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Abstract: In recent years, super-resolution imaging techniques have been intensely introduced to
enhance the azimuth resolution of real aperture scanning radar (RASR). However, there is a paucity of
research on the subject of sea surface imaging with small incident angles for complex scenarios. This
research endeavors to explore super-resolution imaging for sea surface monitoring, with a specific
emphasis on grounded or shipborne platforms. To tackle the inescapable interference of sea clutter, it
was segregated from the imaging objects and was modeled alongside I/Q channel noise within the
maximum likelihood framework, thus mitigating clutter’s impact. Simultaneously, for characterizing
the non-stationary regions of the monitoring scene, we harnessed the Markov random field (MRF)
model for its two-dimensional (2D) spatial representational capacity, augmented by a quadratic term
to bolster outlier resilience. Subsequently, the maximum a posteriori (MAP) criterion was employed
to unite the ML function with the statistical model regarding imaging scene. This hybrid model
forms the core of our super-resolution methodology. Finally, a fast iterative threshold shrinkage
method was applied to solve this objective function, yielding stable estimates of the monitored scene.
Through the validation of simulation and real data experiments, the superiority of the proposed
approach in recovering the monitoring scenes and clutter suppression has been verified.

Keywords: real aperture scanning radar; super-resolution imaging; sea clutter; Markov random field

1. Introduction

Real-aperture scanning radar (RASR) imaging technology is widely harnessed for
scene monitoring and situational awareness, given its efficacy in rapid imaging and minimal
configuration demands [1–3]. It attains a high range resolution by emitting linear frequency
modulation (LFM) signals and subsequently employing pulse compression in the range
direction. However, the angular resolution of RASR remains relatively low due to the
spatial constraints on the aperture [4]. This limitation significantly restricts the potential
application of RASR imaging. Fortunately, the azimuthal echo of RASR can be effectively
conceptualized as the result of convolving the antenna pattern with the target’s scattering
coefficients. Consequently, deconvolution technology can be used to facilitate estimation of
the target’s scattering coefficient [5]. This approach is often referred to as a super-resolution
technique. In recent years, researchers have increasingly employed this technology to
enhance the resolution of RASR [6–11].

Presently, the published super-resolution imaging methods can be broadly classi-
fied into two distinct categories. Those in one category operate without specific prior
information. Within this category, two notable methods are the iterative adaptive (IAA) ap-
proach [12,13] and the truncated singular value decomposition (TSVD) approach [14,15].
They are primarily used for global super-resolution estimation. The IAA method represents
a non-parametric spectral estimation technique that excels at suppressing sidelobes while
undertaking super-resolution estimation. However, it demands a substantial number of
snapshots to achieve a high super-resolution ratio, making it computationally complex. On
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the other hand, the TSVD method is efficient in mitigating the impact of noise by discarding
the singular value part of noise in the signal space, which is a convenient and fast approach
to implement. However, its effectiveness in improving resolution is somewhat limited.

The super-resolution methods of the second category rely upon specific prior informa-
tion to guide the deconvolution estimation. One commonly used approach in this category
is the regularization method, which incorporates norm-based prior information based on
linear observations. For instance, the classical Tikhonov method, which capitalizes on prior
knowledge concerning the continuity of the imaging scene and penalizes target character-
istics using the L2 norm, is capable of yielding relatively stable and continuous imaging
results [16,17]. Nevertheless, the super-resolution ratio attained by this method tends to
be relatively low. Additionally, methods incorporating the L1 norm and total variation
(TV) norm have been explored. These norms can effectively distinguish sparse targets or
preserve target contour information [18–21]. Nonetheless, the regularization methods may
not offer a precise representation of sea clutter in the imaging process, rendering them
susceptible to clutter interference.

Methods grounded in statistical optimization exhibit the capacity to adaptively in-
corporate prior information related to noise, clutter, and targets [22–24]. In reference [25],
sparse prior knowledge was introduced to enhance the resolution of the super-resolution
method. The measured data demonstrated their ability to distinguish critical targets. Ref-
erence [26] explores the use of mixed prior knowledge to reinforce the noise resilience
of super-resolution methods. Additionally, the incorporation of the variational Bayesian
method has been utilized in addressing outlier issues [27]. However, these methodologies
are primarily tailored for ground imaging.

