight study design items and five criterion validity items,
each paper was scored ”good”, “adequate”, “doubtful”, “inadequate”, or “not applicable”
based on the information provided. The number of “good” and “adequate” ratings were
summed for each paper and item.

2.5. Data Extraction and Synthesis of Individual Studies Included in the Review

Twelve parameters were extracted and collated by DH, LS, ALR, AC, and CLR from
the full manuscripts identified for final review. The first five parameters were related to
study design and included participant details, study aims, sensor information, specific
postures and movements performed, and data collection methods. Participant details
included the number of participants, their age range, sex, whether they were from a clinical
population or typically developing, how they were recruited, and the country the study
was conducted in. Sensor information included the type of wearable movement sensor,
sampling rate, and sensor location on the body. The next four parameters were related to
classification model development methods and included whether papers had described a
machine learning approach or non-machine learning algorithm-based approach, window
details, feature extraction, and the specific machine learning algorithms used. The final
parameters were related to the accuracy of the classification model developed and included
the gold standard used for comparison, the validation approach used, and the overall
accuracy of the system. A final table compiled the accuracy of the various classification
models for each of the postures and movements assessed across all studies.

3. Results

An outline of the search results and study exclusions is provided in Figure 1. The
initial database search identified 1663 results, of which 20 papers, reporting on data
from 18 studies, met the inclusion criteria. Of these, 17 papers reported on the devel-
opment and evaluation of machine learning-based approaches applied to wearable move-
ment sensor data for the recognition of specific postures and movements in young chil-
dren. The remaining three papers reported on non-machine learning algorithm-based ap-
proaches for the recognition of specific postures and movements in young children [19–21].
Tables 1–6 provide characteristics of all the reviewed studies and are discussed in the
following sections. Within each table, papers are presented chronologically by year to
demonstrate the evolution of methodological approaches over time.

3.1. Quality Assessment

Table 1 provide detail of the quality assessment using the COSMIN guideline items
on study design. For the eight components of general recommendations for study design,
the total number of ‘good’ or ‘average’ ratings ranged from 1/8 to 8/8. Twelve out of 20
papers scored ≥7/8. The remaining eight papers scored ≤5/8. Papers most commonly
fell short in describing their sample (e.g., exclusion criteria, inclusion criteria, participant
recruitment, and whether the sample was representative of the population).
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Table 1. Quality assessment based on general recommendations for the design of a study.

Author, Date General Design Items Number of Good or Adequate
(out of 8)

1 2 3 4 5 6 7 8 9 10
Parkka, 2010 [21] A G A D A I I I 4
Boughorbel, 2011 [22] I A D D I I I I 1
Trost, 2012 [23] G G G G G A A G 8
Suzuki, 2012 [24] D A G G G I I I 4
Nam, 2013 [25] D A G G G I I I 4
Zhao, 2013 [26] A G G A A G I A 7
Goto, 2013 [27] A G G G G D I I 5
Hagenbuchner, 2015 [28] A G G G G G G A 8
Hegde, 2018 [29] G G G G A A I A 7
Trost, 2018 [30] A G G G G G G A 8
Hewitt, 2019 [19] G G A G G G G G 8
Li, 2019 [31] D A G G G I I I 4
Kwon, 2019 [32] A A D A A G G A 7
Ahmadi and Brooks, 2020 [33] A G NA NA I A G A 5
Ahmadi and Pavey, 2020 [34] A G G G A A G A 8
Airaksinen, 2020 [35] A G G G G G A I 7
Jun, 2020 [36] D I D G I I I A 2
Franchak, 2021 [37] G G G G G G G A 8
Airaksinen, 2022 [38] A G G A G G A A 8
Madej, 2022 [20] D G I I A D I I 2
Number of studies that scored G or A
(out of 20) 14 19 15 16 17 12 10 12

General design items: 1. Provide a clear research aim, including: (1) machine learning approach, sensor, population,
and specific postures and movements classified. 2. Provide a clear description of the postures and movements
to be measured. 3. Provide a clear description of the development approach for machine learning or algorithm
model, including a description of the target population for which the machine learning was developed. 4. This
criterion was not used in this review as it was related to the conceptual framework used to define the construct
measured, which was not necessary for posture and movement measured (greyed out). 5. Provide a clear
description of the structure of the final machine learning or algorithm model. 6. This criterion was not used in this
review as describing existing evidence on the quality of measures was not necessary for posture and movement
measurement (greyed out). 7. Provide a clear description of the intended context of use for the machine learning.
8. Provide a clear description of the inclusion and exclusion criteria for the sample (e.g., clinical condition or
typically developing) and characteristics (e.g., age, sex, country). 9. Provide a clear description of the method
used to recruit and select sample. 10. Describe whether the sample is representative of the target population for
use of the machine learning. Assessed: as good (G), adequate (A), doubtful (D), inadequate (I).

Table 2 provides the ratings of the COSMIN guideline items on criterion validity
quality assessment. For the five components of criterion validity, the total number of
‘good’ or ‘average’ ratings ranged from 1/5 to 5/5. A total of ten papers scored ≥3/5; the
remaining papers scored ≤2/5. Papers most commonly fell short in adequately describing
the gold standard used and in providing information about missing data.
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Table 2. Quality assessment based on criterion validity.

Author, Date Criterion Items Number of Good or Adequate (out of 5)
1 2 3 4 5 6

Parkka, 2010 [21] I I I G I 1
Boughorbel, 2011 [22] D I I G I 1
Trost, 2012 [23] I G I I I 1
Suzuki, 2012 [24] A I A I I 2
Nam, 2013 [25] D I A A I 2
Zhao, 2013 [26] A G G G I 4
Goto, 2013 [27] A A A I I 3
Hagenbuchner, 2015 [28] I A I G I 2
Hegde, 2018 [29] I A I G I 2
Trost, 2018 [30] I A I G I 2
Hewitt, 2019 [19] G G G G G 5
Li, 2019 [31] I A A G A 4
Kwon, 2019 [32] G G G I G 4
Ahmadi and Brookes, 2020 [33] G G G G I 4
Ahmadi and Pavey, 2020 [34] G G G G I 4
Airaksinen, 2020 [35] G G G G I 4
Jun, 2020 [36] A A G G I 4
Franchak, 2021 [37] G A G G G 5
Airaksinen, 2022 [38] G G G G G 5
Madej, 2022 [20] I I D I I 0
Number of studies that scored G or A
(out of 20) 11 15 13 15 5

Criterion validity items: 1. Describe whether the proposed criterion can be considered a reasonable ‘gold standard’.
2. Perform the analysis with an appropriate number of participants. 3. Use contemporaneous data collection for
machine learning data and ‘gold standard’. 4. This criterion (on just continuous scores) was combined with 5
(on just dichotomous scores) for this review as either continuous or dichotomous scores could be used. 5. For
continuous scores: calculate correlations or area under the receiver operating curve. For dichotomous scores:
determine sensitivity and specificity. 6. Report why data missing or not used. Assessed as: good (G), adequate
(A), doubtful (D), inadequate (I).

3.2. Study Design

Table 3 details characteristics of the study design for each paper reviewed.

3.2.1. Participants

Reviewed papers acquired data for model development and evaluation from 1 [22] to
100 [23] participants, with most papers (n = 14) having less than 25 participants. Most of
the papers included an even number of male and female participants. The age range varied
widely: eight papers included children under the age of 3 years, four papers included
children aged between 3–5 years [26,27,33,34], and the remaining 12 papers included
children over the age of 5 years or adults with a small set of children who fit the inclusion
criteria. Some of these only included one participant fitting the inclusion criteria or were
unclear in how many participants of each age were within the sample. Most papers did not
explicitly state whether children were typically developing; however, 17 papers appeared
to develop their models on data acquired from typically developing children without
clinical diagnoses. Of the three papers that included children with clinical diagnoses, one
included children with asthma [31], one included both typically developing children and
children with cerebral palsy [29], and one appeared to include children with unknown
clinical conditions, where the paper refers to “newborn’s physical condition and other
medical devices attached” [36].
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Table 3. Details of study design as reported in each paper.

Author, Date

Participants
(n, Age, Sex, Clinical or
Typically Developing
Population, How Recruited,
Country Where Study
Completed)

Study Aim

Sensor Information
(Number of Sensors (Company
Name), Hardware Type,
Hardware Specifications,
Sampling Rate, Sensor
Location)

Specific Postures and
Movements Identified

Data Collection Procedure and
Environment

Parkka,
2010 [21]

n = 7, 4–37 years old (one
4-year-old child), sex not
reported, clinical/TD not
reported, how recruited not
reported, Finland.

To evaluate an activity
recognition algorithm based on a
decision tree classifier to
automatically recognise physical
activities on a portable device
online, and a personalization
algorithm to assist in monitoring
an individual’s physical activity
habits.

4 sensors (Nokia). Hardware
included: 3D accelerometer,
sampled at 50 Hz, mounted on
bilateral ankles and wrists.

Six activities: lying, sitting,
standing, walking, bicycling,
running.

Standardised tasks; volunteers
performed 5 min of each activity,
no detail of data collection
environment.

Boughorbel,
2011 [22]

n = 1, 2 years old, sex not
reported, clinical/TD not
reported, how recruited not
reported, Netherlands.

