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Abstract: The accurate prediction of joint torque is required in various applications. Some traditional
methods, such as the inverse dynamics model and the electromyography (EMG)-driven neuromuscu-
loskeletal (NMS) model, depend on ground reaction force (GRF) measurements and involve complex
optimization solution processes, respectively. Recently, machine learning methods have been pop-
ularly used to predict joint torque with surface electromyography (sEMG) signals and kinematic
information as inputs. This study aims to predict lower limb joint torque in the sagittal plane during
walking, using a long short-term memory (LSTM) model and Gaussian process regression (GPR)
model, respectively, with seven characteristics extracted from the sEMG signals of five muscles and
three joint angles as inputs. The majority of the normalized root mean squared error (NRMSE) values
in both models are below 15%, most Pearson correlation coefficient (R) values exceed 0.85, and most
decisive factor (R2) values surpass 0.75. These results indicate that the joint prediction of torque is
feasible using machine learning methods with sEMG signals and joint angles as inputs.

Keywords: joint torque; electromyography signals; machine learning; long short-term memory;
Gaussian process regression

1. Introduction

The real-time and accurate prediction of lower limb joint torque has important research
significance in many fields. In sports rehabilitation, it serves as a foundation for the
understanding of changes in people’s muscle strength, and it enables doctors to guide
the process of rehabilitation training effectively [1,2]. In human–machine interaction
systems, it forms the basis for machines to discern human motor intentions and adjust
assistance strategies promptly [3–5]. Unfortunately, the use of mechanical torque sensors
to measure subjects’ active joint torque is challenging because the sensed torque signals
include undesired torque components, such as gravity torque, friction torque, and inertial
torque, which need to be eliminated using complicated processing algorithms [6]. Currently,
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three methods are employed to compute joint torque, namely the inverse dynamics model,
EMG-driven NMS model, and machine learning model.

The inverse dynamics model [7,8] is considered a standard method that requires a
complex experimental environment and equipment. Two common approaches to developing
an inverse dynamics model are the Newton–Euler equations and Lagrange equations. Both
methods rely on GRF measurements, which are typically only available in laboratory settings.

The EMG-driven NMS model builds upon the muscle–tendon model, which can be
traced back to the Hill-type muscle model proposed in 1938 [9]. At present, the improved
model proposed by Buchanan and Lloyd is the most widely used [10,11]. However, the
EMG-driven NMS model faces three major challenges. Firstly, measuring individual
physiological parameters in vivo is difficult. Secondly, the model requires input from all
muscles involved in joint motion. Thirdly, the iterative optimization process for model
parameters is tedious.

In recent years, machine learning models have gained popularity in many research
fields due to their ability to learn from large amounts of data without relying on explicit
equations [12–14]. As sEMG signals exhibit smaller time delays and a higher signal-to-noise
ratio (SNR), it may be an ideal method to use sEMG signals to estimate joint torque [6].
Meanwile, user-friendly wireless sEMG sensors make it possible to accurately measure
sEMG signals during human movement. Therefore, various non-model-based machine
learning regression methods, such as regression trees (RT) [15–17], support vector ma-
chines (SVM) [18–20], neural networks (NN) [21–23], and Gaussian process regression
(GPR) [24–26], have been applied to predict joint torque using sEMG signals and motion
information (joint angles, angular velocity, angular acceleration, etc.), which can be mea-
sured with portable devices such as sEMG sensors integrated with inertial measurement
units (IMUs).

Among neural network models, the long short-term memory (LSTM) model has
shown excellent performance in time series prediction tasks, as it effectively captures
and remembers long-term dependencies through its gating unit design. The use of an
LSTM model to predict joint torque with sEMG signals and motion information is a
suitable choice, as all these variables are time series data related to human movement.
Previous studies have demonstrated the effectiveness of using LSTM models for torque
estimation. Siu et al. [27] found that an LSTM model used to estimate ankle torque with
sEMG signals and accelerometry as inputs outperformed other methods, such as dense
feedforward neural networks (FNN), convolutional neural networks (CNNs) [28,29], and
neural ordinary differential equations (ODEs). Zhang et al. [30] observed that an LSTM
model could predict lower limb joint torque during various activities accurately, with a
relatively low error, using sEMG signals and joint angles as inputs. Truong et al. [31]
extracted several sEMG features to predict joint angles and joint torque using an LSTM
model when squatting, picking up an object, and sitting–standing.