Pioneering works by researchers for sea surface targets were exhibited in references [28,29].
In their innovative approaches, sea clutter is characterized as Rayleigh distribution, while targets
are assumed as Laplace and Lognormal distributions, respectively. These methodologies have
shown promise in mitigating sea clutter while enhancing target resolution. Furthermore, refer-
ence [30] delves into sea clutter distribution at small incident angles, corroborating its feasibility
through measured data. Unfortunately, for all these methods, no attention is given to the noise
distribution, thus discounting the effect on the results. Reference [31] embraces both clutter and
noise within the purview of the imaging process. Nevertheless, it resorts to a Gaussian mixture
model for compounded noise and sea clutter, which leads to the deficiency of elegant physical
interpretability. Notably, that study primarily conducted semi-physical experiments and lacks
the robust validation necessary to assert its efficacy in real-world scenarios.

This manuscript presents an innovative super-resolution imaging method designed
for sea surface scene monitoring on ground-based or shipborne platforms. It introduces
a hybrid observation model that encompasses clutter and noise in addition to targeting
distributions within a Bayesian criterion. Firstly, noise characterization is achieved through
I/Q channels due to the orthogonal demodulation of the radar imaging system. Next, the
sea clutter is represented as a Weibull distribution, providing the suitability for small inci-
dent angles and a reasonable dynamic range . Then, a joint modeling strategy is advocated
by incorporating clutter distribution alongside I/Q channel noise within the maximum
likelihood (ML) framework to eliminate the impact of clutter and noise. Additionally,
to enhance the prior representation for target distribution, a Markov random field with
two-dimensional representation capabilities is employed. This facilitates effective repre-
sentation of the scene contours and the targets of interest simultaneously. Additionally,
quadratic functions are utilized to stabilize the targets against outlier interference. The
maximum a posterior criterion plays a central role, harmonizing the likelihood function and
the prior distribution in formulating the final objective function. To address the complexity
of this objective function, a robust fast iterative threshold shrinkage method is employed
for meticulous computation.

The structure of this article is organized as follows: in Section 2, we establish the super-
resolution imaging model for RASR. Subsequently, an objective function is derived based
on a hybrid model in a Bayesian framework. Then, a fast iterative threshold shrinkage
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method is adopted to solve this objective function. Section 4 is dedicated to presenting the
outcomes of numerical simulations and real data experiments. Finally, the conclusion is
provided in Section 5.

2. Establishment of Echo Model for RASR

In this section, we initially formulate the echo model for the RASR. Figure 1 illustrates
the operational configuration of a shipborne scanning radar in which the antenna revolves
around the ship’s position and emits LFM signals for the purpose of sea surface detection.
We assume that the transmitted LFM signal is

sout(τ) = rect
(

τ

Tr

)
cos
{

2π fcτ + πKτ2
}

(1)

where τ is the fast time variable, Tr denotes the width of the pulse signal, fc is the carrier
frequency, and K denotes the frequency modulation rate of LFM. rect(·) is a rectangle
window function with width Tr. For target P at distance R0, the echo signal within the
scanning time can be written as

sP0(τ, t) = x0h(t− t0) cos
{

2π fc(τ − 2R0/c) + πKr(τ − 2R0/c)2
}

(2)

where t is the slow time variable, x0 denotes the scattering coefficient of the target, h(t) is
the radiation pattern of the antenna, t0 is the center time while scanning target P, fc denotes
the carrier frequency, and c is the light speed. After I/Q orthogonal demodulation, the
baseband complex signal can be obtained as

sP(τ, t) = x0h(t− t0) exp
{

jπKr(τ − 2R0/c)2
}

exp
{
−j

4π

λ
R0

}
(3)

where λ denotes the wavelength. Equation (3) represents the echo when the platform is
stationary. While the platform is in motion, the distance R0 varies with time. Referring to
Figure 2, in the scenario where the platform moves uniformly along the y-direction during
the imaging procedure, the distance history can be expressed as follows:

RP(t) =
√

R2
0 + (vt)2 − 2R0vt cos θ0 cos ϕ (4)

where v is the moving speed, θ0 denotes the initial azimuth angle of target P, and ϕ is the
grazing angle. Due to the rapid scanning motion and relatively slow platform movement,
it is reasonable to approximate the distance history as exhibiting linear variation [32]

RP(t) ≈ R0 − vt cos ϕ. (5)

Figure 1. The imaging sketch of RASR.
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Figure 2. Geometric relationship diagram of RASR for a moving platform.