To apply automatic recognition of
child activities with two targeted
applications: real-time automatic
recognition of acute child safety
(e.g., fall detection and stair
climbing) and long-term activity
recognition and logging to track
child development and prevent
child obesity.

1 sensor. Hardware included:
tri-axial accelerometer, tri-axial
gyroscope, air pressure, sampled
at 50 Hz, placed in back trouser
pocket.

Seven activities: walking, lying
down, running, climbing stairs,
falling, other.

Free play; 30 min total, indoors
“normal activity” suggesting
home environment.

Trost,
2012 [23]

n = 100, 5–15 years old, evenly
distributed across age range and
approximately equal male and
female (no specific details
reported), clinical/TD not
reported, how recruited not
reported, Australia.

To develop and test neural
networks to predict children’s
activity type and physical activity
energy expenditure.

1 sensor (Actigraph GT1M),
Hardware included: an
accelerometer, magnitude range
0.05–2.0 g. sampled at 30 Hz.
Indirect calorimetry using
Oxycon Mobile. Mounted on
waist at mid-axilla line at the
level of the iliac crest.

12 activities classified into five
distinct physical activity types:
sedentary (lying down,
handwriting, computer game);
walking (comfortable
overground walk, brisk
overground walk, brisk treadmill
walk); running (overground
run/jog); light-intensity
household activities or games
(floor sweep, laundry task, throw
and catch);
moderate-to-vigorous-intensity
games or sport (aerobic dance,
basketball).

Standardised tasks; Collected the
12 activity trials over two
laboratory visits scheduled in a
2-week period. Each activity trial
5 min, except lying down, which
was 10 min. Utilised 2 min of
data from middle of trial for each
activity for model development
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Table 3. Cont.

Author, Date

Participants
(n, Age, Sex, Clinical or Typically
Developing Population, How
Recruited, Country Where Study
Completed)

Study Aim

Sensor Information
(Number of Sensors (Company
Name), Hardware Type,
Hardware Specifications,
Sampling Rate, Sensor
Location)

Specific Postures and
Movements Identified

Data Collection Procedure and
Environment

Suzuki,
2012 [24]

n = 6, 3–5 years old, all female,
clinical/TD not reported, how
recruited not reported,
Japan.

To evaluate the accuracy of one arm
accelerometer for activity
recognition, the difference in
accuracy between child and adult,
and whether SOM has advantages
over other classifiers.

1 sensor (Angel band). Hardware
included: accelerometer, EMG,
temperature, RFID, microphone.
The accelerometer was a 3-axis
Wireless Tech sensor magnitude
range ±17 g, sampled at 100 Hz.
Mounted on upper arm.

Seven activities: standing,
walking, running, sitting,
sleeping (lying), climb up, and
climb down.

Standardised tasks, each activity
performed for at least 15 s. ~4 min
for each participant.
Unclear environment.

Nam,
2013 [25]

n = 3, 16–20 months old, all male, TD,
how recruited not reported, Korea.

To describe and evaluate an activity
recognition system using a single
3-axis accelerometer and a
barometric sensor worn on the
waist of the body.

1 sensor (SkyeModule M1-mini).
Hardware included: a 3-axis
accelerometer, one air pressure
sensor and one near-field sensor
RFID. Accelerometer magnitude
range, ±2 g, sampled at 95 Hz.
Mounted on the hip.

11 activities: wiggling, rolling,
standing still, standing up, sitting
down, walking, toddling,
crawling, climbing up, climbing
down, stopping.

Standardised tasks. Participant
performed 1–2 s trial for each of
11 activities. Single home living
room and kitchen environment.

Zhao,
2013 [26]

n = 69, 3–5 years old, ‘balanced age
and gender’, TD with 20% classified
as overweight/obese, recruitment
reported, USA.

To develop and compare
multinomial logistic regression and
SVM classification of physical
activities among preschool children
using triaxial accelerometry data.

1 sensor (ActiGraph GT3x+)
Hardware type: accelerometer,
magnitude range ±6 g, sampled
at 30 Hz. Mounted on right hip.

12 activities: Sleep, watch TV,
seated colouring at desk, seated
video games, seated floor
puzzles, play toy kitchen/blocks,
ball toss and quick walking,
standing active video game,
dance following video instructor,
aerobics following video
instructor, running in place on
game mat.
Reclassified into six activities:
sleep, rest reclining, quiet sitting
play, low active play standing,
moderately active play standing,
very active play standing.

Standardised tasks. Children wore
the sensor one full day
(9 a.m.–4 p.m.) and performed a
series of activities in a set order,
each for 10 min to 2 h duration
with some free-time light activities
in between.

Goto,
2013 [27]

n = 10, 3–5 years old, sex not stated,
clinical/TD not reported, recruited
via childcare centre, Japan.

To develop and evaluate a single
arm sensor and SOM system to
classify infant activities.

1 sensor (Wireless-T), Hardware:
3-axis accelerometer magnitude
range 17 g, sampled at 100 Hz.
Mounted on upper arm.

Seven activities subcategorised
into two classes: dynamic
activities (walking, running,
playing) and static activities
(sleeping, eating, hand
motion, sitting).

Duration not stated. Some
scenarios required of child e.g.,
sitting reading book and playing
a puzzle.
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Table 3. Cont.

Author, Date

Participants
(n, Age, Sex, Clinical or Typically
Developing Population, How
Recruited, Country Where Study
Completed)

Study Aim

Sensor Information
(Number of Sensors (Company
Name), Hardware Type,
Hardware Specifications,
Sampling Rate, Sensor
Location)

Specific Postures and
Movements Identified

Data Collection Procedure and
Environment

Hagenbuchner,
2015 [28]

n = 11, 3–6 years old, 45% male,
clinical/TD not reported, reports 9.1%
were overweight, word-of-mouth
recruitment, Australia.

To evaluate conventional
feed-forward artificial neural
network with more advanced deep
learning-inspired neural network
for predicting physical activity
types in preschool children.

1 sensor (Actigraph GT3x+),
Hardware type: accelerometer,
magnitude range ±6 g, sampled
at 100 Hz. Mounted on hip.

Five classes: sedentary, light
activities/games,
moderate-to-vigorous activities,
walking, running.

Standardised tasks. 12 structured
activity trials (e.g., watching TV,
doing collage, playing active game)
for 4–5 min each over two lab
sessions within a three-week
period. First visit: watching
television, sitting on the floor
reading, standing making a collage
on a wall, walking, playing an
active game, and completing an
obstacle course. Second visit:
sitting on a chair, playing a
computer tablet game, sitting on
floor playing quietly with toys,
treasure hunt, cleaning up toys,
bicycle riding, and running.

Hegde,
2018 [29]

n = 21, 11 typically developing
children (mean age = 6.6 ± 1.5 years),
55% male, 10 children with cerebral
palsy (mean age 6.2 ± 1.5 years), 60%
male, recruitment unclear, USA.

To develop a wearable sensor
system for combined activity and
gait monitoring in children with
cerebral palsy.

6 sensors, Hardware types: 1 3-D
accelerometer and 5 Force
Sensitive Resistor (FSR) sensors
(intelink), sampled at 400 Hz.
FSR sensors in insole.
Accelerometer mounted on back
of heel of shoe within
a plastic enclosure.

Four classes (each with different
conditions): sitting (on child
chair, on adult chair, on parent’s
lap, on floor playing with toys);
standing (standing still, standing
while playing with toys, standing
while being dressed); walk (slow
walk, fast walk, run, each also
completed on GAITRITE).

Standardised tasks in a laboratory.
Each condition completed for
2 min. When child walked on
GAITRite, it was for the span of the
GAITRite mat.

Trost,
2018 [30]

n = 11, 3–6 years old, 45% male,
clinical/TD not stated—however,
states that 9.1% were overweight,
word-of-mouth recruitment,
Australia.

To develop, test, and compare
human activity recognition
algorithms trained on raw
accelerometer signal from wrist,
hip and the combination of wrist
and hip in preschool-aged children.
Evaluated conventional physical
activity cut-point methods to
activity class recognition models.

2 sensors (Actigraph GT3x+),
Hardware type: accelerometers,
magnitude range ±6 g, sampled
at 100 Hz. Mounted on hip and
non-dominant wrist.

Five classes: sedentary, light
activities/games,
moderate-to-vigorous activities,
walking, and running.

12 structured activity trials,
identical Hagenbuchner, 2015.
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Table 3. Cont.

Author, Date
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(n, Age, Sex, Clinical or Typically
Developing Population, How
Recruited, Country Where Study
Completed)

Study Aim

Sensor Information
(Number of Sensors (Company
Name), Hardware Type,
Hardware Specifications,
Sampling Rate, Sensor
Location)

Specific Postures and
Movements Identified

Data Collection Procedure and
Environment

Hewitt,
2019 [19]

n = 32, 4–25 weeks, 59% male,
recruited from early childhood nurse
and advertisements around
university. Unclear if typically
developing. Referred to as “sample of
convenience”, Australia.

To test the practicality of using
accelerometer-based devices on an
infant’s body to objectively
measure tummy time and test the
accuracy of manufacturers
algorithm or cut points for
predicting posture.

4 wearable sensors (Actigraph,
GENEActive, MonBaby);
Hardware type: accelerometers,
2 sampled at 30 Hz, 1 at 6.25 Hz.
Mounted on right hip and ankle,
and chest.

