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Abstract: Autism spectrum disorder (ASD) poses as a multifaceted neurodevelopmental condition,
significantly impacting children’s social, behavioral, and communicative capacities. Despite extensive
research, the precise etiological origins of ASD remain elusive, with observable connections to brain
activity. In this study, we propose a novel framework for ASD detection, extracting the characteristics
of functional magnetic resonance imaging (fMRI) data and phenotypic data, respectively. Specifically,
we employ recursive feature elimination (RFE) for feature selection of fMRI data and subsequently
apply graph neural networks (GNN) to extract informative features from the chosen data. Moreover,
we devise a phenotypic feature extractor (PFE) to extract phenotypic features effectively. We then,
synergistically fuse the features and validate them on the ABIDE dataset, achieving 78.7% and 80.6%
accuracy, respectively, thereby showcasing competitive performance compared to state-of-the-art
methods. The proposed framework provides a promising direction for the development of effective
diagnostic tools for ASD.

Keywords: autism spectrum disorder (ASD); multimodal; graph neural networks (GNN); ABIDE;
functional magnetic resonance imaging (fMRI); recursive feature elimination (RFE)

1. Introduction

ASD is a neurodevelopmental disorder characterized by social communication im-
pairment, restricted interests, repetitive and stereotyped behaviors, and sensory abnor-
malities [1]. Treatment for ASD requires substantial financial resources and greatly affects
the daily lives of patients and their families. However, diagnosing ASD requires a broad
and systematic knowledge of medical practitioners and is also subject to the physician’s
subjective factors. Therefore, computer-aided diagnosis (CAD) [2] can provide an effective
solution for objective diagnosis.

As fMRI can show changes in blood flow in different areas of the brain, most re-
searchers use fMRI to explore the causes of ASD. Mostafa et al. [3] manually defined some
brain features and then used LR, SVM [4], LDA, and KNN to classify fMRI data, achieving
77% accuracy. The manual approach to defining features has significant limitations; it
requires knowledge of the relevant domain and the features are limited by the complexity
of what can be formulated by humans. Shao et al. [5] and Wang et al. [6] proposed their own
methods based on SVM to detect attention deficit hyperactivity disorder (ADHD) and ASD
and obtained an accuracy of 77% and 68%, respectively. Methods based on conventional
machine learning achieve good classification results on their well-designed feature selection
(dimensionality reduction) algorithms. The traditional methods of machine learning cited
above can only handle a limited amount of data and cannot yield good results when the
amount of data increases. In addition to traditional machine learning, some researchers
have also used deep learning algorithms to classify ASD and typical control (TC). Hu
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et al. [7] proposed a fully connected neural network model to classify ASD patients and
TC, and they also explained the features based on the weight of the model. Although a
69.81% accuracy was achieved, the network was designed manually, with a fixed number
of model layers and nodes, and limited data, making it difficult to generalize their model.
CNN, as the most widely used neural network, has shown its excellent performance in
many fields [8,9]. Sherkatghanad et al. [10] directly used their defined CNN model on fMRI
data to detect ASD. Even though an accuracy of 70.22% was achieved, the model takes too
long to train due to the large number of parameters, and more images need to be used to
train a more robust model. In addition, some researchers fed brain correlation matrices
and topological features obtained from processed fMRI data into their proposed neural
networks and achieved 70.2% accuracy [11]. Their model takes the topological features be-
tween each subject and the connections between the features, making it possible to achieve
good results while increasing the amount of data the model can handle. It is worth noting
that the fMRI data used in these studies are generally sourced from the ABIDE dataset [12].
This dataset increases sample size at the cost of uncontrolled heterogeneity, which causes
some disturbances to data samples as well as some loss in classification accuracy.

Brain activity crucially relies on communication between distinct neurons, akin to the
node representation update process observed in graph neural networks (GNNs). For the
cited research, both traditional machine learning and deep learning methodologies have
primarily focused on processing fMRI data to fit their models, e.g., CNN for direct feature
extraction on the image and LSTM for the time series data extracted from the fMRI data.
This lacks the design of models that effectively simulate inter-neuronal communication
within the brain. To address this issue, many investigators use GNN to detect ASD; some
investigators have harnessed fMRI data for training GNNSs, enabling the simulation of com-
munication patterns among different brain regions through node feature updates [13-15].
The potential of including mutual information (MI) loss (Infomax) has been investigated
to enable the model to better learn graph embeddings and increase the robustness of the
model [13]. They both used graph attention networks to process the input data [14,15];
the former proposed a new method called Pearson correlation-based spatially constrained
representation (PSCR), resulting in a modeling accuracy of 72.4%, while the latter enhanced
their model’s ability by designing a new attention network and using a larger synthetic
graph dataset with 4000 subjects to obtain an accuracy of 68.02%. These methods fit the
input patterns of the GNNs by calculating the functional connectivity of the fMRI data.
However, these caused a problem: the number of input subjects is small, while the dimen-
sionality of the functional connectivity matrix is large, leading to model overfitting. For this
problem, some researchers have used a combination of simple models [16], while others
have explored the similarity between samples to make greater use of data [17]. Both of their
methods led to some improvement in model accuracy. Many studies have demonstrated
the effective capacity of recursive feature elimination (RFE) in the diagnosis of ASD [18-21].
In their studies, some have used RFE for dimensionality reduction of input data, some have
used RFE to reduce the computational complexity of the model, and others have used RFE
for feature selection. By comparing the previous studies, they all achieved good results.
However, they ignored the contribution of phenotypic data to the classification results.
Though several papers incorporate phenotypic data [22-24], they predominantly utilize the
phenotypic similarity of subjects for graph construction and do not extract features from
phenotypic data, relegating it to auxiliary data status within their studies.