According to Equation (5), the echo formula can be rewritten as

sP(τ, t) = x0h(t− t0) exp
{

jπKr(τ − 2(R0 − vt cos ϕ)/c)2
}

exp
{
−j

4π

λ
(R0 − vt cos ϕ)

}
. (6)

To facilitate spatial modeling and analysis, convert time variables into a spatial variable
with t = θ/ω and τ = 2r/c, where θ is the azimuth angle variable and r is the range variable.
After conducting pulse compression and motion compensation, the echo expression for
one target can be simplified as

sP(r, θ) = x0h(θ − θ0)sinc
[

2B
c
(r− R0)

]
exp

{
−j

4π

λ
(R0 − vθ/ω cos ϕ)

}
(7)

For area targets with scattering coefficient x(r̄, θ̄), the echo can be written as the
convolution of the scattering coefficient and the point target echo.

sΩ(r, θ) =
∫∫

x̃(r̄, θ̄)h
(
θ − θ̄

)
sinc

{
2B
c
(r− r̄)

}
dr̄dθ̄ exp(jϕ(θ)) (8)

where x̃(r̄, θ̄) = x(r̄, θ̄) exp
{
−j 4π

λ r̄
}

is the phased scattering coefficient, and ϕ(θ) =
4π 0

λ vθ/ω cos ϕ is a Doppler phase term, which can be eliminated through phase com-
pensation. If we focus on the azimuth echo of a fixed distance r̄, it can be found that
the azimuth echo derives from the convolution of the target scattering coefficient and the
azimuth antenna pattern

sA(θ) =
∫

x(θ̄)h
(
θ − θ̄

)
dθ̄ (9)

To further facilitate the numerical analysis, the convolution model in (9) can be dis-
cretized by a matrix vector form:

s = Hx (10)
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where s = [s1, . . . , sN ]
T is the measured data, N denotes the length of the vector,

x = [x1, . . . , xN ]
T is the discretized targets distribution, and H is the convolution matrix

derived from the antenna pattern

H = [h(θ1), h(θ2), . . . , h(θN)] =



h1 hL · · · h2

h2 h1
. . . h3

...
. . .

...
hL

. . .
. . .

hL · · · h2 h1


N×N

, (11)

where h1, . . . , hL is the discretized values of the antenna pattern.
Based on the convolution model, deconvolution techniques can be employed to en-

hance azimuth resolution. However, deconvolution technology is inherently an ill-posed
problem, being highly sensitive to noise and errors. Even minor interference can cause
the deconvolution result to significantly deviate from the true solution. To address this
challenge, it is essential to utilize prior information within the imaging process to constrain
the solution space.

3. Methodology

In this paper, the MAP framework is employed for super-resolution estimation, offering
the capacity to flexibly and comprehensively incorporate prior information throughout the
imaging process, encompassing noise, clutter, and targets. The MAP method stems from
the Bayesian criterion, operating on the principle of determining the target estimate that
maximizes the posterior probability density function when observation data are acquired.
Firstly, we give the Bayesian formula

P(x|s ) = P(s|x )P(x)
P(s)

. (12)

where P(x|s) is the posterior probability density function with observed data s, P(s|x) is
the likelihood probability density function, and P(x) and P(s) are the prior probability
density function with x and s, respectively. The principle of the Bayesian criterion is to
construct P(x|s) through the distribution of the noise, clutter, and targets. Then, the super-
resolution estimation of the targets can be obtained by maximizing the posterior probability
density function. Since P(s|x) is independent of x, maximizing P(x|s) is equivalent to
maximizing the following equation:

x̂ = arg max
x

P(s|x )P(x) (13)

Typically, logarithmic functions are employed to transform product operations into
additive ones, simplifying the analysis process.

x̂ = arg max
x

lnP(s|x ) + ln P(x) (14)

Given the monotonic nature of logarithmic functions, this transformation does not
alter the solution for the targets. Equation (14) reveals that the objective function comprises
two components: the initial part being the likelihood function, and the subsequent part
representing prior information regarding the targets. Let us examine these two compo-
nents individually.
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3.1. Likelihood Function Based on the New Observation Model

The echo model established in the preceding section represents an idealized scenario.
In practice, the observation process encompasses non-ideal factors, notably noise and
clutter. This is particularly significant in oceanic imaging, where sea clutter significantly
influences imaging outcomes. Consequently, it is imperative to holistically account for the
effects of noise and clutter in the imaging process. Hence, the observation model requires
revision as follows:

s = Hx + n + c (15)

where n = [n1, . . . , nN ]
T and c = [c1, . . . , cN ]

T are the noise vector and clutter vector. From
Equation (15), we can see that, due to the randomness of n and c, the observed data s are
also a random variable whose probability distribution is jointly determined by n and c.