Three classes consisting of 12
positions: Prone floor positions
(prone-on-floor attempt 1 and 2);
non-prone positions (supine,
left-side lie, right-side lie, cradle
hold, reclined in car seat, upright
against parents shoulder while
parent is standing, supported
sitting on lap of parent, reclined
in pram); prone supported
positions (being held while infant
is on tummy (carer sitting or
standing)); prone but lying on
parent’s chest who was reclined
on bean bag.

Standardised tasks. 1 h testing,
testing session video recorded.
Infant placed in each position by
parent for 3 min.

Li,
2019 [31]

n = 16, age 5–15 years old, sex not
stated, clinical/TD likely asthmatic,
unclear recruitment, however,
reference dataset, BREATHE cohort,
USA. Final data n = 14 (as two had
substantial missing data).

To develop a sensor-based
integrated health monitoring
system for studying paediatric
asthma–specifically monitoring
physical activity. To compare
greedy Gaussian segmentation
(GGS) with a standard fixed-size
window/sliding-window approach
using data from 2 HAR studies
(one adult, one child) of different
durations and sensor locations (just
one for children).

1 sensor (Motorola Moto 360);
Hardware type; 3-axis
accelerometer and gyroscope,
sampled at 10 Hz.
Mounted on wrist.

Five activities: standing; sitting;
lying; walking; stairs; running

Standardised tasks. 10 min for each
activity, except 5 min for running.
Location not stated. Randomly
divided participants’ activity
sessions (10 min long) into
10 subsessions. Randomly shuffled
all subsessions.
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Table 3. Cont.

Author, Date

Participants
(n, Age, Sex, Clinical or Typically
Developing Population, How
Recruited, Country Where Study
Completed)

Study Aim

Sensor Information
(Number of Sensors (Company
Name), Hardware Type,
Hardware Specifications,
Sampling Rate, Sensor
Location)

Specific Postures and
Movements Identified

Data Collection Procedure and
Environment

Kwon,
2019 [32]

n = 24, 13–35 months old (‘50% one
year olds’), 50% girls, recruited
among visitors to a commercial
indoor playroom, clinical/TD not
stated, children had to be able to
independently walk, USA.
Final data n = 21.

To describe raw accelerometer and
activity count for nine activities; to
evaluate the use of ML to separate
‘being carried’ from ambulatory
behaviours, and to evaluate the use
of ML to separate ‘being carried’
from crawling.

2 sensors (Actigraph GTxX-BT)
Hardware type: accelerometer,
magnitude range ±6 g, sampled
at 30 Hz. Mounted on hip and
non-dominant wrist (left when
non-dominant was unknown).

Nine classes: run, walk, crawl,
climb, ride-on-toy, stand, sit,
stroller/wagon, and carried.

Standardised tasks performed in a
commercial playroom from where
participants were
recruited—familiar environment.
Caregiver encouraged child to do
the nine behaviours e.g., kitchen
play for standing, block play for
sitting. Mean 15 min
(range 8–25 min) data per child.
Mean accelerometer data per
behaviour/child was 6–14 s. First
and last s of activity not used.
Average of 15 min of data per
participant, range of 8–25 min.

Ahmadi and Brookes,
2020 [33]

n = 31, 3–5 years old, mean age
4.0 ± 0.9 years, 22 male, clinical/TD
not stated, mainly word of
mouth/local recruitment, Australia.

To evaluate the classification
accuracy in free-living conditions
of an existing laboratory-developed
ML system for preschoolers.

1 sensor (Actigraph GT3x)
Hardware type: accelerometer,
magnitude range ±6 g, sampled
at 100 Hz. Mounted on hip and
non-dominant wrist.

Five classes: sedentary, light
activities and games,
moderate-to-vigorous activities
and games, walk, run.

Free play. 20 min free play in home
or park chosen by parent, some
age-appropriate toys provided, no
prompting for activities performed.

Ahmadi and Pavey,
2020 [34]

Identical to Ahmadi and Brookes,
2020.

To evaluate ML developed on
free-living data, using 1–15 s
windows (1, 5, 10, 15 s), lagged and
lead frames, and based on multiple
sensors.

Identical to Ahmadi and Brookes,
2020.

Identical to Ahmadi and Brookes,
2020.

Identical to Ahmadi and Brookes,
2020.

Airaksinen, 2020 [35]

n = 24, 7 months old (range
4.5–7.7 months, mean age 6.7 months
±0.84; 9 male), TD, recruited via
larger ongoing research project,
Finland. Final data n = 22.

To develop a wearable sensor
suit-based system to assess infant
movements as early indicator of
neurocognitive disorders.

4 sensors; Hardware: triaxial
accelerometer and gyroscope
(Movesense IMU), Sampled at
52 Hz, Mounted on upper arms
and legs.

Iteratively developed five
posture categories: prone, supine,
side left, side right, crawl
position. Eight movement
categories: macro still, turn left,
turn right, pivot left, pivot right,
crawl proto, crawl commando,
crawl 4 limbs (crawl 4 limbs
omitted as only one recording
utilised category).

Standardised tasks. In clinic-like
settings for 30–60 min.
Physiotherapist encouraged a
range of postures and movements
by play without touching infant.
Movements collected while infant
was placed on a foam mattress.
Mean 29 min of data collection
(range 9–40 min). Total of 12.1 h
recorded.
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Table 3. Cont.
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Specific Postures and
Movements Identified

Data Collection Procedure and
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Jun,
2020 [36]

n = 10, 2–720 days old, 7 male,
potentially some clinical population
as authors refer to “newborn’s
physical condition and other medical
devices attached”, recruitment
strategy unclear, Korea.

To develop a method which can
classify activity types from sensor
signals, whether subjects are asleep,
how strong movements show, and
whether external forces affect them.

1 sensor; Hardware type; triaxial
accelerometer and thermometer,
sampled at 40 Hz. Mounted to
clothing on “upper chest
area”—any area of the chest and
above clothes without giving
precise position and clothes
condition.

Three levels of classification:
sleeping/non-sleeping;
sleeping/active
movement/external force
movement; and sleeping/strong
movement (struggling or crying
in agony)/weak movement
(awake and moving in
comfortable state)/external force
movement.

Unlcear activities. No detail on
what specific activities the newborn
performed. Video lengths ranged
from 5–150 min in duration
(700 min total). Some participants
did not include both sleep and
awake states.

Franchak, 2021 [37]

Laboratory study: N = 15,
6–18 months old, eight female, TD
unclear, recruited via social media
advertisements and local community
recruitment events, USA. Home data
collection case study: N = 2,
10.5–11 months old, sex unclear.
Likely from the lab study; however,
unclear in reporting. Note neither
infant could walk independently;
however, both could stand, cruise
along furniture, and walk while
supported with a push toy or
caregiver assistance.

To develop and validate a
classification system using
infant-worn inertial sensors to
classify typical postures and
movements in an infant’s day, to
assist with monitoring infant
movement behaviours in the home
environment. Aimed to assess
whether the method could
accurately detect individual
differences in how much time
infants spend in different postures,
to characterise everyday movement
experiences and their potential for
developmental impact.

Laboratory study: 3 sensors
(MetamotionR IMU);
accelerometer and gyroscope,
sampled at 50 Hz. Mounted on
right hip, thigh, and ankle. Home
data collection case study: four
Biostamp IMUs (accelerometer
and gyrosocope) Sampled at
62.5 Hz, embedded in pair of
customized infant
leggings–placed bilateral hip
and ankle.

Five body positions: supine
(lying on back), prone (lying flat
on stomach or in crawling
position), sitting (sitting on a
surface with or without support
from caregiver, the highchair, or
on caregiver’s lap), upright
(standing, walking, or cruising
along furniture), held by
caregiver (carried in caregiver’s
arms, excluding times they were
seated on caregiver’s lap).

Standardised tasks in a laboratory:
10 activities (assisted or
unassisted)—standing upright,
walking, crawling, sitting on the
floor, lying supine, lying prone,
held by a stationary caregiver, held
by a caregiver walking in place,
sitting restrained in a highchair.
Completed each activity for 1 min,
total session lasting 10 min,
followed by free play to allow for
spontaneous body positions.
Standardised tasks in the home
environment: Experimenter guided
caregiver via phone through a set of
procedures to elicit different body
positions—tasks the same as the
laboratory tasks, completed each
activity 1 min, followed by 10 min
of free play. Following free play,
infant and caregiver went about
day as normal wearing IMUs for
approx. 8 h—video recording was
for up to 180 min during this time.
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Airaksinen, 2022 [38]

n = 59, 4.5–19.5 months old, sex not
stated, n = 38 neurodevelopment
low-risk term born, n = 10 mild
prenatal asphyxia, n = 11 prematurity,
4 later found to have
neurodevelopmental condition (left
out of some modelling), recruited
from hospital, Finland.

To develop a wearable sensor
suit-based system to assess infant
movements, across infant
milestones from lying to walking as
early indicator of neurocognitive
disorders

Identical to Airaksinen 2020.

Iterative developed
posture/movement matrix of five
different postures with four
movement conditions for each
posture: postures (supine, prone,
crawl, sitting, standing) and
movements (still, proto,
elementary, fluent, other,
carrying).

Free play at home (n = 40) or home
like clinic (n = 24). Average data
67 min (range 18–199 min) total
recording time 71 h and 30 min.
Children encouraged to free play
with little adult interference,
differences in environment/play
opportunities. Participants
collected at home instructed to play
for at least 1 h.

