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Abstract: Vehicle type and brand information constitute a crucial element in intelligent transportation
systems (ITSs). While numerous appearance-based classification methods have studied frontal view
images of vehicles, the challenge of multi-pose and multi-angle vehicle distribution has largely
been overlooked. This paper proposes an appearance-based classification approach for multi-angle
vehicle information recognition, addressing the aforementioned issues. By utilizing faster regional
convolution neural networks, this method automatically captures crucial features for vehicle type
and brand identification, departing from traditional handcrafted feature extraction techniques. To
extract rich and discriminative vehicle information, ZFNet and VGG16 are employed. Vehicle feature
maps are then imported into the region proposal network and classification location refinement
network, with the former generating candidate regions potentially containing vehicle targets on the
feature map. Subsequently, the latter network refines vehicle locations and classifies vehicle types.
Additionally, a comprehensive vehicle dataset, Car5_48, is constructed to evaluate the performance
of the proposed method, encompassing multi-angle images across five vehicle types and 48 vehicle
brands. The experimental results on this public dataset demonstrate the effectiveness of the proposed
approach in accurately classifying vehicle types and brands.

Keywords: vehicle type; vehicle brand; multi-angle recognition; Faster R-CNN; Car5_48

1. Introduction

Vehicle information recognition constitutes a fundamental problem in the field of
computer vision, with applicable uses in intelligent traffic systems (ITSs). The primary
objective of this task is to accurately locate the region within an image that contains a vehicle
and subsequently identify the specific make and model of the vehicle. Despite considerable
efforts expended on this problem, the effectiveness of existing solutions remains limited.
A key challenge in vehicle information recognition stems from the wide array of vehicle
models and designs across different brands, coupled with the rapid variation in appearance
as the viewing angle changes over time. This complexity demands a more sophisticated
and robust approach to accurately discern and classify vehicle information in diverse
real-world scenarios.

To surmount the myriad of challenges and attain high recognition accuracy, traditional
methods often resort to employing various handcrafted features. Prominent among these
are the Scale-Invariant Feature Transform (SIFT) [1], Histogram of Oriented Gradients
(HOG) [2,3], Speeded-Up Robust Features (SURF) [4,5], Harris corner [6], and fused fea-
tures [7]. Zhang et al. [8] utilized a morphological localization method to extract SURF
features from vehicle frontal images, while Hu et al. combined HOG and Gabor features,
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subsequently leveraging the naive Bayesian classifier for vehicle type recognition. Although
these traditional methods have demonstrated commendable performances, they have been
found wanting in the task of vehicle type and brand recognition.

Recently, deep learning methods have exhibited remarkable proficiency in image
recognition and object detection tasks, encompassing pedestrian detection [9] and visual
processing [10], in addition to vehicle information recognition. This prowess is largely
attributed to the exceptional feature extraction capabilities of convolutional neural networks
(CNNs). Luo et al. [11] introduced the inaugural true CNN, LeNet, and applied it to the
task of handwritten digit recognition in 1998. The advent of deeper CNNs, tracing their
origins to AlexNet, ushered in an unprecedented era due to their exemplary performance
in image classification tasks. Successive iterations such as ZFNet, VGGNet, and ResNet
further solidified CNNs as the go-to choice for computer vision applications.

Deng et al. [12] leveraged CNNs to extract vehicle features, which were then classified
into three types using Support Vector Machines (SVMs). Sang et al. identified six vehicle
types from frontal views utilizing Faster R-CNN. Dong et al. [13] employed CNNs to
extract features from vehicle frontal images, achieving an impressive accuracy of 92.89%.
Huttunen et al. [14] compared deep neural networks with traditional methods, specifically
evaluating the use of SIFT features in conjunction with SVM classification. Azam et al. [15]
utilized convolutional neural networks (CNNs) to estimate the vehicle pose from four
directions and successfully captured the regions. Chen et al. employed the rear-view
image of the vehicle as the detection object. While these methods have achieved impressive
classification accuracy in vehicle type recognition, they primarily rely on single-angle
images of the vehicle, neglecting the multi-pose and multi-angle distribution characteristics
of the vehicle.

