
Citation: Musznicki, B.; Piechowiak,

M.; Zwierzykowski, P. Modeling and

Analyzing Urban Sensor Network

Connectivity Based on Open Data.

Sensors 2023, 23, 9559. https://

doi.org/10.3390/s23239559

Academic Editors: Muhammad

Farhan, Sohail Jabbar and Khalid

Mahmood

Received: 3 November 2023

Revised: 28 November 2023

Accepted: 29 November 2023

Published: 1 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Modeling and Analyzing Urban Sensor Network Connectivity
Based on Open Data
Bartosz Musznicki 1 , Maciej Piechowiak 2,* and Piotr Zwierzykowski 1

1 Institute of Computer and Communication Networks, Faculty of Computing and Telecommunications,
Poznań University of Technology, 60-965 Poznań, Poland; piotr.zwierzykowski@put.poznan.pl (P.Z.)

2 Department of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland
* Correspondence: maciej.piechowiak@ukw.edu.pl

Abstract: The optimization of network topology is crucial to achieve efficient data transmission in
wireless sensor networks. Recently it has been proven that emerging open data sources can be used for
modeling the structures of heterogeneous urban sensor networks. With this, leveraging real location
data of various networked and sensing devices became feasible and essential. This approach enables
the construction and analysis of more accurate representations based on frequently updated actual
network infrastructure topology data, as opposed to using synthetic models or test environments.
The presented modeling method serves as the basis for the designed architecture and implemented
research environment. This paper introduces a set of algorithms which transform devices’ location
data into graph-based wireless network connectivity models. Each algorithm is thoroughly discussed
and evaluated. Moreover, static (momentary) and dynamic (time-spanning) network topologies are
constructed in four large Polish cities based on publicly available data. Multidimensional simulation-
based analysis is conducted to investigate the characteristics of the modeled structures. Directions for
further research are suggested as well.

Keywords: urban sensor networks; open data; graph modeling; connectivity analyzing

1. Introduction

Wireless sensor networks (WSNs) are usually imagined and designed as homogeneous
structures, studied using synthetic models and computer simulations [1] or in experimental
testbeds [2]. The research on some vehicular ad hoc networks (VANETs) and delay-tolerant
networks (DTNs) was based on historical data obtained from transportation operators [3,4].
Another investigation used the readings gathered by a telecommunications operator in a
proprietary urban mobile relay network [5]. In a world which is becoming increasingly
networked, various new kinds of devices are connected in urban spaces, e.g., electricity
meters, home automation and entertainment devices, trash bins, parking meters, etc. Some
are designed specifically for sensing purposes while others are capable of performing
different types of measurements in addition to their main functions. The boundaries
between different types of hitherto studied networks are becoming blurred and their
structures are becoming more heterogeneous.

Currently, new diverse online data sources are emerging. They include both ones that
provide infrequently changing sets of data and ones that serve real-time data related to
public transport vehicles and elements of urban infrastructure. More and more of these
sources are available online and enable access to data related to, e.g., buses and trams, as
well as public transport stops and ticket machines. Not only the geographic location of
each element is available, but quite often also additional information, e.g., the type of the
device, current running parameters, and recent values of the measurements. Due to the
ongoing development of data storage, processing, and distribution technologies, these data
can be made publicly available [6,7]. Therefore, further open data sources are expected to

Sensors 2023, 23, 9559. https://doi.org/10.3390/s23239559 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23239559
https://doi.org/10.3390/s23239559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7529-8898
https://orcid.org/0000-0001-8346-5812
https://orcid.org/0000-0001-5609-1026
https://doi.org/10.3390/s23239559
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23239559?type=check_update&version=1

Sensors 2023, 23, 9559 2 of 41

become available within the coming years. This opens up a range of unexploited research
and development possibilities related to deterministically and randomly deployed nodes
of sensing capabilities [8]. See the examples of such connected devices in cities in Poland
in Figure 1.

(a) (b) (c)
Figure 1. Examples of connected devices in cities in Poland. (a) Electric rental car and parking lot
in Wrocław in December 2019; (b) bus, scooter, and bike rental station in Poznań in August 2019;
(c) electric kick scooters in Gdańsk in November 2019.

This article builds on the original idea presented by the same team in [9] and extends
it with a detailed study of the effectiveness of the proposed algorithms. It has been proven
that open data can be used for modeling heterogeneous urban sensor networks. The actual
types and features of these networks are reviewed and key routing research problems are
defined. The characteristics of data sources are presented and different exemplary graphs
are modeled to show the feasibility of the method and to indicate potential applications.
Moreover, a practical network modeling architecture is introduced.