Madej,
2022 [20]

n = 10, 4–40 years old (mean 24 years
± 14 years), 7 men, unclear if
clinical/TD, unclear recruitment,
Poland.

To determine whether there is a
difference in physical activity
assessment between wrist-worn
sensor on the dominant and
non-dominant arm and between
lower back and hip-worn sensor.

2 sensors (Mbient Lab
Meta-motion IMU’s). Hardware
type: accelerometer, gyroscope
and magnetometer.
Accelerometer range was ±16 g
at 100 Hz, magnetometer range
as ±1300 uT at 25 Hz and
gyroscope was ±2000 st/s. The 4
sensors were mounted on both
wrists, lower back, and hip on
dominant hand side (upper limb
collected separately to low back
and hip).

Nine activities: jumping, rotating,
running, walking, walking on
tiptoe, clapping hands, standing
still, sitting still, and dancing.

Standardised tasks. All activities
performed for 15 s with 5 s
standing between and done
twice—once with two wrist sensors
and once with two lower-body
sensors. 10 s of each activity was
used for analysis.

EMG = Electromyography. HAR = human activity recognition. IMU = inertial measurement units. ML = machine learning. RFID = radio frequency identification. SOM = Self-Organising
Map. SVM = Support vector machine. TD = typically developed.
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3.2.2. Aims

Eleven of the reviewed papers aimed to develop systems that would allow for physical
activity or general activity monitoring, to be used in understanding child development
and preventing lifestyle diseases such as obesity. However, the aims of the remaining nine
papers varied widely. Specifically, of the nine remaining papers, two evaluated systems in
a different environmental context (e.g., free-living) [33,34]. Two papers had the specific aim
of evaluating infants’ movements as early indicators of neurocognitive disorders, and one
focused on evaluating methods for measuring the time infants spent in prone lying postures
(i.e., tummy time) [35,38]. One paper was focused on the prevention of falls [22], and two
papers focused on the development of a system to measure postures and movements in
children [27,36].

3.2.3. Sensor Information (Type, Sampling Rate, Number of Sensors, Locations)

A range of commercially available and custom-built wearable movement sensors were
utilised. Eleven of the papers developed/evaluated models using only accelerometer data,
whilst five papers utilised inertial measurement unit sensors [20,31,35,37,38]. Four papers
combined accelerometer data with other types of non-sensor-based and sensor-based data,
including calorimetry (n = 1 [23]), air pressure sensors (n = 2 [22,25], and force pressure
sensors (n = 1 [29]). One paper compared approaches using different numbers of accelerom-
eters and additional data [19]. Eleven of the papers utilised a single accelerometer, and
accelerometers were located in a range of locations: upper chest (n = 1 [36]), upper arm
(n = 2 [24]) wrist (n = 1 [31]), waist (n = 2 [23,25]), hip (n = 2 [26,28]), back pocket of trousers
(n = 1 [22]), and shoe (n = 1 [29]). Four of the papers used two accelerometers, and these
were located on the hip and wrist [30,32–34]. One paper used three accelerometers located
on the hip, thigh, and ankle [37]. This paper also described a second home-data collection
phase of their model development and evaluation, where they used four lower limb ac-
celerometers (bilateral hip and ankle) based on the results of the laboratory-based study [37].
The remaining four studies used four accelerometers with a range of location combinations,
which all combined upper-body- and lower-body-mounted accelerometers [19,21,35,38].

3.2.4. Postures and Movements Measured

The postures and movements most commonly included were lying, sitting, standing,
walking, and running. For papers that included lying, half specifically focused on the
orientation that the child was lying in (e.g., prone/supine/side lying), and the other
half did not differentiate the orientation. All papers that differentiated lying included
children under the age of three years old. For papers that included sitting, the sitting
data used for model development sometimes included sitting on varied surfaces and in
different conditions; however, many did not report the specific posture the child was
sitting in, or if the child self-selected their sitting posture when the data was collected.
Additionally, very few of the models developed included sitting and standing with and
without movement, and those that did focused on physical activity intensity classifications.
Five of the reviewed papers developed machine learning models that classified both specific
movements and physical activity intensity, where the specific postures and movements
included were walking and running. More diverse and child-specific movements such as
crawling (n = 5 [25,32,35,37,38]), climbing (n = 1 [22]), and jumping (n = 1 [20]) were less
commonly identified.

3.2.5. Data Collection Methods

The majority of papers explicitly stated data were acquired in a laboratory-based envi-
ronment (n = 7), whilst others (n = 6) did not state the location, but the methods suggested
that it was within a laboratory. One paper [37], conducted a laboratory study which was
repeated (with some modifications to sensor locations) in a home environment. Within the
home environment, both prescribed activities and free-living activities were collected. The
remaining papers (n = 7) collected data within various ”free living” environments, which
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included indoor play centres, healthcare clinics, childcare centres, the child’s own home,
and a park. Tasks were performed during data collection for between 15 s and 5 min each.

3.3. Classification Model Development

Table 4 details the classification model development for all included papers, with a
focus on window size, feature extraction methodology, machine learning approach applied,
model development, and validation approaches.

Data sampling windows used were either overlapping (n = 7), non-overlapping
(n = 8), or the use of overlap or not was not specified (n = 5, [19–22,36]). Four of the studies
compared models using different window sizes ranging from 0.2 s to 60 s [23,28,31,34].
Window size was not reported in four papers [20,22,24,27].

A range of different features were extracted for model development, and these were
typically amplitude and frequency domain features. This was performed for all non-deep
learning models (n = 15), as well as the first model of the first Airaksinen paper [35]. For
the second model of the first paper [38] and the second paper [35], the time signal was
input into supervised deep learning models as well as into an unsupervised deep learning
model (n = 1).

3.4. Model Accuracy

Tables 5 and 6 detail the accuracy of the developed models.
Human coding by direct observation or later video observation was most commonly

used as the gold standard comparison; however, several papers did not clearly report on
the method for the collection and annotation of the comparison data.

A range of approaches were used in developing and validating model accuracy. These
included leave-one-subject-out cross-validation (n = 6), 10-fold cross-validation (n = 3),
and 3-fold cross-validation (n = 1 [22]). One paper [31] split the data set into a training set
and test set, where the model was trained on 12 participants and tested on the remaining
two. One paper split the data into three evenly sized data sets, one for training, one for
validation, and one for testing [23]. The remaining machine learning model papers used a
combination of validation approaches.

The majority of papers used confusion matrices to determine accuracy, although
there was little consistency of what was included in the confusion matrices. For example,
recall and precision (%) [31], prevalence, sensitivity, and positive predictive value [37],
or just ‘accuracy’ [25]. How each of the statistics reported were calculated was often not
explicitly stated.

Table 6 summarises the accuracy reported for the models validated in each paper.
There was a wide range reported for overall accuracy of the models (i.e., the degree
of accuracy considering all postures and movements included in the model) of 59–97%.
Further, a large accuracy range commonly existed in models to detect each specific posture
and movement (see Table 6). For example, models were able to detect sitting with a
range of 53–100%, walking with a range of 9–99%, and running with a range of 18–100%
accuracy. Five of the papers only reported overall accuracy or did not report posture- or
movement-specific accuracy [19,20,24,31,32].
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Table 4. Details of classification model development as reported in each paper.

Author,
Date Approach Window Details (Size, Overlapping or

Non-Overlapping) Feature Extraction Machine Learning Method Used

Parkka,
2010 [21] Non-ML Non-overlapping 5 s windows

Four features obtained: intensity of highest peak
in power spectral density; average signal; signal
spectral entropy; and signal variance. Only ankle
accelerometer vertical axis data used for
computing feature signals.

N/A

Boughorbel, 2011 [22] ML Windows size not specified.

Four first-order (vector magnitude of accel,
vector mag of gyro, normalised Z of accel,
measured air pressure) and for each of these, five
second-order features calculated (moving
average, moving variance, moving RMS
0.1–2 Hz, moving RMS 2–4 Hz moving average
slope) i.e., 20 s-order

Linear (LDA), Quadratic (QDA), and
AdaBoost classifiers.

Trost,
2012 [23] ML Sequence of non-overlapping windows of 10,15, 20,

30, and 60 s duration

Six features obtained: 10th, 25th, 50th, 75th, and
90th percentiles of second-by-second counts and
the lag one autocorrelation.

Feed-forward neural network with a single hidden
layer.

Suzuki,
2012 [24] ML Features extracted by moving windows with 50%

overlap (window size not specified).
Five features: mean, standard deviation, energy,
correlation, frequency domain entropy.

J48, Naïve Bayes, NBTree, Random Forest,
RandomTree, REPTree, and self-organizing map
(SOM).

Nam,
2013 [25] ML Window size of 256 with overlapping at 128 at 95 Hz.

Features obtained for x, y, z, and derived
horizontal and vertical traces. Five time domain
and two frequency domain features extracted
for each.

Naïve Bayes, Bayes Net, Support Vector Machine,
k-Nearest Neighbour, J48 Decision Tree, Decision
Table, Multilayer Perceptron, Logistic Regression.

Zhao,
2013 [26] ML Non-overlapping windows of 60 s. Counts in x, y, and z, vector magnitude, position,

steps, lag/lead values.

k-means used to identify clusters of activities—used
as evidence to recategorize the data; MLR and SVM
used to classify; 58 classifier models built. Models
including and not including sleep.