Furthermore, some studies have addressed multi-angle vehicle detection. Specifically,
Wang et al. [16] trained the detection model using images captured from seven different
angles to facilitate the fine-grained classification of vehicles. Sochor et al. [17] integrated
additional image information, such as the vehicle bounding box and direction, into the net-
work for enhanced detection. The methodology proposed in this paper shares similarities
with these approaches, offering a comparable solution to the problem of vehicle detection.

Considering the aforementioned challenges, one must address two primary problems:
Firstly, the extraction of spatial features to effectively represent the multi-angle distribution
of the vehicle. Secondly, the exploration and utilization of useful information to formulate
the properties of the vehicle regions. To tackle these issues, this paper proposes an efficient
method based on Faster R-CNN [18]. Additionally, a comprehensive vehicle database is
established, encompassing five types and 48 brands captured from eight different angles
under varied environmental conditions.

The proposed framework consists of three integral components: road vehicle video
processing, a vehicle type recognition network, and a vehicle brand recognition network.
Specifically, the road vehicle video processing model extracts individual frames from a
given vehicle video and identifies the frame containing the vehicle. The vehicle type
recognition network and the vehicle brand recognition network are then employed to
determine the type and brand of the vehicle, respectively. The entire framework is end-to-
end trainable, facilitating seamless integration and optimization.

The structure of this paper is as follows. Section 2 delves into the details of the datasets
utilized in this study. Section 3 presents the architecture of the proposed network, outlining
its key components and functionalities. Section 4 showcases the experimental results,
highlighting the performance and effectiveness of the proposed method. Finally, Section 5
draws conclusions based on the findings and discusses potential paths for future research.

2. Data Construction

In this part, there is an example of where and how to obtain the data and how to
annotate it in detail.
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2.1. Data Construction

Existing widely utilized datasets, such as Stanford Cars and BIT-Vehicle, encompass a
limited number of vehicle types, with uneven sample distributions among each type and a
narrow coverage of shooting angles. The Stanford Cars dataset comprises 196 categories
from 16,185 images, offering a diverse range of brands but a restricted variety of vehicle
types. The BIT-Vehicle dataset, consisting of 9850 images, features five types of vehicles
captured by the camera, including buses, microbuses, minivans, sedans, SUVs, and trucks,
but with a single shooting angle and background condition. These limitations in the sample
distribution and shooting angles may impact the robustness and generalization capabilities
of models trained on these datasets.

2.2. Data Annotation and Statistic

To mimic real-world scenarios, we constructed a multi-angle database. The samples in
our self-built database were primarily sourced from the internet and vehicle videos, with
varied lighting and background conditions. Using the CCD camera of Yuanda Vision Tech-
nology (YDV-C932A, produced by Shenzhen Great Vidoe Technology Co., Ltd., Shenzhen,
China), Equipment from Shenzhen Great Vidoe Technology Co., Ltd. to capture and collect
training and testing vehicle driving video samples. When capturing vehicle driving videos,
a camera is placed in front of and on the side of the road, and the vehicle is driven straight
ahead to obtain images from four angles: straight-ahead, left, left-front, and left-rear. When
the vehicle turns around, images are obtained from four angles: straight-behind, right, right-
front, and right-rear. In addition, the shooting environment and weather conditions are as
diverse as possible in order to obtain vehicle samples under different lighting conditions.
For manually captured vehicle samples, in order to diversify the background conditions,
a large number of shooting locations are selected. All images were manually annotated,
and the samples were captured from eight different angles: front, behind, right-front,
left-front, left-side, right-side, right-behind, and left-behind, as illustrated in the top view
of Figure 1. The dataset comprises 10,800 multi-angle images, with 8800 of them being cars
and SUVs. Since the self-built dataset includes five types and 48 vehicle brands, it is named
Car5_48. Specifically, these five types are cars, SUVs, buses, minivans, and minibuses, and
the 48 brands include Volkswagen, BYD, BMW, Mercedes-Benz, Land Rover, Nissan, and
others. Figure 2 displays a subset of the Car5_48 dataset, showcasing vehicle models of
various brands and models captured under the eight shooting angles.
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Figure 1. Schematic diagram of data collection angle.
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3. Vehicle Information Recognition Model