To solve the above problems, we propose a novel framework that combines RFE
with GNN. Moreover, we explore the correlation between ASD emergence and specific
phenotypic data such as age and gender. Our framework segregates the feature extraction
process for image data and phenotypic data before unifying them to discern ASD from TC.
The key contributions of this paper can be succinctly summarized as follows:

1.  There is a limited sample size of medical datasets and a substantial number of fea-
ture dimensions in graph data. To overcome this challenge, we leverage RFE to
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procure a subset of original graph features, which excludes features exhibiting lower
classification scores.

2. To combat the issue of overfitting in medical datasets, we incorporate phenotypic
data for ASD detection in our research. We devise a novel feature extraction module,
termed PFE, which is capable of extracting pertinent features from phenotypic data
by continually adjusting its parameters during neural network training, thereby
facilitating feature selection. By effectively capturing the underlying representations
from phenotypic data, PFE augments the detection of ASD.

3. Leveraging the aforementioned modules, we present a pioneering framework for
detecting ASD utilizing multimodal data. Comprehensive experiments conducted
on two medical datasets and comparisons with state-of-the-art techniques substan-
tiate the efficacy of the proposed framework. By incorporating RFE and PFE, we
surmount the challenge of the high-dimensionality and limited sample size of the
datasets while mitigating overfitting. Our framework is endowed with exceptional
processing capabilities for multimodal data and can seamlessly integrate diverse
modalities to distinguish ASD patients. This has profound implications for doc-
tors to employ computer-aided diagnosis techniques in the prevention and scientific
treatment of ASD.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

The Autism Brain Imaging Data Exchange I (ABIDE I) serves as a shared repository
comprising resting-state fMRI data, anatomical data, and phenotypic data. The extensive
complexity arising from the amalgamation of data across 17 distinct data collection sites
often leads researchers to test their models on partial datasets. In our investigation, we
meticulously excluded incomplete data, focusing on a meticulously selected cohort of
1035 subjects (505 ASD and 530 typical control) to ascertain the efficacy of our proposed
framework. Detailed subject information is presented in Table 1. To preprocess the selected
image data, we adopted the widely utilized Configurable Pipeline for the Analysis of
Connectomes (CPAC).

We used the brain anatomical template cc200 [25] to divide the preprocessed fMRI
into 200 ROIs. To transform data into the input mode of the graph neural network, we
converted each subject into an undirected graph, G = (V,E,Q)) , where V = [vy,...,vy]
denotes nodes set, E = [eq, ..., en] represents edges set in the graph and is a collection of
(vi, v]-) linking vertices from v; to v;, and Q = [wy, ..., wN] represents the edge weights
set. G has an associated node feature set, H = [hy, ..., hy|, where h; is the feature vector
associated with node v;. We use the Pearson correlation coefficient between different ROIs
as the node feature in the graph, which is calculated as follows:

H— Y- Yi-Y)
\/ZiTzl (xi — X)z\/ziTzl (Y —Y)*

where x, Y represents the time series for different ROI and yx;, Y; represents the i-th time
point of x, Y, respectively. Based on the Pearson correlation coefficient, we used the
absolute value of partial correlation coefficients as the weight of edges to alleviate the
over-smoothing.

For phenotypic data, based on previous research [26], we selected the data collection
site, sex, age, FIQ, VIQ, PIQ, eye_at_scan, and handedness_category as phenotypic features
in this paper. We used one-hot encoding for categorical features. We then normalized the
numerical features to the range [0, 1] to eliminate the impact of different scales. Finally, we
concatenated the category and numerical features as the final phenotypic feature vector,
P = [p1,...,pn]. The procedure can be formulated as Equation (2).

)

pi = O(Pcat) @ S(Pnum) (2)
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where p; denotes the i subject phenotypic feature and peqr and ppum indicate the category
and numerical features vectors, respectively. O(-) and S(-) denote the one-hot encode and
scaling, respectively.

For the ABIDE II dataset, the specific information is shown in Table 2. We selected
1110 samples for our study, including 518 ASD and 592 TC. We used the pipeline of Data
Processing Assistant for Resting-State fMRI (DPARSF) [27] for preprocessing, along with
the website http:/ /rfmri.org/DPARSF (accessed on 25 October 2023), thus showing more
detail. Afterwards, as in ABIDE I, we used the cc200 template to partition the brain into
200 ROI to construct the graph structure.


http://rfmri.org/DPARSF
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Table 1. ABIDE I demographic information.

ASD TC!