To obtain the probability distribution of s, let us first examine the noise model. Con-
sidering single channel noise, noise is thermal noise generated by electronic motion that
follows a Gaussian distribution with a mean of zero n ∼

(
0, σ2). However, the radar data

used for imaging comprise complex signals obtained through I/Q orthogonal channel de-
modulation. Consequently, to establish the probability distribution of observation data, we
must engage in joint modeling of the I/Q channel echoes. This process has been elaborated
on in our prior work [26] and will not be reiterated here. Therefore, when only the impact
of noise random distribution is considered, the probability distribution of the amplitude of
s can be formulated as follows:

f (s|x , n) =
N

∏
i=1

f (si) =
N

∏
i=1

si
σn2 e

− (si)
2
+((Hx)i)

2

2σn2 J0

(
si(Hx)i

σn2

)
(16)

Here, σn
2 is the noise variance, and J0(·) is a zero-order Bessel function. In fact, the

random variable c would also affect the distribution of s. Therefore, it is also necessary
to consider the distribution of sea clutter based on Equation (16). Even K distribution is
more realistic among various sea clutter distributions [33], where the complexity of its
distribution increased the difficulty in constructing the objective function, while the Weibull
distribution has demonstrated superiority for describing the distribution of sea clutter at
low grazing angles as well as the capacity to offer a reasonable dynamic range [34,35]. In
addition, in the analysis of real data, we found that the measured sea clutter can fit well to
a Weibull distribution by estimating appropriate model parameters. Therefore, we have
opted for the Weibull distribution in this study to characterize the sea clutter distribution.
The expression for the Weibull distribution is firstly stated as follows:

f (c) =
N

∏
i=1

f (ci) =
N

∏
i=1

υ

bυ
cυ−1

i e−
cυ
i

bυ ci > 0 (17)

where υ is the shape parameter, with a value range of (0, 2). This mirrors the trailing
characteristics of the Weibull distribution, where a smaller value of υ corresponds to a
more pronounced trailing of the clutter distribution and b is the scale parameter. If only
clutter is considered, the probability distribution of s can be formulated as follows:

f (s|x , c) =
N

∏
i=1

f (ci) =
N

∏
i=1

υ

bυ
(si − (Hx)i)

υ−1e−
(si−(Hx)i)

υ

bυ ci > 0 (18)

In fact, the probability distribution of sea surface targets is determined by the internal
noise of the system as well as the sea clutter. Therefore, taking into account the clutter
distribution and the noise model, the condition probability function of the observed data,
i.e., the likelihood function, has the following form:
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lnP(s|x, n, c ) = ln
N

∏
i=1

(
si

σn2 e
− (si)

2
+((Hx)i)

2

2σn2 J0

(
si(Hx)i

σn2

)
υ

bυ
(si − (Hx)i)

υ−1e−
(si−(Hx)i)

υ

bυ

)
(19)

3.2. Target Prior Information

In the context of super-resolution imaging for surveillance scenes, the objective ex-
tends beyond merely distinguishing targets, and also encompasses the need to restore the
scene’s finer details. Compared to the randomness of noise, the image’s texture exhibits
a certain degree of correlation and regularity. To harness this characteristic and enhance
super-resolution outcomes, we have chosen to employ the MRF model, which focuses on
considering the conditional distribution of each pixel concerning its neighboring pixels.
This model effectively captures the local statistical characteristics of the image, all without
assuming that the image is stationary. Firstly, define a neighborhood system h̄o(x(i, j)) on a
discrete two-dimensional random field, where o is the neighborhood order. As shown in
Figure 3a, each pixel with the same distance from pixel x(i, j) belongs to the same neigh-
borhood system. The first-order neighborhood system and the second-order neighborhood
system of x(i, j) is composed of the eight pixels and can be written as

h̄2(x(i, j)) =

 x(i− 1, j− 1) x(i− 1, j) x(i− 1, j + 1)
x(i, j− 1) x(i, j + 1)

x(i + 1, j− 1) x(i + 1, j− 1) x(i + 1, j + 1)

. (20)

Pixels belonging to the same neighborhood system form different clusters based on
their positions relative to x(i, j). Figure 3b shows the types of clusters constructed from the
permutation of the relative position of the second-order neighborhood system. A cluster
represents a basic correlation between pixels or a basic composition of textures.

(a)
(b)

Figure 3. (a) The second-order neighborhood. (b) Clusters for the second-order neighborhood.