In this section, we present the multi-angle vehicle type and brand recognition network
along with the associated video processing techniques. The architecture of the network is
depicted in Figure 3, with further details elaborated below.
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The overall framework comprises three main components: a video processing model,
followed by vehicle type recognition and vehicle brand recognition networks. The video
processing model incorporates the Gaussian model and the background difference algo-
rithm to process vehicle videos. Subsequently, the video is converted into image frames and
passed on to the two recognition networks, which are capable of identifying five vehicle
types and 48 vehicle brands.
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3.1. Video Processing Model

The Gaussian Mixture Model (GMM) and the background subtraction algorithm are
utilized for extracting video frames, which is particularly suitable for scenarios where there
are gradual changes in the illumination and background. The video processing algorithm
comprises four fundamental steps:

Step 1: The pixel point value xt of the video image captured at the current time is
compared with K initial Gaussian distributions to determine the optimal match. The match-
ing condition is defined by Equation (1). The Gaussian distributions can be represented
as P(x) = {[wi, µi, σi]}, where i ranges from 1 to K. In this scenario, the value of K is set
to 4 due to the relatively high performance and moderate time consumption. The weight
of each distribution is denoted by wi, while µi and σi represent the mean and standard
deviation of the Gaussian distribution, respectively. In the initial Gaussian distribution,
the parameters are somewhat arbitrary to make the subsequent network more robust. In
practical applications, we verify the effectiveness of initialization methods through ex-
periments. Specifically, we train multiple models using different initialization methods
and compare their training and prediction performances. If a certain initialization method
results in a model that performs well in both training and prediction, then we can consider
the initialization method to be effective. In our case, µi is assigned a random value between
0 and 255, wi is set to 1/K, and σi is a constant value of 6.

|xt − µi,t−1| ≤ 2.5σi,t−1 (1)

The lane pixels in a video sequence can be modeled using a Gaussian Mixture Model
to represent the background. The parameters of this GMM, namely, the weights, means,
and standard deviations, are updated according to Equations (2) through (4), allowing for
an adaptive and dynamic representation of the background in the presence of changing
lighting conditions or other environmental factors.

ωi,t = (1− α)ωi,t + αMk,t (2)

µi,t = (1− ρ)µi,t + ρxt (3)

σ2
i,t = (1− ρ)σ2

i,t−1 + ρ(xt − µi,t)
T(xt − µi,t) (4)

whereα denotes the learning rate, and Mk,t = 1 represents the distribution of the match, oth-
erwise Mk,t = 0. ρ is the second learning rate, which is updated according to Equation (5);
η is the Gaussian probability density function. Then, KGaussian distributions are arranged
based on ωi/σi from large to small, and take the first model that satisfies Equation (6) as
the background.

In the context of video frame analysis, the pixel values are modeled using a Gaussian
Mixture Model (GMM), where the learning process is governed by a set of carefully
defined parameters. Specifically, the learning rate, denoted by α, regulates the speed
and adaptivity of the model. The distribution of the match, Mk,t, is a binary indicator,
taking the value of 1 when there is a match and 0 otherwise. Additionally, ρ represents
the second learning rate which is updated according to Equation (5), further enhancing
the model’s ability to adapt to changing conditions. The term η represents the Gaussian
probability density function, which is a fundamental component of the GMM. When it
comes to selecting the appropriate Gaussian distribution for modeling the background, the
KGaussian distributions are arranged in descending order based on the ratio of ωi to σi.
The first model that satisfies the criteria outlined in Equation (6) is then chosen as the most
representative of the background. This rigorous and systematic approach ensures a robust
and accurate modeling of the background in various video processing applications.