Unlike the point prediction in NNs, GPR can not only predict the value of the target
variable but also estimate the uncertainty of the prediction. It provides reliability to the
prediction by calculating the confidence interval. Yang et al. [32] estimated the joint
torque with a GPR model using the GRF and foot motion from wearable smart shoes while
walking at three different speeds. Most R2 values in their experiment were higher than 0.8,
indicating good predictive performance. Ullauri et al. [33] compared a GPR model and
pneumatic artificial muscle (PAM) model with muscle activation calculated by measuring
sEMG signals to predict elbow torque, and they found that GPR provided relatively more
favorable predictions.

Based on previous research about joint torque estimation by BPNN learning [34], this
study aims to predict the joint torque during walking using an LSTM model and GPR model
with sEMG signals and joint angles as inputs. Figure 1 shows the workflow of this work.
This study can be referenced for the prediction of joint torque when only sEMG signals and
joint angles are available and the GRF cannot be measured. The main contributions of this
work are as follows:
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• The EMG signals, kinematics, and dynamics data are collected and processed during
the normal walking of four subjects.

• An LSTM model and GPR model are built to predict torque using EMG signals and
joint angles without GRF.

Raw EMG signals

Marker trajectories

Ground Reaction Force

EMG features

Joint angles

Joint torques

  Feature 

extraction

  Inverse 

kinematics

 Inverse 

dynamics

Prediction model

Data collection Data processing

Torque prediction

from testing dataset

  Model 

evaluation

Training process Testing process

 
Inputs

Output

Figure 1. The overall workflow of this study. First, raw sEMG signals, marker trajectories, and
ground reaction forces are collected; next, after being processed, the inputs (sEMG features and joint
angles) and the output (joint torques) are obtained; then, parameters in the model are trained using
data from the training set; finally, the performance of the models is evaluated using data from the
testing set.

This article is structured as follows. Section 2 describes the methods of data collection
and data processing, and the principles of the LSTM model and GPR model. Section 3
shows the results of the two models. Section 4 discusses the performance and limitations of
the two models. Conclusions and future work are given in Section 5.

2. Materials and Methods
2.1. Data Collection

Four healthy young male subjects (mean ± STD, age ± 0.5 years, height ± 4.30 kg,
weight ± 3.0, Table 1) were recruited to participate in the data collection experiment. All
subjects were asked to perform 5 walking trials at a speed of 0.8 m/s on a 5-m flat surface
with 7 embedded force platforms. sEMG data, force data, and motion capture data were
collected simultaneously. The collected data were divided according to the gait cycle (from
left foot toe-off to the subsequent left toe-off). Multiple data of 5 complete walking gait
cycles for each subject were acquired.

Table 1. The age, height, and weight of the subjects.

Subject Age (Years) Height (cm) Weight (kg)

Subject 1 23.0 168.5 67.70
Subject 2 23.0 172.0 57.20
Subject 3 23.0 175.0 62.50
Subject 4 22.0 174.5 61.75
Average 22.75 172.5 62.29

2.1.1. EMG Data Collection

sEMG signals were collected using 16 wireless sEMG sensors (Pico EMG, Cometa
Systems, Inc., Newburg, MO, USA, Figure 2) at 2000 Hz. For each subject, 16 sEMG
signals were collected simultaneously from the gluteus maximus (GMX), rectus femoris
(RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), semitendinosus (ST),
tibialis anterior (TA), and gastrocnemius (GC) of both the left and right legs. Figure 3
illustrates the locations where the EMG sensors were placed on the subject’s body. sEMG
signals from GMX, RF, BF, TA, and GC from the left leg were used in this study.
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Figure 2. Pico EMG, Cometa Systems.

RF_L

VM_L
VL_L

TA_L

BF_L ST_L

GC_L

GMX_L

Figure 3. The locations where EMG sensors and reflective markers were placed on the subject’s body.