SITE Sex (m/f) Age Avg (SD) FIQ Avg (SD) VIQ Avg (SD) PIQ Avg (SD) Hand* 2 (I/m/r) Sex (m/f) Age Avg (SD) FIQ Avg (SD) VIQ Avg (SD) PIQ Avg (SD) Hand* (I/m/r)
CALTECH 15/4 27.4(10.3) 107.7 (12.4) 107.3 (15.1) 107 (11.5) 0/5/14 14/4 28 (10.9) 114.8 (9.6) 114.5 (12.8) 111.8 (9.5) 1/3/14
CMU 11/3 264 (5.8) 114.5 (11.6) 111.2 (13.7) 114.4 (10.6) 1/1/12 10/3 26.8 (5.7) 114.6 (9.7) 112.8 (9.8) 112.8 (9.8) 0/1/12
KKI 16/4 10 (1.4) 97.9 (17.5) N/A N/A 1/3/16 20/8 10 (1.2) 112.1 9.4) N/A N/A 2/3/24
LEUVEN 26/3 17.8 (5) 109.4 (13.1) 99.1 (20) 103.7 (16.8) 3/0/26 29/5 18.2 (5.1) 114.8 (12.9) 116.4 (10.8) 108 (13) 4/1/29
MAX_MUN 21/3 26.1 (14.9) 109.1 (14.1) N/A 1115 (10.8) 2/0/22 27/1 24.6 (8.8) 111.8 (9.3) N/A 110.9 (13.8) 0/0/28
NYU 65/10 14.7 (7.1) 107.1 (16.4) 104.9 (15.9) 108.3 (17.3) 0/0/75 74/26 15.7 (6.2) 113 (13.4) 112.8 (12.7) 110.2 (14) 0/0/100
OHSU 12/0 11.4 (2.2) 105.5 (21.1) N/A N/A 1/0/11 14/0 10.1 (1.1) 115 (11.1) N/A N/A 0/0/14
OLIN 16/3 16.5 (3.4) 111.3 (17.7) N/A N/A 4/0/15 13/2 16.7 (3.6) 113.9 (16.5) N/A N/A 2/0/13
PITT 25/4 19 (7.3) 110.2 (14.6) 107 (13.8) 110.8 (14.1) 3/0/26 23/4 18.9 (6.6) 110.1 (9.4) 107.7 (11) 109.6 (9) 1/0/26
SBL 15/0 35 (10.4) N/A N/A N/A 1/0/14 15/0 33.7 (6.6) N/A N/A N/A 0/0/15
SDSU 13/1 14.7 (1.8) 111.4 (18) 110.1 (18.4) 109.7 (16.4) 1/0/13 16/6 14.2 (1.9) 108.1 (10.5) 106.7 (10.4) 107.8 (12.2) 3/0/19
STANFORD 15/4 10 (1.6) 110.7 (16.1) 108.3 (20.4) 110.6 (12.5) 3/1/15 16/4 10 (1.6) 112.1 (15.4) 111.2 (19.7) 110.6 (15.6) 0/2/18
TRINITY 22/0 16.8 (3.2) 108.9 (15.5) 107.9 (14.4) 107.6 (15.7) 0/0/22 25/0 17.1 (3.8) 110.9 (12.2) 109.6 (13.7) 110.3 (10.9) 0/0/25
UCLA 48/6 13 (2.5) 100.4 (13.5) 101.6 (14.1) 99.8 (13.9) 6/0/48 38/6 13 (1.9) 106.4 (11.1) 107.1 (11.6) 104.3 (11.7) 4/0/40
UM 57/9 13.2 (2.4) 105.4 (17.1) 108.7 (20) 102.5 (19.9) 7/1/58 56/18 14.8 (3.6) 107.9 (9.7) 113.6 (12.8) 103 (12) 9/0/65
USM 46/0 23.5 (8.3) 99.7 (16.6) 95(19.3) 104.7 (16.7) 0/0/46 25/0 21.3 (84) 115.4 (15.1) 113.6 (16) 112.8 (14.2) 0/0/25
YALE 20/8 12.7 (3) 94.6 (21.6) 96.5 (23.1) 92.3(19.2) 6/0/22 20/8 12.7 (2.8) 105 (17.4) 106.8 (16) 101.3 (16.5) 4/0/24

L TC: Typical Control. FIQ: Full Intelligence Quotient. VIQ: Verbal IQ. PIQ: Performance IQ. avg: Average. SD: Standard Deviation. 2 Hand*: Handedness.
Table 2. ABIDE II demographic information.
ASD TC
SITE Sex (m/f) Age Avg (SD) FIQ Avg (SD) VIQ Avg (SD) PIQ Avg (SD) Hand* ! (/m/r) Sex (m/f) Age Avg (SD) FIQ Avg (SD) VIQ Avg (SD) PIQ Avg (SD) Hand* (1/m/r)