ρ = αη(xt|µi,t−1, σi,t−1) (5)
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B = arg min
b
(

b

∑
i=1

ωi,t > T) (6)

where T = 0.7 is the weighted threshold.
Step 2: Once the background model is established, the foreground is obtained by

subtracting the pixel value Bt(x, y) of the background image from the pixel value It(x, y)
of each point in the current image.

Step 3: After obtaining the different images, a predefined threshold specific to each
video is used to determine whether the connected domain composed of foreground pixels
meets the required vehicle area. If these conditions are met, the region is labeled using the
minimum bounding box in the video.

Step 4: When the labeled rectangle intersects with the preset yellow or green line, the
current frame is automatically captured and saved.

The results of processing the video through the aforementioned methodology are
depicted in Figures 4 and 5. Figure 4 showcases the processing outcome of the frontal
image, while the result in Figure 5 corresponds to the left-frontal image. Since the green
and yellow lines for contact detection are fixed, the angles at which the vehicle images are
captured from the video remain roughly consistent. This consistency aids in the subsequent
identification of vehicle information. Ultimately, the gathered vehicle images are saved
and transmitted to the vehicle information detection and recognition network for further
identification.
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3.2. Vehicle Type and Brand Recognition Network

The architecture of the vehicle type and brand recognition network is composed of
three primary components: a feature extraction network, a region proposal network (RPN),
and a classification location refinement network. The latter includes the ROI (region of
interest) and FC (fully connected) layer. This architectural design is graphically depicted
in Figure 6.
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The acquired vehicle videos are processed utilizing the model outlined in Section 3.1,
where video frames are converted into images to serve as inputs for the recognition network.
The CNN is employed to extract distinctive features from the images, generating a feature
map. Subsequently, the region proposal network identifies potential regions of interest
on the feature map. Ultimately, the classification location refinement network refines
the identification and localization of the vehicle within the image, outputting both the
classification and precise location of the vehicle.

3.2.1. Network

The ZFNet and VGG16 networks were employed for feature extraction, and the optimal
network was determined by comparing their respective accuracies. The architectural schematic
of ZFNet is displayed in Figure 7. Given that the features have been extracted, there is no
requirement for fully connecting Layer 6 and Layer 7. The input image dimensions are
224 Pixel × 224 Pixel, and after undergoing sampling through the 5th convolutional layer, the
resulting feature map exhibits dimensions of 13 × 13 × 256 Pixel.
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Figure 7. Architecture of ZFNet.

The framework also leverages VGG16 for feature extraction. Akin to ZFNet, the initial
13 convolutional layers are harnessed for feature extraction, while excluding the pooled
layer POOL5 and the three fully connected layers FC6, FC7, and FC8. ReLu serves as
the activation function, while maximum pooling is employed in the pooling layer. When
the input image dimensions are 224 Pixel × 224 Pixel, the resulting feature size after
sampling by the 13-layer CNN is 14 × 14 × 512 Pixel. Furthermore, Figure 8 showcases the
visualization of the first two convolutional layers’ features, wherein Figure 8a,c represent
the feature maps of the first and second convolutional layers, respectively, while Figure 8b,d
depict the maps of the first and second pool layers.