2.1.2. Force and Motion Data Collection

Force and motion data were collected using a 3D motion capture system (Qualisys,
Goteborg, Sweden, Figure 4) at 100 Hz. Subjects were asked to perform movements with
their legs stepping on different force plates. A total of 51 reflective markers were fixed
on the subjects to record motion trajectories (Figure 3). The GRF data were collected by
7 platforms and the marker trajectories were captured by 41 cameras.

Figure 4. Qualisys 3D motion capture system.

The sEMG signals, joint angles, and joint torque of the left leg of each subject were
studied in this work.
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2.2. Data Processing
2.2.1. sEMG Feature Extraction

The raw sEMG signals were band-pass filtered (20–450 Hz) by a 4th-order zero-lag
Butterworth filter [35]. Then, 5 time domain features, namely the mean absolute value
(MAV), root mean square (RMS), zero crossing (ZC), slope sign change (SSC), and waveform
length (WL) [36–38], and 2 frequency domain features, namely the mean frequency (MNF)
and median frequency (MDF) [39], were extracted. The time domain features were extracted
using a 150-ms (300 points) movable overlapped window, and the frequency domain
features were extracted using a 128-ms (256 points) movable overlapped window.

• MAV:

MAV =
1
N

N

∑
i=1
|Xi|, (1)

where X represents the EMG signal in a movable window and N represents the
window length.

• RMS:

RMS =

√√√√ 1
N

N

∑
i=1

X2
i . (2)

• ZC:

ZC =
N−1

∑
i=1

sgn(Xi · Xi+1) ∩ |Xi − Xi+1| ≥ 0, (3)

where

sgn(x) =

{
1, if x ≥ 0
0, otherwise.

• SSC:

SSC =
N−1

∑
i=2

sgn((Xi − Xi−1) · (Xi − Xi+1)). (4)

• WL:

WL =
N−1

∑
i=1
|Xi − Xi+1|. (5)

• MNF:

MNF =
∑M

j=1 f jPj

∑M
j=1 Pj

, (6)

where f j is the jth frequency component, Pj is the power spectrum at f j, and M is the
total number of frequency components.

• MDF:
MDF

∑
j=1

Pj =
M

∑
j=MDF

Pj =
1
2

M

∑
j=1

Pj. (7)

EMG signals were downsampled to 100 Hz after feature extraction to correspond to
force and motion data.

2.2.2. Inverse Kinematics

Joint angles were calculated by the inverse kinematics toolbox in OpenSim 4.4 (an
open-source software system for biomechanical modeling, simulation, and analysis, SimTK,
Stanford, CA, USA). The Gait2392_Simbody model was chosen for the research in this
study. First, for each subject, a scaled model was built to match the markers on his body
best. Then, the joint angles were obtained by optimizing the error between the virtual
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marker positions on the scaled model and the real marker positions from experiments. The
detailed objective function is as follows:

min
q

[
∑

i∈markers
ωi ‖ xexp

i − xi(q) ‖2
]

, (8)

where ωi is the weight of the marker i, q is the joint angle vector being solved for, xexp
i is

the experimental position of marker i, xi(q) is the virtual position of marker i at given joint
angle vector q, and ‖ · ‖ represents the standard Euclidean norm.

2.2.3. Inverse Dynamics

Joint torque was calculated by the inverse dynamics toolbox in OpenSim 4.4 after joint
angles were obtained. The classical equations of motion can be written as follows:

M(q)q̈ + C(q, q̇) + G(q) = τ, (9)

where q, q̇, q̈ are angles, angular velocities, and angular accelerations, respectively; M(q) is
the mass matrix; C(q, q̇) is the vector of Coriolis and centrifugal torque; G(q) is the vector
of gravitational torque; and τ is the vector of the unknown generalized torque.

The features of sEMG signals, the joint angles, and the joint torque were normalized
by the maximum value of each channel. The input signal was 38-dimensional (7 features of
5 sEMG signals and 3 joint angles).

2.3. LSTM Neural Network Model

LSTM is a type of recurrent neural network (RNN) that is designed to overcome the
limitations of traditional RNNs in capturing long-term dependencies in sequential data.
LSTM units, which are the building blocks of an LSTM network, are more complex than
traditional RNN units. A typical LSTM unit is composed of a cell state, an input gate, an
output gate, and a forget gate [40,41], as Figure 5 shows. These components work together
to process sequential data and maintain information over long periods.