The next sections concretize and investigate the concept further. First, in Section 2,
new urban sensor network connectivity modeling algorithms are presented and discussed.
They include both static (momentary) and dynamic (time-spanning) graph-based network
modeling methods. Then, Section 3 introduces the multidimensional simulation study’s
methodology and architecture. Open data related to four Polish cities are used. Diverse
geographic areas are defined and example modeled networks are presented. The results
are thoroughly discussed in Sections 4 and 5 to investigate the properties of each algorithm
and modeled structure. Section 6 presents a summary of our findings.

2. Network Modeling Algorithms

The complete modeling flow, composed of algorithms introduced in the next subsec-
tions, is shown in Figure 2. Both static (space) and dynamic (space–time) realistic graphs can
be generated to enable graph-based analysis of network topologies and routing algorithms
of interest.

Time-changing graph representations and nomenclature were reviewed in [9] and can
be referenced when needed. Based on the presented naming evolution, the terms slot, space
graph, and space–time graph, as well as, e.g., space edge and time edge, will be used as the
basis for naming modeled networks and their elements. Some graphs will be additionally
termed time-expanded or time-aggregated to indicate if their form is layered or compacted.

The discussion of each algorithm is closed with a definition of time complexity. The
usage of data structures implemented with hash tables is assumed and, therefore, average-
case complexity O(1) applies for all basic data insertion, search, update, and deletion
operations. These include, e.g., obtaining an element of a simple set, or accessing an
element of a more advanced dictionary-like keyed structure. For this reason, the influence
of this type of operation is not taken into account and the work centers on the presented
time complexities in the very essence of the algorithms.

Sensors 2023, 23, 9559 3 of 41

space connectivity
slots of space nodes

to space connectivity list (SSN-SCL)

space connectivity list

network devices data
to slots of space nodes (NDD-SSN)

slots of space nodes

space-time connectivity
space connectivity list to space-time

connectivity graph (SCL-STCG)

space-time
connectivity graph

space-time connectivity graph
to first-contact graph (STCG-FCG)

first-contact
graph

network devices data

Figure 2. Network modeling flow.

2.1. Network Device Data to Slots of Space Nodes

The first stage of modeling, as presented in Algorithm 1, network device data to slots
of space nodes (NDD-SSN), is aimed at data quantization, i.e., the construction of a list of
subsequent time slots. The term comes from the research of Huang et al., where it was
used to denote the space between consecutive layers of a space–time graph [10]. In the
presented novel network modeling approach, these slots are network topology snapshots
that capture the deployment of modeled physical wireless network devices in consecutive
intervals of slotLength. Each time slot groups the instances (occurrences) of all devices in a
network area of interest considered to belong to a given timeFrame. Such a timeframe is
defined for every network device class. The time distribution of data related to the devices
is discrete. The two-dimensional area is defined by two space-related closed intervals. As a
result, each actual device is represented as a node in the slots, and the device is considered
to have occurred. The slots are sets of nodes only, i.e., the nodes are not connected with any
edges yet, as presented in Figure 3. Stationary simple nodes are depicted with green circles,
stationary advanced nodes are depicted with blue triangles, and mobile advanced nodes
are blue triangles additionally marked with a black border.

n1

n2

n3

n4

n5
n6

n7

n9

space connectivity graphslot of space nodesnetwork devices data

n1

n2

n3

n4

n5
n6

n7

n9

n1

n2

n3

n4

n5
n6

n7

n9

slot1 SCG1

n8n10

n12 n11

n13
n14

Figure 3. Space connectivity graph modeling example.

Sensors 2023, 23, 9559 4 of 41

Algorithm 1: Network device data to slots of space nodes.
Input:
area← ([Xmin, Xmax], [Ymin, Ymax]) // network area of interest

classes← (classi)
j
i←1 : // list of j distinct device classes

classi ← {devicek}l
k←1 : // set of l devices of class i

devicek ,← (// device k
instancesk ,← (instancem)n

m←1 : // list of n time instances of device k
instancem ← (// instance m

timem, // instance occurrence time
locationm // instance location

),
idk , // device id
rolek // device role

)
slotLength ∈ R>0 // length of time slots
topologyLength ∈ N+ // number of subsequent time slots of the time topology
topologyStart // start time of the topology

windows← (windowi)
j
i←1 // list of j time window lengths corresponding to the respective j

device classes

Output:

slots← (slotp)
topologyLength
p←1 : // list of subsequent time slots

slotp ← {noder}s
r←1 : // set of all s nodes of slot p

noder ← (// node r of slot p
classr , // node class
idr , // node id
locationr , // node geographic location
roler , // node role
slotNumberr // node slot number