3.2.2. Proposal Region Generation

The framework incorporates the region proposal network (RPN) to extract candidate
regions from the obtained feature maps. Due to the ability of RPNs to share features with
the classified fine-tuning network during the training process, the network’s detection
speed was considerably enhanced. RPN is a fully convolutional network (FCN), capable
of accepting images of any scale as input. It takes the feature maps extracted from the
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last layer of the feature extraction network as input and employs a 3 × 3 size sliding
window to generate a feature vector with either 256 dimensions (ZFNet) or 512 dimensions
(VGG16). Subsequently, the fully connected layer and the bounding box regression layer
utilize this vector as their input. These two layers serve for classification (distinguishing
foreground from background) and positional prediction. Figure 9 provides a schematic
diagram illustrating the network.
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The candidate regions, commonly referred to as anchors, constitute a set of fixed-size ref-
erence windows encompassing three dimensions {128 Pixel× 128 Pixel, 256 Pixel × 256 Pixel,
512 Pixel × 512 Pixel } and three aspect ratios {1:1, 1:2, 2:1}. These anchors are centered
on the 3 × 3 sliding window and serve as a benchmark for proposal region generation.
Subsequently, the mapping relationship between anchors and the ground-truth is derived
by calculating the central point and size of the anchors. Based on this, the anchors and
ground-truth are assigned positive (IoU > 0.7) and negative labels (IoU < 0.3), enabling the
RPN to learn about the presence of objects within the anchors.

During the training of the RPN, the parameters of the network layer shared with the
feature extraction network (ZFNet/VGG16) can be directly utilized. For all the added
layer parameters, we adopt a Gaussian distribution (0, 0.01) for random initialization and
set the momentum to 0.9. The learning rate ε is set to 0.001, and the weight decay is
specified as 0.0005. The loss function incorporates both cross-entropy loss and regression
loss, ultimately yielding the final mixed loss function as shown in Equation (7).

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (7)

where i denotes the index of the anchor, and pi represents the probability of predicting the
target. For positive samples, p∗i is set to 1, and for non-positive samples, p∗i is set to 0. The
term ti signifies the positional information of the proposal region, encompassing the central
position coordinate

(
tx, ty

)
along with the width tω and height th. Similarly, t∗i represents

the ground-truth central point position coordinate
(

t∗x, t∗y
)

and the corresponding width t∗ω
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and the height t∗h. Lcls, which denotes the classification loss, is a logarithmic loss function
as depicted in Equation (8). On the other hand, Lreg signifies the positional regression loss
and is expressed in Equation (9).

Lcls = − log[pi p∗i + (1− pi)(1− p∗i )] (8)

Lreg(ti, t∗i ) = R(t− t∗) (9)

where R denotes the robust loss function. Then, smoothL1 , as shown in Equation (10), is
incorporated to enhance the stability of the network during the training process, thereby
facilitating more robust and consistent learning.

smoothL1(x) =
{

0.5x2|x| < 1
|x| − 0.5 others

(10)

3.3. Classification Location Refinement Network

The classification location refinement network comprises an ROI pooling layer, a
fully connected layer, a classification layer, and a location refinement layer. The inputs to
this network are the features extracted by the feature extraction network and the proposal
region generated by the RPN. The output provides the probability of the target classification
and the precise positional information of the detected target. Due to variations in the size of
the proposed regions, the ROI pooling layer is employed to uniformly sample these regions,
which are subsequently forwarded to the fully connected layer. The detailed structural
composition of the network is visually depicted in Figure 10.
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3.3.1. Classification Layer

The softmax function is a commonly used function in deep learning, especially when
dealing with multi-class classification problems. It maps a set of real values to a probability
distribution, where each element of the output result is between 0 and 1, and the sum of all
elements is equal to 1. The classification layer utilizes softmax to predict the category to
which the region of interest belongs. Given a total of K categories, the output dimension
of K + 1 (K classes + background) corresponds to the probability of the recognized object
belonging to each of the K + 1 classes. By considering only the top-1 probability as the result
of vehicle type and brand recognition, the classification probability prediction for each
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ROI region is denoted as p = (p0, p1 . . . pk). For a specific class u, the class loss function is
formally expressed in Equation (11). This loss function plays a crucial role in improving
the network’s performance during the training process, allowing for accurate and efficient
classification of the ROI regions.