  

tx

tanh

 

tanh

 +

thth

  

1tx +

tanh

 

tanh

 ++

1th +

  

1tx −

tanh

 

tanh

 ++

1th −

1tC −

1th −

tC

th

1tf − tf 1tf +
ti1ti − 1ti +tC

1tC − 1tC +

Figure 5. The structure of a typical LSTM unit.

The specific forward propagation formulas of an LSTM unit are as follows. First, the
forget gate decides which information to discard in the last cell state,

ft = σ(W f · xt + U f · ht−1 + b f ), (10)

where ft ∈ (0, 1)h represents the forget gate’s activation vector, xt ∈ Rd represents the input
with d features at time t, ht−1 ∈ Rh represents the output at time t− 1, W f ∈ Rh×d and
U f ∈ Rh×h represent the weight matrix, b f ∈ Rh represents the bias vector, and σ represents
the sigmoid activation function. Second, the input gate determines which information
to keep,

it = σ(Wi · xt + Ui · ht−1 + bi), (11)
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c̃t = tanh(Wc · xt + Uc · ht−1 + bc), (12)

where it ∈ (0, 1)h represents the update gate’s activation vector, c̃t ∈ (−1, 1)h stands for
the cell input activation vector, Wi, Wc ∈ Rh×d, Ui, Uc ∈ Rh×h represents the weight matrix,
bi, bc ∈ Rh represents the bias vector, and tanh represents the hyperbolic tangent activation
function. Then, the cell state is updated from time t− 1 to time t,

ct = ft � ct−1 + it � c̃t, (13)

where ct ∈ Rh is the cell state vector at time t, and ct−1 is the cell state vector at time t− 1.
Finally, the output is obtained,

ot = σ(Wo · xt + Uo · ht−1 + bo), (14)

ht = ot � tanh(ct), (15)

where ot ∈ (0, 1)h represents the output gate’s activation vector; ht ∈ (−1, 1)h is the hidden
state vector, also known as the output vector of an LSTM unit; Wo ∈ Rh×d and Uo ∈ Rh×h

represent the weight matrices; bo ∈ Rh represents the bias vector; and the operator �
represents the Hadamard product. The initial values are c0 = 0 and h0 = 0, and the
parameters W, U, and b need to be learned during the training process.

In this study, a network model with 3 LSTM layers and a fully connected (FC) layer
was built using the deep learning toolbox of Matlab 2021b. The architecture of the model
is shown in Figure 6. Each LSTM layer consisted of 32, 16, and 8 hidden neuron units,
respectively, and the output layer had 1 neuron. The output mode of the first and second
LSTM layers was set to ‘sequence’, and the output mode of the third LSTM layer was set to
‘last’. A sigmoid layer was included between the third LSTM layer and the fully connected
layer. The solver was set to be ‘adam’ and the training was performed for 500 epochs. To
prevent the gradients from exploding during training, a gradient threshold of 1 was set.
The initial learning rate was set to 0.005. After 125 epochs, the learning rate was dropped
by multiplying it with a factor of 0.2. The format of the input data was transformed to time
slices (sample number × features × time step). The time step was set to be 5, which was
equivalent to 50 ms. The model was trained to predict the output at the next time step,
which was 10 ms ahead of real time. For each joint of each subject, a model was trained
individually. In this study, 12 different LSTM models were obtained.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM LSTM

1x

2x

tx

38 1

38 1

38 1

time slice
38 t

...

...

...

Input layer LSTM layers Output layerFully-connected layer



32 1

32 1

32 1

16 1

16 1

16 1 8 1

...

sigmoid

FC

FC

FC

FC

FC

Figure 6. The structure of the LSTM network model.
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2.4. GPR Model

The Gaussian process (GP) is a non-parametric learning method that has advantages
over parametric methods when given a small training set [42]. Unlike point prediction
in NNs, GP can quantify the uncertainty of the point prediction, which is favorable to
decrease risks in decision making. In the regression model, decision makers can forecast the
possible outcomes with an explicit probability when provided a 95% confidence interval
around the prediction [43].