BNI 29/0 374 (16.1) 107.8 (13.7) N/A N/A 0/0/29 29/0 39.6 (15.1) 1124 (12.1) N/A N/A 0/0/29
EMC 19/5 8.2(1.2) N/A N/A 99.3 (14.3) 5/0/19 22/5 8.2(1) N/A N/A 99.4 (15.4) 6/0/21
ETH 13/0 20.6 (3.4) 109 (13) 111 (13.3) 105.2 (14.6) 0/0/13 24/0 239 (4.5) 116.5 (9.5) 114.2 (14.1) 114.1 (12.4) 0/0/24
GU 43/8 10.9 (1.5) 118.3 (15.4) 120.3 (15.2) 110.7 (15) 8/0/43 28/27 104 (1.7) 121.5 (13.8) 121.6 (15.2) 116.5 (13.3) 3/0/52
P 14/8 15.1 (4.9) 92.4 (24.5) 98.6 (23.3) 92 (22.8) 1/0/21 12/21 23.7 (11.6) 108.1 (18.6) 1115 (12) 112.9 (11.2) 4/2/27
U 16/4 25 (9.3) 116.3 (11.8) 117.8 (15) 110.3 (14.4) 2/3/15 15/5 23.8 (4.9) 117 (10.7) 115.3 (10.4) 115 (12.2) 1/2/17
KKI 41/15 10.3 (1.5) 103.4 (16) 109.9 (17.1) 105.3 (14.2) 2/8/46 99/56 10.3 (1.2) 114.3 (10.5) 118 (12.3) 110.7 (12) 10/12/133
KUL 28/0 23.6 (4.8) 106.6 (15.8) 109.6 (11.4) 106.3 (20.7) 6/0/22 N/A N/A N/A N/A N/A N/A
NYU._1 43/5 10.1 (5.7) 101.8 (18.3) 101 (16.5) 102.2 (19.1) 2/8/38 28/2 9.5 (3.3) 115.5 (15) 116.1 (15.7) 112.2 (15.2) 0/1/29
NYU_2 24/3 6.8(1.1) 107.2 (14.1) 110.8 (17.7) 107 (17.2) 4/7/16 N/A N/A N/A N/A N/A N/A
OHSU 30/7 11.8 (2.3) 106 (16.7) N/A N/A 1/1/35 27/29 104 (1.6) 117.5 (12) N/A N/A 0/1/55
OILH 20/4 21.8 (3.7) 114 (16.2) N/A N/A 4/4/16 20/15 24 (3.6) 111.2 (12.8) N/A N/A 0/3/32
SDSU 26/7 12.9 (3.3) 99.8 (14.7) 97.2 (15.5) 103.1 (18.2) 4/2/27 23/2 13.3 (3) 103 (11.7) 104.9 (10.5) 101.4 (14.7) 1/3/21
SU 19/2 11.2(1.2) 111.8 (15.7) 111.7 (16.8) 109.3 (15.2) 0/0/21 19/2 11 (1.3) 116.1 (14) 117.6 (16.8) 111.4 (13) 0/3/18
TCD 21/0 14.8 (3.3) 108.5 (15.3) 108.5 (15) 106.2 (16.4) 0/0/21 21/0 15.6 (3.1) 118.5 (13.2) 117.3 (15.8) 115.5 (11.8) 0/0/21
U_MIA 11/2 99 (2) 100.8 (20.1) 97.5 (21.3) 102.9 (20.9) 0/1/12 11/4 9.7 (2.1) 115.9 (14.7) 112.2 (12.4) 111.7 (19.3) 0/0/15
UCD 14/4 14.8 (2) 103.4 (12.2) 101.1 (15.9) 104.9 (12.8) 0/1/17 10/4 14.8 (1.7) 113 (11.2) 112.1 (10.5) 110.6 (12.8) 0/0/14
UCLA 15/1 11.7 (2.2) 102.1 (14) 101.6 (17.5) 104.4 (15.1) 2/0/14 11/5 9.7 (2.1) 114.5 (13.9) 111.9 (13.6) 114.1 (15.1) 1/1/14
USM 15/2 183 (7) 99.3 (20) 99.6 (14.4) 101.1 (17) 0/2/15 13/3 24 (7.8) 115.2 (16.2) 116.1 (14.6) 117.4 (16.4) 0/1/15

1 Hand*: Handedness.
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2.2. Methods

This manuscript presents a novel framework, depicted in Figure 1. The image data
and phenotype data are respectively preprocessed in different ways to obtain the functional
connectivity matrix and vector. Then, they are fed into RFE-GNN for feature extraction,
respectively, and finally they are concatenated and fed into the fully connected layer
for classification.

RFE-GNN
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Figure 1. Overview of the RFE-GNN.

The Framework of RFE-GNN

Each subject in the original fMRI is preprocessed into a graph, G = (V,E,Q),and G
has an associated node feature set, H = [hy, ..., hy], where n is the number of V. Since
the H is a symmetric matrix, and the atlas we used is cc200, the node features for each
subject have (19,900(200 x 199 + 2)) dimensions, while the total number of subjects is small,
only 1035 in ABIDE I and 1110 in ABIDE II, which causes the typical “small sample, high
dimension” problem.