Furthermore, the random field defined on this neighborhood system can be acquired
according to the Markov–Gibbs equivalence, which can be written as

p(x) =
1
Z

e[−U(x)] x ∈ Ω (21)

where U(x) is called the energy function, Ω is the set of the clusters, and Z is a normalization
parameter. The energy function commonly employed is the Gaussian function. Even
though the Gaussian–Markov random field facilitates relatively straightforward analyses,
the outcomes tend to be characterized by smoothness and a limited capacity to preserve
image edges. Consequently, this study opts for an alternative approach, employing a
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non-Gaussian–Markov random field as the potential function [36]. This choice takes the
following form:

p(x) =
1
Z

e

{
− 1

τ ∑
c∈Ω
|dc(x)|

}
(22)

where τ is a temperature coefficient, and dc
(

xi,j
)

denotes a derivative operation, which is

di,j
0 = xi,j+1 − 2xi,j + xi,j−1

di,j
1 = 1

2 (xi−1,j+1 − 2xi,j + xi+1,j−1)

di,j
2 = xi−1,j − 2xi,j + xi+1,j

di,j
3 = xi−1,j−1 − 2xi,j + xi+,j+1

(23)

Furthermore, to ensure the stability of the solution throughout the solving process, a
square penalty has been introduced. This measure can prevent the occurrence of outliers
during the solution process. Therefore, the objective prior term can be written as

ln p(x) = ln
N

∏
i=1

1
Z

e

{
− 1

τ ∑
c∈C
|dn

c (xi)|
}

1√
2πγ

e

(
− xi

2

2γ2

)
. (24)

where γ is the standard deviation of the target distribution. Through substituting
Equations (19) and (24) into Equation (14), the objective function of super-resolution
imaging for RASR can be obtained:

J(x) = ln
N

∏
i=1

(
si

σn2 e
− (si)

2
+((Hx)i)

2

2σn2 J0

(
si(Hx)i

σn2

)
υ

bυ
(si − (Hx)i)

υ−1e−
(si−(Hx)i)

υ

bυ

)

+ ln
N

∏
i=1

1
Z

e

{
− 1

τ ∑
c∈C
|dn

c (xi)|
}

1√
2πγ

e

(
− xi

2

2γ2

) (25)

Expanding the logarithmic function, the objective function can be simplified as

x̂ = arg max
x

N

∑
i=1

ln J0

(
si(Hx)i

σn2

)
−

N

∑
i=1

((Hx)i)
2

2σn2 + (υ− 1) ln(si − (Hx)i)

−
(si − (Hx)i)

υ

bυ
− η1

N

∑
i=1

4

∑
n=1

(|dn
c (xi)|)− η2

N

∑
i=1

xi
2

(26)

where η1 = 1
τ and η2 = 1

2γ2 have similar roles to the parameters in the regularization
method in being used to determine the weight values of these two prior information
items. The L-curve method of regularizing parameters can be used to determine these
two parameter values. Specifically, the η1 can be firstly fixed by an experience value and
then the value of η2 can be determined through the L-curve method [37]. Then, fix η2 by the
obtained value and modify the value of η1 through either in the L-curve method . Finally,
the super-resolution estimation finds the targets x that maximize the objective function.

3.3. Solution to the Objective Function

Given that the objective function (26) is a complex nonlinear function, linear solutions
are infeasible. To tackle this challenge, this article employs the iterative optimization
strategy. Among various iterative methods, the fast ISTA method is chosen for its fast
convergence performance and noise resistance stability. Firstly, the iterative process starts
with the computation of the gradient of the objective function. Since the absolute value
term in Equation (26) is nondifferential, it should be firstly approximated by a smooth term:
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N

∑
i=1

4

∑
n=1

(|dn
c (xi)|) =

N

∑
i=1

4

∑
n=1

(√(
(dn

c (xi))
2 + ε

))
(27)

where ε ≥ 0 is a minuscule value. Then, the gradient function can be calculated as

∇J(x) =
1

σn2 HT

 J1

(
si(Hx)i

σn2

)
J0

(
si(Hx)i

σn2

) � s

− 1
σn2 HTHx + (ν− 1)

HT

s−HTx
− ν

bυ
HT
(

s−HTx
)ν−1

−η1

4

∑
n=1

diag
{(
|(dn

c x)m|
2 + ε

)− 1
2
}

dn
c x− η2x

(28)

where (·)m is the mth element of the vector in the bracket and diag(·) is a diagonal matrix.
Then, the iterative direction used to search for the optimal solution is given by

xk+1 = <δ

{
xk + β∇J

(
xk
)}

(29)

where xk denotes the estimated targets, and β is the step size; to guarantee the conver-
gence of the iteration, it is no greater than 2/