Any finite subset of a set of random variables { f (x)|x ∈ X} that follows a Gaussian
distribution is known as a Gaussian process [44]. To specify a GP, the mean function
m(x) and the covariance function k(x, x

′
) should be defined, which contain a series of

hyperparameters θ [45,46]. Then, the GP can be written as

f (x) ∼ GP(m(x), k(x, x
′
)). (16)

Given a training data set D(X, y) = {(x1, y1), (x2, y2), . . . , (xN , yN)} of N pairs of
vectorial input xi and noisy scalar output yi, yi is obtained by the latent function f (xi) with
Gaussian noise

yi = f (xi) + εi, (17)

where f (x) ∼ GP(0, k(x, x
′
)),εi ∼ N (0, σ2) . We have

f ∼ N (0, K(X, X)), (18)

y ∼ N (0, K(X, X)+ σ2 I). (19)

For a testing data set D = (X∗, y∗) of N∗ points, the joint distribution p(y, f ∗) can be
obtained as [

y
f ∗

]
∼ N (0,

[
KNN + σ2 I KNN∗

KN∗N KN∗N∗

]
), (20)

where KNN∗ denotes the N × N∗ covariance matrix of the training points and the testing
points. KNN , KN∗N and KN∗N∗ are similar. The Gaussian predictive distribution p( f ∗|y)
can be obtained from the joint distribution p(y, f ∗) as

f ∗|y ∼ N ( f̄ ∗, cov( f ∗)), (21)

where
f̄ ∗ = KN∗N [KNN + σ2 I]−1y, (22)

cov( f ∗) = KN∗N∗ − KN∗N [KNN + σ2 I]−1KNN∗ . (23)

The training process of GP is actually to learn the hyperparameters (θ, σ2) by maximiz-
ing the log-marginal likelihood logp(y) =

∫
p(y| f )p( f )d f , namely

logp(y) = −1
2

y>(K + σ2 I)−1y− 1
2

log|K + σ2 I| − n
2

log2π, (24)

where K denotes K(X, X) in (9).
In this study, the GPR model was implemented using the regression learner in Matlab

2021b. The goal was to predict the torque at the current time point based on input feature
data from the previous time point, with a prediction horizon of 10 ms ahead of real time.
After evaluating the performance of 4 kinds of kernel functions (rational quadratic, squared
exponential, matern5/2, exponential), the exponential kernel function was finally selected.
The basis function was set to be constant and the standardization was set to be true. For each
joint of each subject, a separate GPR model was trained, resulting in a total of 12 distinct
GPR models in this study.
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2.5. Evaluation Protocol

For each subject, 5 complete gait cycles were acquired. Out of the 5 gait cycles, 4 cycles
were used as the training set to train the models, while the remaining cycle was used as the
testing set to evaluate the performance of the models.

The NRMSE is as follows:

NRMSE =
RMSE

ymax − ymin
× 100%, (25)

where RMSE =
√

1
N ∑N

i=1(yi − ŷi)2 represents the root mean squared error, the Pearson
correlation coefficient R,

R =
∑(yi − ȳi)(ŷi − ¯̂yi)√
∑(yi − ȳi)2(ŷi − ¯̂yi)2

(26)

and the decisive factor R2,

R2 = 1− SSE
SST

, (27)

where SSE = ∑N
i=1(yi− ŷi)

2, ∑N
i=1(yi− ȳi)

2, are all used to evaluate the model performance.
A lower NRMSE and higher R and R2 close to 1 indicate better regression performance.

3. Results
3.1. The Result of the LSTM Model

Table 2 shows the performance of the LSTM model in predicting joint torque for all
subjects. For the hip joints of four subjects, the NRMSE values are less than 15%, the R
values are more than 0.92, and the R2 values are more than 0.79. For the knee joint, the
NRMSE values are more than 17%, the R values are more than 0.83, and the R2 values are
more than 0.62. For the ankle joint, the NRMSE values are less than 8%, the R values are
more than 0.95, and the R2 values are more than 0.90.

Table 2. The NRMSE, R, and R2 of the joint torque prediction using LSTM model.