Goto,
2013 [27] ML Moving window 50% overlap (although window size

not specified).

Two-stage process. Phase 1 determined if static
or dynamic, using standard deviation and energy
of each 3-axis. In phase 2, classified for static
(sleeping, eating, hand motion, sitting) and
dynamic (walking, running, playing) by adding
movement of gradient to features.

Self-Organising Map (SOM) used for both phases.

Hagenbuchner,
2015 [28] ML Non-overlapping window sizes of 10, 15, 20, 30 and

60 s. Same features as Trost 2012 study.
Multi-layer Perceptron Network (MLP),
Self-Organising Map (SOM), and third employed
SOM as first layer followed by MLP.
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Table 4. Cont.

Author,
Date Approach Window Details (Size, Overlapping or

Non-Overlapping) Feature Extraction Machine Learning Method Used

Hegde,
2018 [29] ML Non-overlapping window size of 2 s.

12 features extracted: six from each sensor: mean
of sum of all five pressure sensor data from shoe
(P_Sum), standard deviation of P_Sum, mean of
resultant acceleration, standard deviation of
resultant acceleration, number of mean crossings
of P_Sum, number of mean crossings of
resultant acceleration.

Multinomial Logistic Discrimination.

Trost,
2018 [30] ML Non-overlapping 15 s windows.

18 time and frequency features extracted: mean,
SD, minimum, maximum, interquartile range,
percentiles (10th, 25th, 50th, 75th, 95th),
coefficient of variation, signal sum, signal power,
peak-to-peak amplitude, median crossings,
dominant frequency between 0.25 and 5.0 Hz,
magnitude of dominant frequency between 0.25
and 5.0 Hz, and signal entropy between 0.25 and
5.0 Hz.

Random Forest and Support Vector Machine each
used for hip, wrist, and hip and wrist (total of
six classifiers).

Hewitt,
2019 [19] Non-ML Window size of 1 s for Actigraph and GENEactiv and

of 1/(5–7) s for MonBaby.

Actigraph: custom built Excel macro designed by
Actigraph. Used specified X and Y-axis cut points
hip Actigraph: X-axis > 0.7 g and Y-axis > −0.1 g
for prone on floor; x axis > 0.7 g and Y-axis <
−0.1 g for prone supported. For Actigraph ankle
X and Z-axis cut points used; X-axis > 0.35 g and
Z-axis > −0.45 g for prone.
GENEActiv: algorithm developed by
Activinsights Ltd.—formed by classifying each
position for a scatter plot with rotation on the
X-axis and elevation on the Y-axis MonBaby:
360-degree angle determined from X, Y, and
Z-axes, 360-degree angles less than 134 degrees
classified as non-prone. Prone on floor and prone
supported positions were determined using
Z-axis cut point of <−0.10 g.

N/A
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Table 4. Cont.

Author,
Date Approach Window Details (Size, Overlapping or

Non-Overlapping) Feature Extraction Machine Learning Method Used

Li,
2019 [31] ML

Greedy Gaussian segmentation (GGS) compared to
fixed-size non-overlapping windows of 0.2 s, 0.8 s,
3 s, 8 s, for HARuS data set, and 12 s and 40 s added
for BREATHE.

168 features: Six statistics (arithmetic mean, SD,
median absolute deviation, minimum, maximum,
and entropy) on 14 signals and on both the time
and frequency domains (6 × 14 × 2 = 168).

XGBoost. SVM and Random Forests were also
trained but only presented in
supplementary material.

Kwon,
2019 [32] ML

Segmented accelerometry into non-overlapping
windows of 5 s. Only windows with single behaviour
included.

Activity counts from accelerometer vertical,
horizontal, perpendicular axis and vector
magnitude, 30 time-domain (e.g., mean, SD,
skewness) and 48 frequency-domain features
(from FFT) were extracted.

Used Random Forest but only to differentiate
between “carried” and “ambulation”.

Ahmadi and Brookes, 2020
[33] ML

Non-overlapping sliding window of 15 s and
considered ML including and not including mixed
windows.

Same 18 features as Trost, 2018. Used earlier Trost Random Forest and SVM models
to test their efficacy on free-living behaviours.

Ahmadi and Pavey,
2020 [34] ML Non-overlapping windows of 1, 5, 10, 15 s.

Mixed/not mixed activities.

Two sets of features were extracted: Base features
(same 18 time- and frequency-domain features as
prior work) and base plus temporal features
(considering preceding and following windows,
i.e., lead and lag, resulting in
5 additional features).

Random Forest.

Airaksinen, 2020 [35] ML
Data windowed into 120-sample frames
(2.3 s at 52 Hz) with 50% overlap between
subsequent windows.

Two approaches compared, only first used
features. 336 features extracted, with 14 features
(variance, max amplitude, min amplitude, signal
magnitude area, energy, interquartile range,
skewness, kurtosis, largest frequency component,
weighted average frequency, frequency skewness,
and frequency kurtosis) for each of 24
data channels.

First was a Support Vector Machine. Second was a
convolutional neural network with 3 stages—(1)
sensor module to extract low-level features, (2) sensor
fusion model for combining sensor features into
common high-level features, (3) time series model for
temporal modelling of high-level features.

Jun,
2020 [36] ML

160 elements, each length 3. Uses sliding windows of
40 elements, which corresponds to 1 s long. Two
consecutive have 75% in common. Some data
preprocessing but note, is essentially feeding sensor
data into model.

N/A

Unsupervised deep learning. Model divided into
autoencoder and k-means clustering algorithms. The
first finds a minimal space that can reproduce signal.
This minimal space is then clustered.
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Table 4. Cont.

Author,
Date Approach Window Details (Size, Overlapping or

Non-Overlapping) Feature Extraction Machine Learning Method Used

Franchak, 2021 [37] ML Overlapping moving windows of 4 s extracted every
1 s. Excluded windows where <75% single position.

204 features extracted. Ten summary statistics for
each combination of 3 sensor locations, 2 sensor
signals, and 3 axes, resulting in 180 features:
mean, standard deviation, skew, kurtosis,
minimum, maximum, 25th percentile, 75th
percentile, and sum. Sum and magnitude of
movement across axes within each sensor.
Correlations and difference scores between each
pair of axes within a sensor and between each
pair of sensors for a given axis.

Random Forest.

Airaksinen, 2022 [38] ML
Same overlapping window as previous work, i.e.,
data windowed into 120-sample frames (2.3 s at 52
Hz) with 50% overlap between subsequent windows.

N/A Similar CNN model as one used in Airaksinen 2020.

Madej,
2022 [20] Non-ML Features calculated for each accelerometer

measurement.

35 features extracted (mean, SD, skewness,
kurtosis, energy, activity, mobility, complexity,
and spectral purity index for each axis,
3 correlations between axes and the mean over
3 axes of mean, SD, skewness, kurtosis, energy)

N/A

ML = machine learning. Non-ML = Not machine learning.

Table 5. Details of classification model accuracy.

Author, Date
Gold Standard Used for Comparison in
Development (Including Inter-Coder
Reliability Testing)

Validation Approach Used Assessment of Accuracy Accuracy of the System

Parkka,
2010 [21] No detail provided.

No separate testing data set.
Leave-one-subject-out (LOSO)
cross-validation.

Confusion matrix.

Without personalisation: overall
accuracy 86.6%, walking only
accurately recognised 48% of the
time.
With personalisation: overall
accuracy 95%. Model performance
consistently poorer on single
4-years-old participant
(74% accuracy).
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Table 5. Cont.

Author, Date
Gold Standard Used for Comparison in
Development (Including Inter-Coder
Reliability Testing)

Validation Approach Used Assessment of Accuracy Accuracy of the System

Boughorbel, 2011 [22] Synchronised video ‘manually annotated’.

Data from single child randomly
split into training and test data sets
(size not specified). 3-fold validation
was employed.

Not stated.

Using first-order features, mean
accuracy was 38 ± 1.5%.
Using second order 97.8 ± 0.2%,
using only accelerometer data 79.9
± 1.5% (full confusion matrix
provided).

Trost,
2012 [23] No detail provided.

Data randomly divided into
training, validation, and test sets of
approximately the same size. 10
such random splits were performed.

Confusion matrix (proportion of
time segments correct identified).

Walking 92–94% accuracy (accuracy
increased with increase in window
size). Running 74–79% accuracy
(accuracy increased with increasing
window size). Running trials most
commonly misclassified as walking.
If running and walking combined
into “locomotion”, 96% accuracy.

Suzuki,
2012 [24] Voice recording during data collection.

No separate testing/training data
sets. Three validations undertaken
against child and adult group.
Self-validation trained by either
child or adult data.
K-fold cross-validation trained by
same group data. Test data
validation using other group data.

Only overall accuracies reported,
not posture/movement specific. No
confusion matrices presented.

Self-validation:
Child 88 (REPT)-100% (SOM, RF,
RT)
Adult 93 (REPT)-100% (SOM, RF,
RT)
Cross-validation:
Child 36 (REPT)-71% (RF)
Adult 50 (REPT)-76% (RF)
Test:
Child 31 (NBT)-45% (C4.5)
Adult 40 (C4.5)-50% (REPT)
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Table 5. Cont.

Author, Date
Gold Standard Used for Comparison in
Development (Including Inter-Coder
Reliability Testing)

Validation Approach Used Assessment of Accuracy Accuracy of the System

Nam,
2013 [25]

Simultaneously video recorded and later
annotated.