In the context of challenging data scenarios where neural networks struggle to learn
meaningful features, often leading to severe overfitting and limited generalization capa-
bilities, we propose employing RFE to mitigate this issue. RFE aids in reducing feature
dimensions by leveraging a selected estimator. Subsequently, we utilize the SVM as the
estimator to recursively partition the feature space into two distinct parts. The separating
hyperplane of the SVM can be formulated using Equation (3).

f(H) = WsomH + bsym (3)

where H denotes the node features and Wsy s and bgy s are the SVM weights and bias. Af-
ter each partition, we use the distance between feature points and the separating hyperplane
as their importance scores, as formulated by Equation (4):

_ [Wsvmhi + bsvml

I.
l |Wsvmll»

)

where I; denotes the i-th importance scores, h; denotes the i-th feature, | - | and || - ||2 denote
the 11, 12 norm.

Subsequently, the feature ranking is determined based on the obtained scores; features
with lower scores are successively eliminated. This iterative process persists until the
number of remaining features matches the predetermined value we have set.

Given that the underlying graph is an undirected weighted graph, and our objective
pertains to graph classification, it becomes imperative to aggregate comprehensive global
information from the entire graph. To achieve this, we adopt GraphConv [28], which
incorporates edge weights while updating node representations. Specifically, GraphConv
entails the multiplication of edge weights with neighboring node representations, followed
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by summation to construct the information of neighboring nodes. Subsequently, this
information is propagated to the target node. To mitigate the over-smoothing [29] effect,
our proposed framework uses only two layers of GraphConv for learning node embeddings.
The specific process can be succinctly represented through the following formula:

H =W H '+ w, ¥ (H]l._l -jS) ®)
J.jeN;

where W; and W, are network parameters. H' ll indicates the i-th node feature in the [-th
layer representation. N; represents the set of neighboring nodes of v;, ();; represents the
weight coefficient of the edge between v; and v;.

Additionally, we integrate BatchNorm layers following each convolution step to accel-
erate convergence and reduce overfitting. Subsequently, employing global max pooling en-
ables the selection of an appropriate node representation as the overall graph representation.
The specific operational process is concisely represented through the following formula:

G =max({hy,...,hn}) (6)

where G represents the graph representation, N represents the total number of nodes in the
graph, and h; represents the feature representation of v; in the graph. After graph feature
extraction, the data are processed into a two-dimensional vector.

In real-world diagnostic contexts, the reliance on single-modal data alone often proves
inadequate for achieving accurate diagnoses. Professional medical practitioners adopt
a holistic approach by analyzing multimodal information pertaining to the patient to
arrive at comprehensive judgments. Similarly, in the domain of computer-aided diagnosis,
we capitalize on the complementarity inherent in diverse modalities of information to
make well-rounded assessments. Beyond medical imaging data, non-imaging phenotypic
data offers valuable supplementary insights into the associations among subjects. After
preprocessing, the phenotypic data are encoded into the vector denoted as P. Subsequently,
to obtain its latent representation, we design a PFE that comprises an MLP with L hidden
layers. In this study, we set L to 1, and the output vector dimension of the MLP aligns with
that of the imaging data features. After processing the original phenotypic data with MLP,
its features can be represented as:

P = opep(WarpP + bpyrp) )

where o p represents the activation function and Wy p and by p represent the layer
parameters. P and P’ refer to the original and the processed phenotypic vector, respectively.

Upon extracting features from both image data and phenotypic data, we acquire
their respective latent representations. However, directly feeding these representations
into the classifier may yield suboptimal results, as the presence of unimportant features
can influence the outcomes, stemming from varying importance levels among the data.
To address this concern and effectively fuse information from diverse modalities, we
introduce an attention mechanism as a viable solution. The attention mechanism efficiently
captures and integrates relevant information, thus enhancing the overall performance of
the classification process.

In the process of calculating the attention score, we concatenate the representations
of image data and phenotypic data as the input A, and the operation can be formulated
as follows:

A=Ga P ®)

where A represents the attention input and @ represents vector concatenation.
We use a scaled dot-product model as the scoring function to calculate the weight; there-
fore, the calculation of the attention coefficient, «, can be expressed in the following formula:
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ATA

a = Softmax( \@) )
where AT is the transpose of the input vector and D represents the dimension of the
input vector.

After obtaining the attention score, we multiply it with the original input A to obtain
the classifier’s input. The classifier consists of two fully connected layers, and each layer is
followed by ReLU activation. We chose the cross-entropy function as our objective function,
which can be formulated as follows:

1 & _
L=——=) vilog#) (10)
K i=1

where K represents the number of subjects and y; and ¥; represent the true and predict
value, respectively. We minimize the objective function to obtain the best classification
performance.

3. Experiments and Results

In this section, we meticulously validate the efficacy of our proposed framework in
adeptly capturing the salient features present in multimodal data, leveraging the ABIDE
datasets. In Section 3.1, we describe the training steps of the model and some parameter
settings. In Section 3.2, we present the calculation formulas employed to measure the
performance metrics. In Section 3.3, we substantiate the effectiveness of our framework
by comparing recent methods. In Section 3.4, the raw features and embedding learned by
RFE-GNN over ABIDE datasets were visualization. In Section 3.5, the ablation experiments
is used to shedding light on the contribution of individual components. Moreover, ROC
curves are plotted, providing a more intuitive visualization of the performance improve-
ments achieved by our framework. In Section 3.6, we scrutinize the impact of diverse
hyperparameter values on the overall system performance.