Subject
Hip Knee Ankle

NRMSE (%) R R2 NRMSE (%) R R2 NRMSE (%) R R2

Subject 1 11.7438 0.9208 0.8299 12.3561 0.9102 0.8207 5.4290 0.9696 0.9318
Subject 2 12.3223 0.9416 0.8583 14.3956 0.8973 0.7877 7.0349 0.9517 0.9010
Subject 3 14.7159 0.9201 0.7949 14.1828 0.8360 0.7949 7.6790 0.9837 0.9646
Subject 4 11.2691 0.9469 0.8512 16.8513 0.8615 0.6206 6.1971 0.9793 0.9469
Average 12.5128 0.9324 0.8336 14.4465 0.8763 0.7560 6.5850 0.9711 0.9361

Certain differences exist between different people. The best hip prediction occurs on
subject 4, of which the NRMSE value is 11.2691, the R value is 0.9469, and the R2 value
is 0.8512. The best knee prediction occurs on subject 1, of which the NRMSE value is
12.3561, the R value is 0.9102, and the R2 value is 0.8207. The best ankle prediction occurs
on subject 3, of which the NRMSE value is 7.6790, the R value is 0.9837, and the R2 value is
0.9646. Figure 7 displays the real torque and the predicted torque of the LSTM model.
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Figure 7. The predicted torque using LSTM network model.

3.2. The Result of the GPR Model

Table 3 presents the performance of the GPR model in predicting the joint torque for
all subjects. For the hip joints of four subjects, the NRMSE values are less than 17%, the
R values are more than 0.91, and the R2 values are more than 0.75. For the knee joint, the
NRMSE values are less than 18%, the R values are more than 0.85, and the R2 values are
more than 0.56. For the ankle joint, the NRMSE values are less than 8%, the R values are
more than 0.94, and the R2 values are more than 0.81.

Table 3. The NRMSE, R, and R2 of the joint torque prediction using GPR model.

Subject
Hip Knee Ankle

NRMSE (%) R R2 NRMSE (%) R R2 NRMSE (%) R R2

subject 1 8.6833 0.9661 0.9070 12.0694 0.9137 0.8290 5.3030 0.9558 0.8976
subject 2 14.3114 0.9165 0.8088 15.9334 0.8870 0.7400 7.7864 0.9443 0.8175
subject 3 16.1742 0.9245 0.7522 11.4735 0.9328 0.7999 6.2121 0.9801 0.9590
subject 4 10.1146 0.9491 0.8802 17.9601 0.8583 0.5690 6.6049 0.9743 0.9334
average 12.3216 0.9391 0.8371 14.3591 0.8980 0.7335 6.4766 0.9636 0.9018

The best hip prediction occurs on subject 1, of which the NRMSE value is 8.6833, the R
value is 0.9661, and the R2 value is 0.9070. The best knee prediction occurs on subject 3,
of which the NRMSE value is 11.4735, the R value is 0.9328, and the R2 value is 0.7999.
The best ankle prediction occurs on subject 3, of which the NRMSE value is 6.2121, the R
value is 0.9801, and the R2 value is 0.9590. Figure 8 shows the real torque and the predicted
torque of the GP model, with shaded areas representing the 95% confidence intervals of the
predicted torque.
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Figure 8. The predicted torque using GPR model.