1538 samples were collected from
one baby as training data, other
samples collected were used as test
data set.
10-fold cross-validation.
Precision, Recall, F measure
reported.
Accuracy for each movement
reported.
Confusion matrices for each
approach reported.

Recognition accuracy reported for 8
different methods; however, how
accuracy is calculated not
specified—likely from confusion
matrix.

Best performing: 95% for KNN and
Decision Tree.
Precision and recall: MLP kNN and
Decision tree > 94%.
Barometer data reduces false alarms
for climbing up and down.

Zhao,
2013 [26]

Staff minute-to-minute observation while
children in room.

No separate testing/training
datasets; 10-fold cross-validation.
Reported error rates as measure of
accuracy. Confusion matrix
reported.

Error rate: Number of observations
that had been incorrectly classified
in activity divided by number of
observations of given activity.

Overall error rate with sleep: MLR
~30%; SVM ~26%. Without sleep:
SVM 21%; ‘overall’ 16%.
Similar activities with close
rankings more difficult to classify
than dissimilar activities.

Goto,
2013 [27]

Video recorded of child doing activities and
synchronised to accel data. Types of activities
discriminated by checking the time of
acceleration data and video recorded activity.

No separate testing/training data
sets; 10-fold cross-validation.
Reported classification accuracy.

Not stated. Mean 65% with range of 47%
(eating) to 99% (sleeping).

Hagenbuchner,
2015 [28] Not stated. No separate testing/training data

sets. LOSO cross-validation. Confusion matrix.

60 s window: SOM 54%; MLP 70%;
DLEN 83%. 30 s window: SOM 53%;
MLP 64%; DLEN: 76%. 10 s window:
SOM 52%; MLP 61%; DLEN 72%.

Hegde,
2018 [29]

Smartshoe data was manually annotated,
labelling the type, start, and end of each
activity. No detail of what was the gold
standard reference informing this.

No separate testing/training data
sets. LOSO cross-validation. Confusion matrix.

Typically developing children
average accuracy 96.2%. Children
with cerebral palsy average
accuracy 95.3%.
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Table 5. Cont.

Author, Date
Gold Standard Used for Comparison in
Development (Including Inter-Coder
Reliability Testing)

Validation Approach Used Assessment of Accuracy Accuracy of the System

Trost,
2018 [30]

No mention of gold standard; however, also
compared to accelerometer cut-point
methods (separate analysis).

No separate testing/training data
sets. LOSO cross-validation.

Overall recognition accuracy (% of
15 s time windows correctly
classified), agreement between
predicted and observed class label
evaluated by calculating weighted
kappa coefficients. Compared to
cut-point methods using sensitivity
and specificity

Mean overall accuracy for Random
Forest: Hip 80%; Wrist 78%;
Combined 82%. Mean overall
accuracy for SVM: Hip 81%; Wrist
80%; Combined 85%. New
classifiers outperformed traditional
cut-point methods for classifying PA
levels.

Hewitt,
2019 [19]

Direct observation captured on video
recording of whole session. Single observer
coded each second of video. One randomly
selected video analyzed by four observers to
test interrater reliability (97.5%).

Not ML, so no testing set needed.
Time spent in each position class
was evaluated for each device
against gold standard to determine
percentage accuracy.

Based on number of seconds
recorded compared to direct
observations.

GENEActive: Prone on floor 95.4%;
non-prone 98%; prone supported
52.2%. Actigraph Hip: prone on
floor 90%; non-prone 99.9%; prone
supported 63.6%. Actigraph Ankle:
prone on floor 87.9%; non-prone
96.3%; prone supported 53.3%.
MonBaby: prone on floor 79.2%;
non-prone 99.9%; prone supported
66.1%.

Li,
2019 [31] Not stated.

Multiple data sets tested but each
divided into ~90% for training and
~10% holdout testing. Confusion
matrix with precision and recall
reported.

Not stated.

Overall average recall when using
GGS was 73%. Overall averaged
precision when using GGS was 86%.
Instantaneous accuracy from
XGBoost using GGS was 79.4%.
Highest fixed-size window accuracy
was 72.7%.

Kwon,
2019 [32]

GoPro video recorded. Three coders
independently coded first four participants
using draft coding scheme; after discussion
and revision, two coders independently
coded rest with 96% concordance. Accel and
video synched using visual inspection of
active/still.

No separate testing/training data
sets; 10-fold cross-validation used to
identify hyperparameters. LOSO
cross-validation used to evaluate
classifier performance.

Not explicitly stated and not
reported for each PAM. No
confusion matrix.

Carried vs. ambulation classification
89% from hip. No full confusion
matrix reported. Only accelerometer
descriptives for each behaviour and
hip and wrist reported.
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Table 5. Cont.

Author, Date
Gold Standard Used for Comparison in
Development (Including Inter-Coder
Reliability Testing)

Validation Approach Used Assessment of Accuracy Accuracy of the System

Ahmadi and Brookes, 2020
[33]

GoPro HERO 5 video of session,
human-coded in two stages:
(1) Five classes (sed, light/games, mv/games,
walk, run)
(2) 23 activity types (e.g., sit still, sit with
upper limb movement). Some activities only
performed by one participant, but classes
performed by at least 28. Dual coding of five
participants gave intraclass correlation
coefficient for activity type of 0.912 and 0.927
for activity type.

Model already developed, therefore
classification was based on testing
the accuracy of the model derived
from lab data on field data. Overall
accuracy, unweighted kappa, only
done for classes. Confusion matrix
for class and specific activities.

Confusion matrix.

Overall wrist RF 59% and SVM 59%,
fair agreement (kappa = 0.37). Poor
at walk SVM 12% RF 15%; however,
improved to 44% and 46%,
respectively, when windows with
multiple classes were removed.
Overall hip RF 69% and SVM 66%,
moderate agreement (0.45–0.48).
Also poor at walk SVM 9% and RF
11%; however, improved to 29% and
33% when windows with multiple
classes were removed. Erist reduced
~20% from lab study and hip ~15%.

Ahmadi and Pavey,
2020 [34]

Same as Ahmadi and Brooks, 2020. Cohen’s
unweighted kappa statistic for activity class
was 0.86, again taken from two researchers
independently coding five randomly
selected videos.

No separate testing/training data
sets. LOSO cross-validation; 3 × 2 ×
4 repeated measures ANOVA used
to examine effects of sensor
placement, feature set (base vs.
temporal features), and window
size on F scores.

F-scores were used to assess the
accuracy of each model. Confusion
matrices.

F scores for best-performing wrist
and hip model were 81% and 86%,
respectively. Shorter windows
decreased accuracy. Lag/lead did
improve accuracy for models
trained on wrist data on 1, 5 and
10 s windows, and combined hip
and wrist for 1 s windows, but not
for any other models. Multiple
sensors and feature fusion did not
improve accuracy. Hip better than
Wrist.
F scores: Wrist 62–77%; Lag/lead
69–81%; Hip 71–84%; Lag/lead
76–86%; Both 72–84%; Lag/lead
77–86%.
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Table 5. Cont.

Author, Date
Gold Standard Used for Comparison in
Development (Including Inter-Coder
Reliability Testing)

Validation Approach Used Assessment of Accuracy Accuracy of the System

Airaksinen, 2020 [35]

Video by Gopro (n = 14) or iPhone (n = 10).
Independently annotated by three
researchers. Interrater agreement tested with
Fleiss kappa score, yielding 0.923 for posture
and 0.580 for movement. Note, developed a
novel iterative annotation refinement (IAR)
method to resolve ambiguities in the training
data by combining human- and
machine-generated labels in a probabilistic
fashion during model development.

No separate testing/training data
sets. LOSO cross-validation. Confusion matrices.

Classification accuracies of posture
generally comparable between CNN
and SVM. CNN better performance
with several movement categories
(CNN 5–10% better performing
based on F score).
For frames where all three humans
rated the same (accuracy): posture
99% and movement 91%. For all
frames (accuracy): posture 98% and
movement 82%.
Two-sensor data (1 arm, 1 leg)
similar accuracy to four-sensor data
but single sensor significantly worse
(two-sensor posture 94%, movement
78%, four-sensor posture 95%,
movement 79%, one-arm-only
posture 71%, movement 70%,
one-leg-only posture 90%,
movement 68%). ML comparable to
human consistency.

Jun,
2020 [36]

Video recorded during data collection using
webcam connected to data acquisition
computer at 30 fps and time-synchronised
with sensor data. Used for ground truth
reference. Coded by two independent coders
and results subsequently compared to adjust
different labels after consultation. Used
iterative annotation refinement to fix the
often-substantial interrater disagreements

Model trained on one participant
(125 min video and sensor signals).
Chose not to train on random
selection of data from all subjects,
stating there was a high probability
that activities with low frequency,
such as movement by external force,
would not be included in training
data.
Data for remaining nine subjects
used to test data. Reported F1 score,
precision, and recall and balanced
accuracy for each activity.

Recall, balanced accuracy. Overall balanced accuracy 96%,
ranges from 95–97%.
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Table 5. Cont.