∥∥HT H
∥∥. <δ : RN → RN is the shrinkage–

thresholding operation

<δ(xi) =

{
0 , |σi| ≤ δ
xi − δsgn(xi) , otherwise

(30)

It is worth noting that the shape parameter υ and scale parameter b should first be
estimated using the following equation:

Γ(1 + 2/υ̂)

Γ2(1 + 1/υ̂)
=

m2
2

m2
1

b̂ =
m1

Γ(1 + 1/υ̂)

(31)

According to Equation (31), the shape and scale parameters can be estimated from
the sea clutter, where Γ(·) is the gamma function, and m̂1 and m̂2 are determined though

m̂1 = 1
N

N
∑

i=1
|xi|, m̂2 = 1

N

N
∑

i=1
xi

2 . In addition, the noise variance can be estimated from the

signal without transmitting the signal.
Normally, achieving a high super-resolution ratio requires a large number of iterations.

Therefore, a fast ISTA version is adopted [38]. Then the implementation steps of the
proposed method for sea surface targets imaging are given in Algorithm 1. Firstly, assume
that the real-beam two-dimensional echo is S =

[
s1, · · · , sj, · · · , sM

]T , where sj is the
echo data of the j-th distance unit and M is the number of distance units to be processed.

Xk =
[
xk

1, · · · , xk
j , · · · , xk

M

]T
is the k-th iteration result, and xk

j is the k-th iterative results of
the j-th distance unit.

This proposed hybrid-model super-resolution method can address the challenges of
sea surface scene monitoring, delivering effective and stable results in terms of resolving
targets and restoration of scene details.
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Algorithm 1: The implementation steps of the proposed hybrid-model method.

Initialization: Estimate noise variance σn
2 and determine the regularization

parameters η1 and η2
Estimate shape υ̂, scale parameters of clutter b̂

Step 1: Initialize acceleration step size: t1 = 1
Give S to the initial iterative matrix X0 and prediction matrix Y0

Step k ( k > 1 ):
Repeat j = 2 : M-1
Extract the j-th distance unit data sj from S
Calculate the next iterative value xk+1

j using the predicted result yk
j by

iteration formula
xk+1

j =

<δ


yk

j + β



1
σn2 HT


J1

(
si,j

(
Hyk

j

)
i

σn2

)

J0

(
si,j

(
Hyk

j

)
i

σn2

) � sj

− 1
σn2 HTHyk
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Until (j=M-1)
Update the acceleration step size
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1+
√

1+4t2
k

2
Update the prediction matrix Yk

Yk = Xk +
(

tk−1
tk+1

)(
Xk − Xk−1

)
Until (convergence)
Export the final image Xk

4. Numerical Results

In this section, both numerical simulation and measured data are used to verify the
effectiveness of the proposed method.

4.1. Simulation Experiment

Figure 4 illustrates the simulated scenario, portraying a harbor with several ships
docked. In this scenario, we presume that a radar system is situated on a distant ship and
emits LFM signals for harbor imaging. The simulation parameters are outlined in Table 1.
Figure 4b showcases the real-beam image acquired after range pulse compression and
motion compensation, featuring a signal-to-noise ratio (SNR) of 13 dB. To simulate the
realistic scenario, sea clutter is introduced to the sea area. To simulate the sea wave, sea
clutter is generated by a spherically invariant random process (SIRP) [39], with a Gamma-
distributed process modulating the spectrum of the speckle. The Douglas sea state is set as
3 and the radar parameters used are displayed in Table 1. The final signal-to-clutter-noise
ratio (SCNR) is equal to 10 dB. From Figure 4b, it can be observed that distinguishing the
harbor’s contour from the ships is challenging due to the low azimuth resolution.

Subsequently, we applied the Tikhonov method, the sparse-MAP method, the MRF-
MAP method introduced by our previous work, the sea surface super-resolution imaging
method delineated in reference [30], which is named as Weibull-MAP, and the hybrid-
model super-resolution method introduced in this study to process the echoes. The out-
comes are sequentially shown in Figure 5. Figure 5a shows the results of the Tikhonov
method. Notably, super-resolution processing has improved the azimuthal resolution and
the scene’s contours are becoming clearer. However, due to its excessive smoothing effect,
the method struggles with resolving ship targets that are closely located. Figure 5b displays
the outcomes of the sparse-MAP method. The utilization of sparse priors has separated the
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ship thoroughly compared to the Tikhonov method. However, the presence of clutter and
noise has given rise to numerous extraneous ripples after processing.