4. Discussion

In this study, an LSTM model and GPR model were used to predict joint torque in
the sagittal plane during walking, using sEMG signals and joint angles as inputs. The
relevant regression performance (NRMSE, R, R2) indicated that the predicted torque was
in good agreement with the torque calculated by inverse dynamics. In the LSTM model,
the average regression performance for the ankle (NRMSE: 6.5850%, R: 0.9711, R2: 0.9361),
hip (NRMSE: 12.5728%, R: 0.9324, R2: 0.8336), and knee (NRMSE: 14.4465%, R: 0.8763,
R2: 0.7560) decreased in sequence. In [27], Siu et al. took sEMG signals and accelerations as
inputs, using an LSTM model to predict the ankle torque (average R of five subjects: 0.84)
accurately. However, only the maximum value and area for each window of the sEMG
signals were extracted. In our study, seven features of sEMG signals were extracted, and,
in comparison, the average R was improved. In the GPR model, the average regression
performance for the ankle (NRMSE: 6.4766%, R: 0.9636, R2: 0.9018), hip (NRMSE: 12.3216%,
R: 0.9391, R2: 0.8371), and knee (NRMSE: 14.3591%, R: 0.8980, R2: 0.7335) also decreased in
order. In [32], Yang et al. used a GP model to predict joint torque with plantar pressure,
orientations, and angular velocities as inputs. In the case of walking at the speed of 0.8 m/s,
the prediction of ankle (average R2: 0.8905), knee (average R2: 0.7250), and hip (average
R2: 0.7390) torque was precise. However, it is inconvenient to measure plantar pressure
with smart shoes. In our study, the measurement of the sEMG signal was more user-friendly.
Portable wireless sEMG sensors integrated with IMUs made it possible to predict the joint
torque in real time.

Although the low NRMSE and the high R and R2 in both the LSTM model and GPR
model indicate that the joint torque has a relatively strong correlation and high consistency
with sEMG signals and joint angles, there still exist some limitations. The performance of
the hip and knee torque is not as good as that of the ankle torque. In [30], Zhang et al. also
used an LSTM model to predict joint torque, with good performance. Their study indicated
that the best prediction performance during walking was for the hip, followed by the ankle
and finally the knee. Our result was not exactly consistent with this. We suppose that
the prediction performance can be essentially attributed to the complexity of the output
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curve to be predicted, including the number of data points, number of peaks, and data
volatility. The more complex the output curve, the more challenging it is to accurately
predict. Therefore, one solution to fundamentally improve the prediction performance is to
add more valid EMG signals.

There are certain differences in the physiological and movement characteristics of
different subjects, reflected in the data and results. In the LSTM model, the ability to
estimate the knee joint torque of subject 1 was better than for subject 4. In the GP model, the
ability to estimate the hip joint torque of subject 1 was better than for subject 3. For a specific
subject, the regression performance would be improved if the adjustable parameters in the
model (number of network layers, number of neurons, etc.) were individually adjusted.

Additionally, the EMG signal itself lacks robustness. In this research, the measurement
of sEMG signals posed a challenge. The absolute amplitude of the sEMG signal itself has
little reference significance. Factors such as the sensor itself, where the sensor is attached,
and the tightness of the sensor attachment all affect the quality of the sEMG signal. To
ensure consistency and reliability, all data must be collected in the same experiment,
minimizing variations caused by these factors.

5. Conclusions and Future Work

In this study, the hip, knee, and ankle torque were predicted during walking in four
subjects by an LSTM model and GPR model. The results indicate that both the LSTM and
GPR models performed well in predicting the joint torque given the sEMG signals and joint
angles as inputs, with low NRMSE values and high R and R2. For all joints of each model,
the average NRMSE values were all less than 15%, the R were all more than 0.87, and the
R2 were all more than 0.73. When using machine learning models like LSTM and GPR, on
the one hand, there is no need to build dynamic models or measure the GRF compared to
inverse dynamic models. On the other hand, the complex optimization process associated
with NMS models is not necessary. The proposed models have potential application in
various fields, including exoskeleton rehabilitation systems, exoskeleton assistance systems,
and sports training. These models can provide accurate and real-time estimates of joint
torque during walking when force plates are limited or unavailable.

In the future, our research group will conduct more in-depth research considering the
following four aspects. Firstly, the diversity of the subjects should be increased. A larger
data set including more subjects with different body types and different ages should be
built. Additionally, studying subjects with lower limb disabilities has broader significance.
Secondly, expanding the diversity of movements beyond walking would be beneficial.
Including activities such as running, jumping, and cycling in daily life will provide a
broader perspective on joint torque prediction across various dynamic movements. Thirdly,
investigating inter-movement and inter-subject predictions is a more challenging task. It
would involve using the current model and data set to predict joint torque for new move-
ments and individuals. This research direction would contribute to a more comprehensive
understanding of the generalizability and adaptability of the proposed model. Lastly,
exploring torque prediction over a period of time, rather than at a single point in time,
would be a valuable future direction.
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