Author, Date
Gold Standard Used for Comparison in
Development (Including Inter-Coder
Reliability Testing)

Validation Approach Used Assessment of Accuracy Accuracy of the System

Franchak, 2021 [37]

In laboratory study, video recorded via
handheld camcorder. Each video coded in its
entirety by two coders; interrater reliability
determined as overall agreement 97.6% and
kappa of 0.966. Home data collection case
study used 360-degree camera coded by
single coder using same categories as
laboratory study.

Individual model trained on 60% of
data from individual and tested on
remaining 40%. Group model LOSO
cross-validation. Report
classification accuracy. For home
data collection case study,
data from guided session combined
and split into training and testing
sets (60/40).

Sensitivity (i.e., proportion of actual
occurrences that were correctly
predicted).
For home-based data collection case
study.
Predicted positions from ML model
to actual coded positions in testing
data, as well as prevalence,
sensitivity, and positive predictive
value for each body position.
Correlations between actual and
predicted positions for all
available data.

Individual models: overall accuracy
averaged 97.9% (SD 2.37%). Group
model: overall accuracy averaged
93.2% (SD 0.053%). Home-based
data collection case study: overall
accuracy 85.2–86.6%.
All available data correlations
r = 0.911–0.976.

Airaksinen, 2022 [38]

Video 18–74 min in only n = 41 infants.
Annotated by two (n = 9) or three (n = 32)
independent researchers. Fleiss Kappa
interrater reliability of 0.95 of postures and
0.6 of movements.
Also used previously developed iterative
annotation refinement (IAR) method to
resolve ambiguities in the training data by
combining human- and machine-generated
labels in a probabilistic fashion.

No separate testing/training data
sets. A number of classification
activities reported which used either
10-fold or LOSO cross-validation.

Confusion matrices.

Active carrying vs. not 97%,
carrying vs. not 99%. Posture
overall kappa 0.93.
Movement overall kappa not given,
but kappa for each posture and
movement shown in a figure.

Madej,
2022 [20]

Manually labelled offline (not explicitly
stated what was used as the reference).

Mean activity vector distance used
to conclude whether the constructed
feature vector allowed the authors
to distinguish between the analysed
activities. Euclidean distance was
averaged over subjects for each
sensor separately, then for all
sensors in selected IMU and
configuration.

Not stated.

Best result accelerometer and
magnetometer on non-dominant
arm (trace of minimum distances
matrix = 8), worst was gyroscope on
lower back and magnetometer on
hip (trace = 4). Conclude no
differences between wrists, nor
between low back and hip.
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Table 6. Summary of classification model accuracy for each posture and movement, rows ordered by combined studies’ sample size and columns ordered by paper’s
chronological order.

Range
across
Papers

(n = Sum
of

Sample
across

Studies)

Parkka
2010, [21]

n = 2,
(4–8

Years) *

Boughorbel
2011, [22]

n = 1,
(2 Years)

Trost
2012, [23]
n = 100
(5–15
Years)

Nam
2013, [25]

n = 3
(16–20

Months)

Zhao
2013, [26]

n = 69
(3–5

Years)

Goto
2013, [27]

n = 10
(3–5

Years)

Hagenbuchner
2015, [28]

n = 11,
(PreSchool)

Hegde
2018,

n = 21,
[29]

(Healthy
Children)

Trost
2018, [30]

n = 11
(3–6

Years)

Ahmadi
and

Brooks
[33]
2020,

n = 31
(3–5

Years)

Ahmadi
and

Pavey
2020, [34]

n = 31,
(3–5

Years)

Airaksinen
2020, [35]

n = 22
(7

Months
Old)

Franchak
2021, [37]

n = 15
(6–18

Months)

Airaksinen
2022, [38]

n = 59
(7

Months
Old)

Posture/Movement

Walk 9–99%
(n = 191) 70–88% 93% 92–94% 81–97% 58% 36–73% 97–99% 61–63% 9–46% 65–81%

Run 18–100%
(n = 166) 77–99% 97 75–79% 69% 18–73% 68–75% 66–100% 68–88%

Intensity
classifica-
tion

51–89% (n
= 153) 58–98% 51–91% 69–93% 57–84% 68–93%

Lying
prone

67–98%
(n = 96) 98% 67% 98%

Lying
Supine

87–97%
(n = 96) 97% 97% 87%

Stand 66–100%
(n = 86) 74–95% 100% 66–98% 90–92% 96%

Carrying 45–99%
(n = 84) 45% 97–99%

Pivot 62–66%
(n = 81) 63–66% 62%

Crawl 65–84%
(n = 81) 65 84%

Side lie 77–81%
(n = 81) 77–81% 78%

Sit 53–100%
(n = 69) 74–95% 78–96% 74% 53% 95–99% 88% 93%

Rolling 65–99%
(n = 62) 94–99% 64%

Crawl
position

77–100%
(n = 25) 77–100% 88%
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Table 6. Cont.

Range
across
Papers

(n = Sum
of

Sample
across

Studies)

Parkka
2010, [21]

n = 2,
(4–8

Years) *

Boughorbel
2011, [22]

n = 1,
(2 Years)

Trost
2012, [23]
n = 100
(5–15
Years)

Nam
2013, [25]

n = 3
(16–20

Months)

Zhao
2013, [26]

n = 69
(3–5

Years)

Goto
2013, [27]

n = 10
(3–5

Years)

Hagenbuchner
2015, [28]

n = 11,
(PreSchool)

Hegde
2018,

n = 21,
[29]

(Healthy
Children)

Trost
2018, [30]

n = 11
(3–6

Years)

Ahmadi
and

Brooks
[33]
2020,

n = 31
(3–5

Years)

Ahmadi
and

Pavey
2020, [34]

n = 31,
(3–5

Years)

Airaksinen
2020, [35]

n = 22
(7

Months
Old)

Franchak
2021, [37]

n = 15
(6–18

Months)

Airaksinen
2022, [38]

n = 59
(7

Months
Old)

Still 85%
(n = 22) 85%

Turn 58%
(n = 22) 58%

Crawl
com-
mando

60%
(n = 22) 60%

Lying–
position
differenti-
ation

95–100%
(n = 3) 74–95% 95%

Climb 55–96%
(n = 3) 55–96%

Climb
stairs

99%
(n = 1) 99%

Falling 100%
(n = 1) 100%

Note: Five papers did not report accuracy, so these were excluded from this table; accuracy = ‘accuracy’ output from confusion matrix. Colour coding < 25 summed sample in green.
* Note a subset of the population was reported for one study (Parkka 2010, n = 2, age 4–8).
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4. Discussion

The aims of this systematic review were to determine how young children’s pos-
tures and movements have been objectively classified and measured using accelerometer
hardware and accompanying software, and the accuracy of current systems. The review
identified 20 peer-reviewed journal papers, 17 of which reported customised machine
learning-based algorithms, and three of which reported simpler, human-defined prediction
approaches. While the quality of papers varied greatly, over half scored very well across
study design and concurrent validity items. This review highlights the diversity of ap-
proaches that have been used to objectively capture children’s posture and movement and
the impact this had on the reported accuracy. The results highlight that there is currently
little consensus on: (1) which postures and movements to record, (2) the participant sample,
(3) the study type/developmental approach, (4) the hardware, (5) the software, and (6) the
validation approaches used. The synthesis below includes recommendations for each of
these factors to help guide future development.

4.1. Posture and Movement

The synthesis of the 20 peer-reviewed papers in this review highlights that there is
little consistency in which activities have been selected to objectively classify in young
children. Indeed, there were over 30 postures and movements targeted across the in-
cluded papers, with only some overlap between studies. As such, there is a need to
establish a consensus on the types of postures and movements to assess, a finding echoed
even in a recent scoping review that summarised how postures and movements had
been objectively measured in healthy adult populations [14]. The results highlight an
emphasis on measuring different lying postures in non-ambulatory-aged children
(<3 years old) [19,36] which aligns with the evidence linking time spent lying in different
positions with important developmental milestones in this age group. However, for older
age groups (>3 years old), there was considerable diversity in movements and postures
measured. The most commonly measured postures and movements across the included
papers were lying, sitting, standing, walking, and running. These align well with the
most frequently reported movements and postures measured in adults [14]. Few papers
examined child-specific movements (e.g., crawling [25,37] and climbing [22,24,25,32]) and
child-specific adaption of postures (e.g., different types of sitting such as kneeling and side
sitting [29]). This might be due to most papers (n = 19) using a prescribed, standard set
of tasks, that may not be reflective of free-living conditions. Even in studies examining
postures and movements, physical activity intensity also remained frequently studied,
which was justified through established links with childhood health [39]. Future research
should continue to focus on the postures and movements that have been identified as
important, while also considering diversification to more child-specific variations of these
postures and movements.

4.2. Participant Sample

The number of participants evaluated in the reviewed papers ranged from 1 to
100 participants. However, most studies involved fewer than 25 participants, and studies
rarely reported any sample size justification. This is a weakness consistent with research
conducted in adults, with most samples including approximately 20 participants [14]. It is
accepted that the generalisability of models developed on small cohorts is limited, despite
them often reporting very high levels of accuracy. For example, the highest and most con-
sistent accuracy reported for predicting walking was in a study with only one participant
(99–100%), while the studies with the largest samples had much greater variance in the
reported accuracy (e.g., 58–100%, n = 100, [23]). If the goal is to utilise the models beyond
the sample they are developed on, larger sample sizes are required that are representative
of the intended application population. While most of the samples were balanced for sex, it
remains unclear if there is a specific effect of sex on the objective measurement of posture
and movement in children from these studies. Similarly, there was a range of childhood
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age groups studied; however, none of the included studies specifically investigated the
influence of child age on the objective classification of postures and movements. A deeper
understanding of the influence of child age on prediction accuracy is warranted, as chil-
dren’s postures and movements change with age (e.g., the change in gait patterns from
toddlers to preschoolers). It has also been shown that a model developed on adults may
not perform well on children [24]. Thus, future research should specifically investigate the
influence of both sex and age on model predictions. Lastly, most of the studies involved
only typically developing children (19 out of 20 papers). The success of any developed
objective classification systems should be specifically checked on populations with atypi-
cal developmental profiles, for example, children that are known to move differently to
typically developing children, such as children with cerebral palsy [40].