Lcls(p, u) = − log pu (11)

3.3.2. Position Refinement Layer

The proposed framework employs bounding box regression to refine the localization
of objects. Considering K classifications, each associated with four positional parameters,
the output is a 4 × K dimensional array, representing the refined parameters for panning
and scaling to determine the ultimate output target. For a specific category denoted
as µ, where 0 ≤ µ ≤ K, the output translation and scaling parameters are expressed as
tu =

(
tu
x , tu

y , tu
w, tu

h

)
. These parameters signify the four translational and scaling values

between the actual and predicted bounding boxes.
Supposing that for this category, the ground-truth coordinates are marked in the image

as v =
(
vx, vy, vw, vh

)
, and the corresponding predicted values are given by

tu =
(

tu
x , tu

y , tu
w, tu

h

)
, the loss function for the position refinement network is formally

defined in Equation (12). This loss function plays a pivotal role in improving the network’s
ability to accurately localize objects by minimizing the discrepancies between the predicted
and ground-truth bounding box parameters.

Lloc(tu, v) =
K

∑
i=1

smoothL1(t
u
i − vi) (12)

In the classification layer and position refinement process, we employ a multi-task
loss function during training. This multi-task loss function combines the class loss function
specified in Equation (11) and the position refinement loss function defined in Equation (13),
weighing them appropriately to derive the ultimate multi-task loss function. By incor-
porating both classification and localization losses, we can jointly optimize the network
parameters for improved performance in both tasks.

L(p, µ, tu, v) =
{

Lcls(p, u) + λLloc(tu, v)
Lcls(p, u)

(13)

where L(p, u, tu, v) represents the multi-tasking loss function, with λ being a hyperparam-
eter that regulates the relative contribution of the two individual loss functions within
the overall multi-task loss. Specifically, when the predicted category corresponds to the
foreground, the multi-task loss function is formulated as a weighted summation of the
softmax loss function and the bounding box loss function. Conversely, in cases where
the predicted category pertains to the background, the multi-task loss function reduces to
the softmax loss function alone. This nuanced approach to combining losses enables the
model to effectively balance classification accuracy and bounding box localization precision,
facilitating a more comprehensive and robust learning process.

4. Experimental Results Analysis

This section delves into the evaluation procedures, encompassing the specification of
parameters and the outcomes of the conducted experiments. To assess the efficacy of the
proposed model, we conducted rigorous testing on two extensively utilized public datasets:
Stanford Cars and BIT-Vehicle, along with Car5_48. These datasets offer a comprehensive
and diverse array of samples, enabling a thorough examination of the model’s performance
and robustness. Through a meticulous analysis of the experimental results, we aim to
demonstrate the effectiveness and superiority of the proposed approach compared to
existing state-of-the-art methods.
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4.1. Experimental Results

In our experiments, we utilized distinct feature networks, namely, ZFNet and VGG16,
to train the Faster R-CNN model with the Car5_48 dataset. The maximum training iterations
for these networks were set at 240,000 and 360,000, respectively. To enhance the model’s
generalization capabilities, we adopted the ImageNet dataset and employed a 10-fold
cross-validation technique for pre-training the model. The experimental results pertaining
to vehicle brand recognition are presented in Table 1. These results demonstrate the efficacy
and performance of our proposed approach in accurately identifying and classifying
different vehicle brands.

Table 1. Vehicle brand recognition network results.

Feature Network Maximum Iterations
Accuracy of Partial Vehicle

mAP
BMW Benz BYD Nissan Land Rover

ZFNet 240,000 0.9035 0.8495 0.8757 0.8788 0.8559 0.8614
ZFNet 360,000 0.9296 0.8611 0.8905 0.8798 0.9037 0.9240
VGG16 240,000 0.9561 0.8935 0.8950 0.8736 0.9434 0.9392
VGG16 360,000 0.9552 0.9174 0.9075 0.8806 0.9470 0.9403