3.1. Training Setup

In this study, we implemented our model in the Python environment using the Pytorch
library and trained it on the Linux platform using 12 vCPU Intel(R) Xeon(R) Platinum
8255C CPU @ 2.50 GHz with 43 GB memory and an NVIDIA GeForce RTX 2080 Ti with
11 GB GPU memory. The dataset was randomly split into training and test sets in the
ratio of 8:2. During the training process, the fMRI data were preprocessed into functional
connectivity matrices, after which they were feature-selected using RFE and then fed into
GNN to extract features. The phenotype data, on the other hand, were encoded into two-
dimensional vectors by one-hot encoding and then feature extraction was performed using
PFE. Afterward, we concatenated them and used the attention layer to assign different
weights to the features. Finally, the resulting vectors were fed into a fully connected layer
to obtain the class to which the subject belonged. The values of the parameters involved in
this experiment are shown in Table 3.

Table 3. Experimental parameter settings.

Parameter Description Value
Train epoch 100
BatchSize 64
Learning rate 0.001
Weightdecay 0.05
Stepsize 20
Gamma 0.5
GraphConv layers 2

Optimizers Adam
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3.2. Statistical Metrics

As a binary classification task, the commonly used evaluation metrics include Accuracy
(ACCQ), Sensitivity (SEN), Precision (PRE), and F1_score, which can be calculated as follows:

ACC= TP+EII:::FFII\\II+ FN ()
SEN = RECALL = TpiiPFN (12)
PRE = TPTFP 13)
F1_score = —2;;5 _E'_ *S]SEENN (14)

In the above formulas, TP, FP, TN, and FN represent true positive, false positive, true
negative, and false negative, respectively. ACC represents the proportion of correctly pre-
dicted samples to the total number of subjects. SEN and RECALL represent the proportion
of correctly predicted positive samples to the total positive samples. PRE represents the pro-
portion of true positive samples to the total predicted positive samples. To comprehensively
evaluate the model’s prediction performance, we use the F1_score, which considers both
PRE and SEN. AUC are also used as an evaluation metric, which is obtained by calculating
the area under the ROC curve.

3.3. Comparison with State-of-the-Art (SOTA) Models

In this section, we summarize the SOTA methods for detecting ASD, which can be
divided into two categories based on the datasets. We also plot the distribution of the
accuracy of different methods on different sample sizes. It is worth noting that in our
experiments we counted the computational efficiency of our model. Following the setup
experiments in Section 3.1, the model training for 100 epochs takes 264.95 s. In the validation
mode, it takes only 0.2 s to evaluate a subject.

According to the data presented in Tables 4 and 5, our framework exhibits superior
performance compared to recent SOTA methods. These results substantiate the framework’s
ability to effectively extract pertinent features from both image data and phenotypic data.

Table 4. Comparison of the performance of the SOTA methods in ABIDE I.

Methods Classifier Samples Acc Sen

Yang 2019 [30] Ridge 505 ASD, 530 HC  0.7198  0.7089
Bernas 2018 [31] LDA 403 ASD, 468 HC  0.733  0.667
Song 2019 [32] LDA + KNN 119 ASD, 116 HC  0.7486  0.7167
Madine 2020 [33] HGNN 155 ASD, 186 HC 0.752 N/A
Jung 2019 [34] RFE + SVM 86 ASD, 83 HC 0.763  0.792
Liu 2020 [35] MTFS-EM + SVM 403ASD, 468 HC  0.768  0.725
Zheng 2019 [36] MEN + SVM 66 ASD, 66 HC  0.7863 0.8

Ours RFE + GNN + PFE 505 ASD, 530 HC  0.7874  0.7429

Table 5. Comparison of the performance of the SOTA methods in ABIDE II.

Methods Classifier Samples Acc Sen

Liu 2021 [37] BL 487 ASD, 556 HC  0.6529  0.6293
Zhao 2019 [38] CAE + CNN 303 ASD,390HC 0.653 N/A
Deng 2022 [39] ST-Transformer 521 ASD, 593 HC 0.7061 0.6875
Liu 2023 [40] STCAL 521 ASD,592HC  0.72 0.744
Zhang 2021 [41] Sparse LR 60 ASD, 89 HC 0.7836  0.7391
Wismu 2020 [42] IsXGC + SVM 24 ASD, 35 HC 0.79 N/A
Ours RFE + GNN + PFE 518 ASD, 592 HC 0.8036 0.7624
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As demonstrated in Figure 2, our framework not only surpasses the performance of
most current methods but also successfully handles a larger data sample. This robustness
and competitiveness affirm the efficacy of our framework in ASD detection. Furthermore,
we observe that for various SOTA methods applied to the ABIDE II dataset, the sample
size of their models is considerably smaller than that of ABIDE I. A possible reason for this
disparity is the lack of preprocessed data available for the ABIDE II dataset. To address
this issue, we utilize preprocessed data derived from the procedural description provided
in [39] in our study.