Table 1. Experiment parameters.

Parameters Values Parameters Values

Carrier frequency 9.5 GHz Velocity of the
platform 50 m/s

Pulse repetition
frequency 2000 Hz Signal bandwidth 25 MHz

Grazing angle 5◦ Pulse width 40 us

Near range 8 km Main-lobe beam
width 2◦

Antenna scanning
area −10◦∼10◦ Antenna scanning

velocity 60◦/s

(a) (b)

Figure 4. Simulation experiment (a) simulated scene; (b) real-beam echo.

Figure 5c showcases the outcomes of the MRF-MAP method. This technique leverages
MRF prior information, resulting in clearer target contour restoration and the elimination
of substantial ripples within the scene. However, as clutter is not explicitly addressed, sea
surface targets still undergo some deformation due to clutter influence. Figure 5d shows
the result of Weibull-MAP. In this approach, the clutter is modeled as Weibull distribution,
which leads to a clearer restoration of the sea surface targets compared to the MRF-MAP
method. Nevertheless, some scattered interference remains present on the sea surface
due to the absence of the noise model, and the capability to restore the scene contours is
somewhat limited. Figure 5e provides the results of the hybrid-model method introduced
in this paper. Evidently, owing to the integrated modeling of noise and clutter, the super-
resolution results enable precise differentiation of sea targets, with optimal restoration of
the harbor and playground contours.

Figure 6 illustrates the profile of the results presented in Figure 5 at a range of 8445 m.
In these visualizations, the red line denotes the original target, while the blue line represents
the super-resolution outcome. Analyzing the profile map, it is evident that the Tikhonov
method exerts the most smoothing effect on the results at the cost of a relatively low
resolution. The sparse-MAP method exhibits commendable resolution capability for targets
but with the notable introduction of false targets, where the amplitudes of some false targets
even surpass the targets. Both the MRF-MAP method and the Weibull-MAP effectively
distinguish targets and mitigate the emergence of false targets to a certain extent. However,
the method proposed in this study outperforms its counterparts in target recognition, false
target suppression, and scene contour restoration.
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(a) (b)

(c) (d)

(e)

Figure 5. Comparison of super-resolution results in the case of SCNR = 10 dB (a) Tikhonov
method; (b) sparse-MAP method; (c) MRF-MAP method; (d) Weibull-MAP method; (e) the proposed
hybrid-model method.

To provide a more quantitative comparison of the results obtained from different
super-resolution methods, relative error (ReErr) and structural similarity (SSIM) were
used for evaluation. The definitions of ReErr and SSIM can be found in reference [23].
ReErr measures the energy difference between the super-resolution results and the real
scene, where lower ReErr values indicate that the results are closer to the real scene.
SSIM quantifies the structural similarity between the super-resolution results and the
real scene. Higher SSIM values indicate greater similarity in the structure to the real
scene. Additionally, when calculating these two metrics, more weight is given to the
ship area compared to the background. This emphasizes the significance of key targets
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in the evaluation process. The numerical comparison results are presented in Table 2,
where it is evident that the proposed method achieves the lowest ReErr and the highest
SSIM, indicating its superiority in terms of both energy accuracy and structural similarity
compared to the other methods. Moreover, the proposed method can possess a relatively
low ReErr value and a high SSIM value even when the SCNR is low.

(a) (b)

(c) (d)

(e) (f)

Figure 6. The profile of super-resolution outcomes in the case of SCNR = 10dB: (a) echo; (b) Tikhonov
method; (c) sparse-MAP method; (d) MRF-MAP method; (e) Weibull-MAP method; (f) the proposed
hybrid-model method.
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Table 2. Comparison of numerical results at SCNR = 10 dB.

Methods ReErr SSIM

Tikhonov 0.7132 0.6307
Sparse-MAP 0.8831 0.5260
MRF-MAP 0.7093 0.6608

Weibull-MAP 0.5113 0.7906
The proposed method 0.2761 0.9214

4.2. Real Data Experiment

In this section, we apply the proposed method to process the measured data to validate
the effectiveness of the proposed hybrid-model method. Figure 7a illustrates a schematic
diagram of the imaging scene, sourced from Google Maps. In this scene, a small island
is situated above, and several ships are depicted as cruising on the sea surface, although
this depiction is purely schematic drawing. A radar is installed on another small island
and scans the sea surface for real-beam imaging. The radar works at 9.4 GHz and scans
with a beam width of 2.5°. The transmitted LFM signal employed in this scenario possesses
a bandwidth of 2.5 MHz. The sea surface wind and waves on the day of the experiment
were relatively small and, upon investigation, the sea waves on that day were light waves
ranging from 0.6 m to 0.9 m.