)

1 slots← assignDevicesInstancesToSlots() // assign devices instances to slots of nodes

2 output slots

The time topology begins at a given topologyStart time and its span, i.e., topologyLength
is defined by the number of subsequent time slots of equal nonzero slotLength within the
network modeling period. Each device in the area of interest is identified by a unique id,
performs the desired network role, and belongs to one of the distinct classes. A data-lookup
window of a given length, i.e., duration, is defined for each such class. Every time the
occurrence of a device is distinguished is considered a time instance of this device. Every
instance is marked with the occurrence time and location.

The Procedure assignDevicesInstancesToSlots starts with initializing the list of empty
time slots, setting topologyStart as the initial slotEnd time and obtaining the number of
device classes j. Then, it iteratively defines the sets of nodes that belong to each slot.
Every iteration begins with moving the current value of slotEnd time by slotLength. Then,
for each class, it is checked which time instance of every device in the network area is
the newest time occurrence of that device in the timeFrame of interest. This timeFrame is
defined as a half-open interval preceding slotEnd by the time length of the window of the
class of the device. If newestInstance is selected, i.e., an instance which satisfies the time
conditions related to current slot and class, a new node is added to the current slot. That
node is marked with the class, id, location, slotNumber, and role of the instance of the given
device. As a result, the list of slots of the nodes is obtained. It has to be pointed out that a
list is an ordered sequence of elements while a set is an unordered collection.

Due to nested the iterative nature of the algorithm, its upper bound of time complexity
is related to the number of slots (topology length), device classes, the number of the devices
in the largest class, as well as the maximum number of device instances. Therefore, it can
be defined as O(|slots| · |classes| · |class|MAX · |instances|MAX).

Sensors 2023, 23, 9559 5 of 41

Procedure assignDevicesInstancesToSlots
Input: defined in Algorithm 1

Output:
slots // list of subsequent time slots of nodes

1 slots← (slotp)
topologyLength
p←1 ← ∅ // initialize the list of empty time slots

2 slotEnd← topologyStart // set initial slot end to topology start time

3 j← |classes| // obtain the number (cardinality) of device classes

// select and assign network devices to each slot as nodes

4 foreach slot ∈ slots do
5 slotEnd +← slotLength // set end of current time slot

// process each device class

6 for i← 1 to j do
// process each device of the class

7 foreach device ∈ classes[i] do
8 newestInstance← ∅ // set device newest instance to an empty set

9 newestOccurrenceTime← −∞ // set device newest occurrence time to minus

infinity

// find the newest time-occurrence of the device in the area of interest

10 foreach instance ∈ device.instances do
11 if instance.location ∈ area then
12 timeFrame← [slotEnd− windows[i], slotEnd) // set timeframe of

interest

13 if instance.time ∈ timeFrame then
14 if instance.time > newestOccurrenceTime then
15 newestInstance← instance
16 newestOccurrenceTime← instance.time

// if the newest instance of a distinct device was selected, add it as a node to

the list of slot nodes which occurred in the area of interest, as well as,

within the class window of current time slot

17 if newestInstance 6= ∅ then
18 slot ∪ ← newestInstance // add the node to the current time slot

19 output slots

2.2. Slots of Space Nodes to Space Connectivity List

When the data related to the network devices have been turned into subsequent time
slots of nodes, the next step of the modeling network topology can take place. Therefore,
Algorithm 2, slots of space nodes to space connectivity list (SSN-SCL), constructs the space
connectivity list (SCL), i.e., the list of subsequent time-ordered directed space connectivity
graphs (SCGs)—based on the list of slots and the assumed radioCoverage of the devices. Such
an SCL was called an evolving graph by Ferreira [11]. The graphs are considered to reflect
possible temporary connectivity of the network in the related slot, as shown in Figure 3.
Dashed links are the ones originating in stationary nodes, while solid links are those
starting in mobile nodes. Here, radioCoverage can be a simple nonzero omnidirectional
constant-range function, as well as an advanced model-based function which depends on,
e.g., device class, state, radio transmission and reception capabilities, as well as propagation
conditions. An example SCL with six slots and nine nodes is presented in Figure 4. It is
assumed that nodes of a simple type can only be the ends of the edges (receivers), while
advanced nodes can be also the start (transmitters). The number of nodes varies among
the graphs and reflects the changes in the number of space nodes in the area of interest
over time.