Ours
080 11sx6C+svu -
o Ours @
0.78 ~Sparse LR
MTFS-EM+SVM @
0.76 1 R[’EHV.M
; ® HGNN
>
& 074+ LDA+KNN
o LDA @
5 STCAL
3 0.724 Ridge @
<
ST-Transformer
0.70
0.68
066 ® ABIDEI
’ ABIDEIl CAE+CNN @ BL
200 400 600 800 1000

Subjects Size
Figure 2. Comparison of the performance with previous literature on ABIDE I and II.

3.4. Visualization the Classification

In this section, we use t-SNE [43] to visualize the classification performance of
the framework we proposed. t-SNE is a data visualization tool that can reduce high-
dimensional data to two dimensions using PCA and represent it on a flat plot.

Figures 3 and 4 present compelling visualizations of the features learned by our
framework. Upon careful examination, it becomes evident that our proposed approach
yields superior separability compared to directly reducing the original data input. This
observation serves as a strong indication of the efficacy of our proposed framework in
effectively extracting relevant features, thereby enhancing the discriminative capabilities of
the model.

PCA in ABIDE | Our in ABIDE |
LN XY
A 2 ”'0 o ®
A o4 Lt o ..f‘r .8':.°..~
o ° .o.}.,o
. g A‘o..ﬂ oo 82
e N .&:: [
» * ‘l " A
i m T ORI
5‘A Ao A \..:.-'.‘AA . A s AA Aﬁr;:
A, ‘0 . A ’ }A‘AMA
A ° ,haa o %a% 4, A L
A A me F YEN Aﬁ; R
« *, A : AL A‘AAAA‘t‘ti
(a) (b)

Figure 3. Visualization of the features learned by different methods in ABIDE I. (a) PCA in ABIDE L
(b) Our in ABIDE L.
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Figure 4. Visualization of the features learned by different methods in ABIDE II. (a) PCA in ABIDE II.
(b) Our in ABIDE IL.

3.5.

Comparison with Different Models

In this section, we conduct ablation experiments for different methods, showing the

effects of the various modules of our model as well as the robustness of the methods. Fur-
thermore, to provide a visual understanding of the classification performance, ROC curves
are adeptly plotted, facilitating insightful observations and conclusive interpretations.

SVM: SVM finds a hyperplane in the feature space of input data such that the distance
between each sample and the hyperplane is maximized, achieving the classification
effect of the original data. In the subsequent experiments, we use the SVC model from
the sklearn Python library. Parameters are set as regularization parameter = 1.0 and
kernel = ‘linear’, and the remaining parameters are set to default.

RF [44]: Random Forest is an ensemble algorithm that builds multiple decision trees
on data and combines the results. The RF model is also found in the sklearn library;
the parameter of n_estimators = 1600, and the other is set to default.

GAT [45]: GAT is a graph convolutional layer based on GCN. It uses a self-attention
mechanism to aggregate neighbor nodes and adaptively match the weights of different
neighbors. The GATConv we use is in the torch_geometric library, and the layer
parameter is set to default; in the GAT model, there are two layers.

From Tables 6 and 7, we can see that both RFE and PFE contribute to the improvement

of model accuracy. When we add both modules to the model, the accuracy is improved
even more. Meanwhile, we also use our modules on different models and find that the
accuracy is improved to different degrees, indicating that our method is generalizable.

Table 6. Different method performance in ABIDE I.

Methods Acc Sen Pre F1_Score
SVM 0.6232 0.5979 0.6077 0.6028
SVM (pheno 1) 0.6522 0.5842 0.6629 0.6211
RF 0.6232 0.5502 0.6579 0.5992
RF (pheno) 0.6667 0.6 0.6477 0.623
GAT 0.6763 0.6972 0.6909 0.6941
GAT (pheno) 0.7005 0.6995 0.7023 0.7009
GAT (RFE 2) 0.715 0.7045 0.7092 0.7068
Ours 0.6715 0.7579 0.6154 0.6792
Ours (pheno) 0.7291 0.7813 0.6944 0.7353
Ours (RFE) 0.7488 0.7579 0.7277 0.7425
Ours (pheno, RFE) 0.7874 0.7429 0.8041 0.7723

1 pheno: denotes adding phenotypic information to the model. 2 RFE: denotes using recursive feature elimination

in the model.
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Table 7. Different method performance in ABIDE II.

Methods Acc Sen Pre F1_Score
SVM 0.6216 0.519 0.6567 0.5798
SVM (pheno) 0.6667 0.549 0.6667 0.6022
RF 0.6486 0.5455 0.6207 0.5806
RF (pheno) 0.6712 0.56 0.7077 0.6252
GAT 0.6802 0.6276 0.6477 0.6375
GAT (pheno) 0.7207 0.6542 0.7368 0.6931
GAT (RFE) 0.7252 0.6905 0.745 0.7167
Ours 0.6937 0.6 0.7582 0.6699
Ours (pheno) 0.75 0.7604 0.73 0.7449
Ours (RFE) 0.7808 0.7267 0.7533 0.7398
Ours (pheno, RFE) 0.8063 0.7624 0.8021 0.7817

As depicted in Figure 5, the AUC serves as a valuable metric denoting the discrim-
inative power of the model. Higher AUC values indicate superior model performance.
Our framework achieves AUC values of 0.82 and 0.86 on the ABIDE I and II datasets,
respectively, outperforming the comparative methods.