(a) (b)

Figure 7. Real data experiment: (a) the imaging scene of the physical experiment; (b) real-beam echo.

The real-beam image obtained is presented in Figure 7b. Due to its low azimuth
resolution, the contour of the island in the upper left corner of the scene appears relatively
coarse. The echoes of suspected ship targets in the echoes are marked with a rectangle box
and are elliptic. Due to the low azimuth resolution, it is impossible to distinguish whether
these echoes contain multiple ships.

Then, the model parameters of sea clutter are evaluated through Equation (31), and
the results are estimated to be υ = 1.6 and b = 1.4, respectively. Furthermore, amplitude
statistics are conducted on the clutter in the sea surface area without targets. The statistical
results are shown in Figure 8, in which the amplitude distribution of sea clutter is consistent
with the Weibull distribution with the obtained model parameters.

Next, we apply the method proposed in this paper along with four comparative meth-
ods conducted on the real-beam data. The results are displayed in Figure 9a–e. Figure 9a
illustrates the results of the Tikhonov method, which demonstrates an improvement in
resolution. However, there is a considerable amount of clutter and interference present in
the scene. Figure 9b presents the results of the sparse MAP method, showcasing a notable
enhancement in resolution. Nevertheless, the clutter in the result is scattered into isolated
points, which significantly affects the final outcome. Figure 9c,d depict the results of the
MRF-MAP and Weibull-MAP methods, respectively. In both cases, there is a substantial
increase in resolution, and the background appears relatively clean. However, there is still
a significant amount of clutter residue at the bottom of the scene. Figure 9e displays the
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results of the proposed method in this paper, showcasing its strong resolution capabilities
in recovering the original scene. Not only is the outline of the island clearer, but the resolu-
tion of the marked targets has also been significantly improved. Some adjacent ships that
cannot be distinguished in real-beam echo can be separated in Figure 9e. Moreover, the
background of the entire scene remains relatively clean, indicating the method’s ability to
distinguish in clutter suppression.

Figure 8. Distribution curve of the experimental sea clutter amplitude.

(a) (b)

(c) (d)

Figure 9. Cont.
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(e)

Figure 9. The super-resolution results of measured data: (a) Tikhonov method; (b) sparse-MAP
method; (c) MRF-MAP method; (d) Weibull-MAP method; (e) the proposed hybrid-model method.

Figure 10 shows the range profile of the targets marked by the rectangular box in
the results of Figure 9. Figure 10a is the profile of the real-beam echo, in which only one
target can be recognized at the location of 5◦. After super-resolution processing, two targets
can be observed in all the results from Figure 10b–f. However, among these results, the
method proposed in this study can achieve the highest super-resolution ratio and retain
the fewest false targets. In summary, the results of the real data experiment indicate that
the proposed method has a stronger ability in suppressing sea clutter and achieves an
outstanding super-resolution result compared to the traditional methods.

(a) (b)

(c) (d)

Figure 10. Cont.
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(e) (f)

Figure 10. Profiles of the super-resolution results of measured data: (a) echo; (b) Tikhonov method;
(c) sparse-MAP method; (d) MRF-MAP method; (e) Weibull-MAP method; (f) the proposed hybrid-
model method.

5. Conclusions

This paper introduces a novel hybrid-model-based super-resolution imaging method
tailored for monitoring sea surface scenes that is especially suited for ground-based or
shipborne radar platforms. The approach begins with developing a new observation
model that incorporates both noise and clutter. To model clutter from low-incidence angle
platforms, the Weibull distribution is employed. Additionally, based on the modeling of
I/Q channel noise, a likelihood function that jointly models noise and clutter is constructed
under this new observation model. For complex coastal scenes, Markov distribution with
two-dimensional spatial representation capabilities is utilized to model non-stationary
scenes. Furthermore, square terms are introduced to bolster the algorithm’s robustness
against outliers. The focus is on the processing of intricate sea surface scenes captured by
ground-based or shipborne radar in contrast to existing super-resolution imaging methods
for sea surface targets. Targeted and physically interpretable models are adopted for
noise and clutter, effectively mitigating their impact on super-resolution imaging. Finally,
simulation experiments and real data processing were used to validate that the algorithm
proposed in this paper excels in scene contour recovery, noise suppression, and combating
clutter interference.
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