The average recognition rate, denoted as mAP, represents the average accuracy across
the 48 vehicle brands, including the five specific brands listed. Analysis of the results
reveals that for the ZFNet network, the recognition rate progressively increases from
86.14% to 92.40% as the maximum iteration number augments. In contrast, for the VGG16
network, the difference in recognition rates between the 240,000 and 360,000 maximum-
iteration models is marginal, with respective rates of 93.92% and 94.03%. Furthermore, the
fluctuation of the loss function tends to plateau, indicating minimal improvement beyond
this point. Consequently, to improve the computational efficiency, we limit the maximum
number of iterations to 360,000. Ultimately, the vehicle brand detection and recognition
network utilizes the VGG16 model trained for 360,000 maximum iterations.

The results pertaining to vehicle type recognition are presented in Table 2. Under the
VGG16 network trained for 360,000 maximum iterations, the highest average recognition
rate achieved is 97.62%. Notably, the recognition rates for buses and trucks attain excep-
tional levels of 98.86% and 99.56%, respectively, while the rates for other vehicle types are
slightly lower. This can be attributed to the distinctiveness of bus and truck appearances,
which facilitates easier classification. By balancing accuracy and computational efficiency,
we opt to use the VGG16 network trained for 360,000 maximum iterations to effectuate vehi-
cle type classification. This decision ensures both a high level of accuracy and a reasonable
training time.

Table 2. Vehicle type recognition network results.

Feature Network Maximum Iterations
Accuracy

mAP
Sedan SUV Bus Minivan Microbus Truck

ZFNet 240,000 0.9335 0.9128 0.9775 0.9258 0.9567 0.9810 0.9478
ZFNet 360,000 0.9407 0.9286 0.9856 0.9279 0.9537 0.9857 0.9612
VGG16 240,000 0.9725 0.9432 0.9834 0.9707 0.9689 0.9846 0.9705
VGG16 360,000 0.9764 0.9459 0.9886 0.9772 0.9735 0.9956 0.9762

4.2. Comparison of Single-Angle and Multi-Angle Models

To ascertain the impact of multi-angle images on the model’s performance, this section
undertakes a comparative analysis between models trained using single-angle and multi-
angle images. Specifically, the VGG16 network was trained separately on each of the
eight angles available in the Car5_48 dataset, namely: front (f), behind (b), right-front (rf),
left-front (lf), left-side (ls), right-side (rs), right-behind (rb), and left-behind (lb). These
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models were then evaluated using multi-angle images. The resulting performance metrics
are presented in Table 3. This empirical study allows us to quantify the influence of multi-
angle images on the model’s ability to accurately detect and classify vehicle brands and to
determine whether training on multi-angle images offers any advantages over training on
single-angle images.

Table 3. Comparison of experimental results from different angles.

Model f b rf lf ls rs rb lb All Angles

Vehicle brand 0.8874 0.8650 0.8995 0.8863 0.8724 0.8955 0.8795 0.8720 0.9303
Vehicle type 0.9209 0.8922 0.9267 0.9345 0.8905 0.8562 0.9295 0.9059 0.9762

mAP 0.9042 0.8786 0.9131 0.9104 0.8815 0.8759 0.9045 0.8890 0.9533

Table 3 presents a comparative analysis of the recognition rates achieved by the models
trained on different angles. The results indicate that the models trained on specific angles,
namely, rf, lf, rb, and lb, exhibit higher recognition rates compared to the other angles in
the single-angle models. This can be attributed to the richer information content available
in these angles. Notably, the model trained on images from all angles achieved the highest
recognition rate of 95.33%, surpassing all other models that considered only a single
angle. This observation underscores the importance of incorporating vehicle images from
multiple angles during training, as it enables the network to capture more comprehensive
information and enhance the accuracy of vehicle information detection models. Thus,
leveraging multi-angle images can significantly improve the performance of deep learning
models for vehicle detection tasks.

4.3. Vehicle Type Recognition Results

Experiments on vehicle type recognition were conducted across three datasets to
classify five types of vehicles. The findings are presented in Table 4.