4.3. Study Type/Development Approach

The twenty included papers were all aimed at methodological advancement and
therefore all utilised a validation study design. More than half collected the data in a
laboratory-based, controlled manner (i.e., with a prescribed set of activities). This approach
is common when developing methods, with most similar work on healthy adults also
collected in a laboratory environment using standardised activities [14]. While the remain-
ing papers all included a more ecologically valid environment (such as a play centre, the
home, or a childcare centre), they mostly used a structured set of activities rather than
free play. Only two investigations were cross-validated in a completely uncontrolled free-
living space [33,34]. Collectively, these studies found that the accuracy of the posture and
movement prediction found in a laboratory-based study was reduced by 15–20% when
assessed in free-living conditions [33,34]. All studies used either human coding of video or
direct observation as the gold standard. While this gold standard was demonstrated to be
sufficiently accurate and reliable [7], it might limit the study design to controlled settings,
given that videoing and observing free-living conditions is time-intensive and impractical
for longer durations. Therefore, while future work should include a cross-validation com-
ponent in free-living environments, this would be facilitated by computational approaches,
such as machine learning, in the processing of gold standard data.

4.4. Hardware

There was very little consensus on the type of hardware applied and how it was used
across the studies reviewed. Actigraph was the most frequently used commercial device
(eight studies), with a diverse range of other commercial and non-commercial sensors
otherwise applied. It is generally accepted that more sensors will increase the accuracy of
the algorithm developed [41]. However, this is not practical when long-term or large-scale
monitoring is planned. Given that most studies aimed to develop a system that could be
used for multiple day recording in large samples to establish links between postures and
movements with childhood health, they also generally only used a single sensor. There
was diversity in the location of single sensors, although the hip and the wrist were the
most common locations. One paper compared the accuracy between locations and found
that a hip sensor was slightly more accurate than the wrist for identifying 23 different
activities [34]. Research in healthy adults has demonstrated that a single sensor located on
the thigh is more suitable for differentiating sitting and standing in adults [10]; however
this has not yet been confirmed in children. While it appears that there is some consensus
that a single sensor is optimal for long-term childhood activity tracking, more research is
required to determine which location is optimal.

4.5. Software

The results of this review highlight a range of different software prediction approaches
used to objectively record children’s postures and movements. The one consistency was
that machine learning methods were favoured. Only three studies used algorithms that
required human-specified criteria, suggesting that this approach is becoming less favoured
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amongst the research community. Although the majority of studies employed conventional
machine learning, the most recent papers have started utilising deep learning, consistent
with human activity recognition (HAR) work in adults. In the conventional machine
learning models, there was considerable diversity relating to feature extraction. There
was no consistency in choice of overlapping or non-overlapping windows, the size of
windows, or the features selected. Some papers highlighted the influence of these aspects
on accuracy, with longer window sizes appearing more suitable. There was also a large
range of traditional machine learning models used but with Random Forests being the
most common. However, the interplay between features, window size, and model makes
recommendations on optimal approaches difficult.

4.6. Validation Approach and Accuracy

Traditionally, machine learning models are validated by splitting the data into training,
validation, and test data sets and, in the case of HAR, by splitting by participant rather than
by random windows of data. The training and validation data sets are then used to train
the model, with the validation set used to tune the hyperparameters of models coming
from the training set. Then, the accuracy is defined by applying the model to the previously
unseen test data. More recently, validation has been performed through cross-validation
techniques such as n-fold and leave-one subject-out (LOSO) cross-validation. In these
scenarios, the test data set is not seen at all in the model development, and this can be
considered to give independent accuracy measures. However, this approach has not been
undertaken in any of the papers reviewed (with the exception of Ahmadi, where a previous
model derived from laboratory data was tested against free-living data [33]). Further, this
practice requires large, labelled datasets which are not readily available for children. One
potential solution is for research groups to share data where similar accelerometers in
similar positions have been utilised, so one group can test their model on unseen data from
another group and vice versa. Many papers in this review have employed n-fold and LOSO
cross-validation methodologies but have applied them across all of the data collected.

The results of this study highlight a very large range of prediction accuracies across
each of the examined postures and movements. Walking and running were most com-
monly examined, with accuracy ranging from as low as 9% (walking) to as high as 100%
(running). Importantly, for the 13 postures and movements evaluated in samples of more
than 25 children (with the exception of ‘pivoting’), an accuracy of greater than 80% was
reported. This is meaningful, as this 80% threshold of accuracy has been largely accepted
as the cut-off for acceptable implementation of a model. However, given that only one
study assessed their model in free-living conditions, caution should still be applied when
interpreting these results.

4.7. Strengths and Weaknesses

A strength of this review is that the author team included both human health and
computational expertise, enabling transdisciplinary understanding and translation of the
findings. A further strength was that the review included quality assessment of the papers,
which is not always included in machine learning systematic reviews, again likely reflective
of transdisciplinary differences. Lack of quality assessments in other machine learning
reviews may also have been due to the limited applicability of most quality assessment
tools for machine learning-type studies, reflected in the need to modify the COSMIN quality
assessment to ensure it met the needs of this study.

A limitation of the study was that it did not include studies of older children which
may have useful information, but these studies were partly covered by another recent
review [14]. This review was focused on studies that utilised machine learning and
algorithm-based approaches to wearable movement sensors. Thus, papers that objec-
tively measured movements and postures using other data sources, such as video data,
were not summarised.
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4.8. Implications

This review suggests a number of implications for future machine learning model
developments, including the importance of ensuring an adequate sample in terms of size
and representativeness, sample age and sex, sensor location, separation of training and
testing data, laboratory and field testing, and inclusion of a broad range of postures and
movements commonly used by children. Further research should also explore the strengths
and weaknesses of various machine learning approaches.

5. Conclusions

Young children’s postures and movements are critical to their current and future
health and development, so high-quality evidence from robust measures is essential to
understanding how to support healthy development. The findings of this review suggest
that the rapidly developing machine learning field has demonstrated there is potential to
substantially enhance the quality of such evidence.
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Appendix A

Table A1. Sample search strategy.

CONCEPT 1 CONCEPT 2 CONCEPT 3 CONCEPT 4

Key Terms

acceleromet* OR actigraph*
OR “wearable sensor*” OR
imu OR “inertial
measurement unit*” OR
“inertial sensor*” OR sensor
OR “inertial motion unit*”
OR “inertial movement
unit*”

movement* OR postur*
OR biomechanic* OR
“bio-mechanic*” OR
activit* OR “physical
activit*” OR sit* OR lie
OR lying OR walk* OR
run*

child* OR infant* OR
baby or babies OR
toddler* OR preschool*
OR “pre-school*”

“machine learn*” OR
“transfer learn*” OR
“activity recognition”
OR HAR OR “deep
learning” OR
“hierarchical learning”
OR algorithm

key terms
(8 wildcards,
50 terms)

accelerometer OR
accelerometry actigraph OR
actigraphy “wearable
sensor*” OR imu OR
“inertial measurement unit*”
OR “inertial sensor*” OR
sensor OR “inertial motion
unit*” OR “inertial
movement unit*”

movement OR posture
OR biomechanic* OR
activity OR activities
“physical activit*” OR
sit OR lie OR walk OR
run

Child OR infant OR
baby OR toddler OR
preschool OR
“pre-school”

“machine learn” OR
“transfer learn” OR
“activity recognition”
OR HAR OR “deep
learning” OR
“hierarchical learning”
OR algorithm
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Table A1. Cont.

CONCEPT 1 CONCEPT 2 CONCEPT 3 CONCEPT 4

Subject Headings

Medline (MESH) Accelerometry/or
Actigraphy/

Movement/
Motor Activity/
exp Posture/
Biomechanical
Phenomena/
Physical Activity

Child, Preschool/
exp Infant/

exp Machine Learning/
Algorithms

Pubmed Accelerometry/or
Actigraphy/

Movement
Posture
Motor Activity
Biomechanical
Phenomena
Sedentary Behaviour

Child, Preschool/
exp Infant/

Machine learning
algorithms

Embase
Accelerometer/accelerometry,
actimetry, actigraph/inertial
sensor sensor/

Movement
(physiology)/body
posi-
tion/biomechanics/motor
activity, physical
activity

Infant, preschool child,
child toddler

Machine Learning
Artificial intelligence
Algorithm
Deep Learning

IEEE No subject headings

Scopus No subject headings

CINAHL
Accelerometry OR
Actigraphy OR Wearable
Sensors

motor activity OR
physical activity OR
human activities

Infant, Newborn OR
Child, preschool

Artificial Intelligence
Machine Learning
Deep learning
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