ABIDEI ROC ABIDEI ROC

0.8

o
Y

SVM(AUC = 0.67)
SVM_pheno(AUC = 0.71)
~—— RF(AUC = 0.66)

—— RF_pheno(AUC = 0.72)
—— GAT(AUC = 0.68)

—— GAT_pheno(AUC = 0.72)
—— GAT_RFE(AUC = 0.73) 0241
—— Our(AUC = 0.70) i
~—— Our_pheno(AUC = 0.77)
~— Our_RFE(AUC = 0.79)
Our_pheno_RFE(AUC = 0.82)

SVM(AUC = 0.65)
SVM_pheno(AUC = 0.71)
—— RF(AUC = 0.68)

—— RF_pheno(AUC = 0.73)
—— GAT(AUC = 0.70)

—— GAT_pheno(AUC = 0.75)
—— GAT_RFE(AUC = 0.75)
~— Our(AUC = 0.71)

True Positive Rate

True Positive Rate

—— Our_pheno(AUC = 0.81)
~ Our_RFE(AUC = 0.82)
Our_pheno_RFE(AUC = 0.86)

0.8 1.0 0.0 0.2 0.8 1.0

0.4 0.6 0.4 0.6
False Positive Rate False Positive Rate

(a) (b)
Figure 5. ROC curve comparison of different methods. (a) Different methods of ROC on ABIDE I.
(b) Different methods of ROC on ABIDE II.

3.6. Hyperparameter Discussion

To investigate the influence of varying numbers of remaining features when employing
RFE, we conduct a thorough examination by adjusting the parameter N and observing
its impact on dataset performance. Specifically, we set the range of N as [500,5000], with
increments of 500. We utilize model ACC and the AUC to assess the performance holistically.
The results, as depicted in Figure 6, indicate that the ACC and AUC attain their peak values
when N is set to 2500 for ABIDE I and 3500 for ABIDE II, respectively.
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Figure 6. Comparison of different N with RFE. (a) The impact of our method on ABIDE I. (b) The
impact of our method on ABIDE II.

4. Discussion

Based on the above results on ABIDE, we validate the effectiveness of the proposed
framework. In Section 3.3, by observing the number of subjects, accuracy, and sensitivity,
we substantiate our model’s excellent performance. Visualization of the classification
demonstrates the discriminability of the features extracted by our framework, which can
better classify ASD and TC. These are all due to RFE and PFE. RFE, by leaving behind
the graph features that are useful for detecting ASD by recursively ranking the feature of
graph data, effectively overcomes the overfitting caused by the large data samples. PFE
extracts the phenotypic features through training, which further improves the accuracy. The
ablation experiments demonstrate the enhancement of the PFE and RFE and also illustrate
that the combination of graph data and phenotypic data to detect ASD is effective and
generalizable, which provides a possible method for the CAD of ASD.

There are some limitations in our method. First, in the process of constructing graph
data for fMRI, we consider the relationship of spatial scales but ignore the information
on temporal scales. Second, in the feature selection for graph data, there are deficiencies
in the method of calculating the importance of features. Finally, for the fusion of graph
features and phenotypic features, we only perform a simple concatenate of them and do
not consider the inter-modal feature relationships. Therefore, in future research, we will
explore the above aspects.

5. Conclusions

In this paper, we present a novel framework designed for ASD detection utilizing
multimodal data. Our approach incorporates RFE to efficiently reduce the number of
features fed into the graph convolution layer, mitigating the risk of overfitting. To further
enhance performance, we introduce phenotypic data and devise a PFE for effective feature
extraction. Through rigorous comparative analysis against recent SOTA methods, we
demonstrate the superiority of our proposed framework. The promising results obtained
from our research suggest its potential applicability in the realm of CAD, thus contributing
to the advancement of ASD detection.
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Abbreviations

The following abbreviations are used in this manuscript:

ASD Autism Spectrum Disorder

RFE-GNN  Recursive Feature Elimination-Graph Neural Network
PFE Phenotypic Feature Extractor

fMRI functional Magnetic Resonance Imaging

ABIDE Autism Brain Imaging Data Exchange

CAD Computer-aided Diagnosis

ADHD Attention Deficit Hyperactivity Disorder

LR Logistic Regression

SVM Support Vector Machine

LDA Linear Discriminant Analysis

KNN K-nearest neighbors

TC Typical Control

GNNs Graph Neural Networks

PSCR Pearson Correlation-based Spatially Constrained Representation
CPAC Configurable Pipeline for the Analysis of Connectomes
ROIs Regions of Interest

FIQ Full Intelligence Quotient

VIQ Verbal Intelligence Quotient

PIQ Performance Intelligence Quotient

MLP Multilayer Perceptron

ROC Receiver Operating Characteristic

AUC Area Under Curve

PCA Principal Components Analysis

SOTA state-of-the-art
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