Table 4. Multi-angle vehicle type recognition network test results.

Vehicle Model Car5_48 Stanford Cars Dataset BIT-Vehicle Dataset mAP1

Sedan 0.9764 0.9000 0.9500 0.9500
SUV 0.9459 0.8500 0.9500 0.9000
Bus 0.9886 - 0.9670 0.9830

Minivan 0.9772 - 0.9330 0.9330
Microbus 0.9735 0.9000 0.9000 0.9160

Truck 0.9956 - 0.9750 0.9850
mAP2 0.9762 0.8830 0.9410 0.9340

mAP1 denotes the average recognition rate across different vehicle types. As observed
in Table 4, the truck achieved the highest accuracy (98.5%), closely followed by the bus
(98.3%). The car and minivan achieved recognition rates of 95.0% and 93.3%, respectively,
while the microbus and SUV had lower accuracy at 91.6% and 90.0%, respectively. The
higher recognition rates for trucks and buses can be attributed to their distinct shape
characteristics, which differentiate them from other vehicle types. Conversely, the lower
accuracy for SUVs is primarily due to their similarity with other vehicle types, making
them more challenging to distinguish.

mAP2 represents the vehicle type accuracy across different datasets. Analysis of
Table 4 reveals that the Car5_48 dataset exhibited the highest recognition rate (97.62%),
followed closely by the BIT-Vehicle dataset (94.1%). The Stanford Cars dataset had the
lowest recognition rate at 88.3%. The superior performance of the car recognition network
under the Car5_48 dataset can be primarily attributed to the similarity in the test and
training sample collection environments and angles. This consistency allowed for a more
accurate and robust classification of vehicle types.



Sensors 2023, 23, 9569 13 of 14

Table 5 presents a comparative analysis of the recognition results on the BIT-Vehicle
dataset. The proposed method achieved an improved recognition accuracy of 94.10%, which
is 1.21% higher than the accuracy reported by Dong Z et al. [13] and 2.80% higher than
that of Sang Jun et al. [15]. It is noteworthy that Dong Z et al. [13] utilized a convolutional
neural network (CNN) for feature extraction, but their approach was limited to recognizing
vehicle images from a single angle, thus discarding valuable detailed information. Similarly,
Sang Jun et al. [15] employed a method similar to the one used in this study, but their
detection was restricted to the front of the vehicle, which also resulted in a loss of more
comprehensive details and compromised the robustness of the model to changes in vehicle
angles. In contrast, the proposed method leverages multi-angle images to capture richer
and more detailed feature information, enhancing the overall accuracy and robustness of
the vehicle recognition system.

Table 5. Comparison of recognition accuracy of different methods.

Methods Recognition Angle mAP

Dong Z [13] Single angle 92.89%
Sang Jun [15] Single angle 91.30%

The method in this part Multi-angle 94.10%

Figure 11 displays a representative selection of partial identification outcomes. The
vehicle identification results depicted in the figure encompass a range of types, specifi-
cally including a bus, microbus, SUV, sedan, minivan, and truck. Notably, these results
encompass images captured from diverse shooting angles, underscoring the robustness
and adaptability of the identification system across various perspectives.
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5. Conclusions

In this paper, a comprehensive multi-angle vehicle type and brand recognition method
is constructed utilizing the Faster R-CNN framework. This innovative approach resolves
the challenges associated with the multi-pose and multi-angle distribution of vehicle infor-
mation recognition. Furthermore, to address the limitations of single-shot data collections in
conventional datasets, a comprehensive vehicle type and brand dataset from eight diverse
angles, designated as Car5_48, was created. Rigorous experimental evaluations demon-
strate that the Faster R-CNN, when applied to multi-angle recognition, surpasses current
state-of-the-art methodologies and enhances the overall robustness of the framework. This
research contributes to the advancement of vehicle recognition techniques.
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