Sensors 2023, 23, 9559 6 of 41

Algorithm 2: Slots of space nodes to space connectivity list
Input:

slots← (sloti)
j
i←1 : // list of j subsequent time slots

sloti ← {nodek}l
k←1 // set of l nodes of slot i

radioCoverage // radio coverage function of the devices (nodes)

Output:

SCL← (SCGi)
j
i←1 : // list of j subsequent directed space connectivity graphs

SCGi ← (// space connectivity graph i
SCEi ← {edgem}n

m←1 : // set of n edges (arcs) of graph i
edgem ← (// directed edge m from start to end node

startm, // start node
endm, // end node
distancem, // geographical distance
slotNumberm // slot number

),
SCVi ← {nodek}l

k←1 // set of l vertices (nodes) of graph i
)

1 j← |slots| // obtain the number (cardinality) of time slots

2 SCL← (SCGi)
j
i←1 ← ∅ // initialize SCL as the list of j empty graphs

// convert each slot to space connectivity graph

3 for i← 1 to j do
4 SCEi ← ∅ // initialize an empty set of edges

5 SCVi ← slots[i] // initialize the set of vertices (nodes)

6 l ← |SCVi| // obtain the number of nodes of SCVi

// look for neighbors of each node of SCVi

7 for k← 1 to l do
8 node← SCVi[k] // obtain node k of SCVi

// look for neighbors in remaining l − k nodes of SCVi

9 for p← k + 1 to l do
10 candidate← SCVi[p] // obtain node p of SCVi as neighbor candidate

// check if candidate is within radio coverage bounding region of the node

11 if candidate ∈ boundingRegion(node, radioCoverage) then
// check if radio connection could be established

12 if node.location ∈ radioCoverage(candidate) and candidate.location ∈
radioCoverage(node) then

// calculate distance between node and neighbor candidate

13 distance← edgeDistance(node, candidate)
// connect transmitting node with receiving node

14 if node.role = “relay” then
15 SCEi ∪ ← (node, candidate, distance, i) // extend SCEi with an edge

from node to neighbor candidate

16 if candidate.role = “relay” then
17 SCEi ∪ ← (candidate, node, distance, i) // extend SCEi with an edge

from neighbor candidate to node

18 SCL[i]← (SCEi, SCVi) // store edges and vertices of graph SCGi of SCL

19 output SCL

The boundingRegion is used to reduce the number of inter-nodal distance compu-
tations. This is based on the observation that for complex radioCoverage functions it
is beneficial to perform the first rough neighbor candidate filtering in a less computa-
tionally intensive way. Afterwards, further precise calculations are performed only for
the pairs of nodes that are close enough, and therefore, likely to be able to establish a
connection—depending on the shape, size and center (location) of the radioCoverage of
those nodes. The simplest approach to determine this, when working with a spheroid-
based coordinate system, is to find a quasi-rectangular projected circumscribed area of the
radioCoverage of the node. In the most simplistic case of a flat network area and uniform

Sensors 2023, 23, 9559 7 of 41

omnidirectional radioCoverage, the boundingRegion would be a circumscribed rectangle
of a circle centered at the location of the node, with the radio range being the radius of
this circle.

n1

n2

n3

n4

n5

n6

n7

n8

n9

s2s1 s3 s4 s5 s6

mobile advanced

nodes
stationary simple

stationary advanced

edges
space (from mobile)
space (from stationary)

Figure 4. Example space connectivity list.

The algorithm begins by establishing the number j of time slots of the nodes, i.e., ob-
taining the cardinality of the list of slots, and initializes the list of j empty SCG graphs.
Then, iteratively, each SCGi graph is filled with edges SCEi and vertices SCVi. This list of
l vertices is simply the list of all nodes of sloti. The edges SCEi are determined in a more
complex, and yet computational-complexity-optimized way.

For each SCGi, an empty set of edges SCEi is initialized. Then, the set of vertices
(nodes) SCVi is traversed. In every iteration, each not yet traversed vertex of SCVi is
iteratively considered a neighbor candidate. By this means, the number of computations
can be limited. In other words, the candidates are the l− k nodes which succeed the current
node (the kth one) in the list of l nodes of SCVi. This optimization can be applied because of
the symmetric nature of the process and operations aimed both at the node and candidate
can follow.

If the candidate is located within the boundingRegion of the node, then it is checked if
the node is placed within the radioCoverage of the candidate, as well as the candidate being
within radioCoverage of the node. When both conditions are met, the distance between the
node and the candidate is calculated. The method edgeDistance can be a simple computation
of geographical distance between two nodes by the means of determining the great-circle
distance on a sphere [12]. It can be also a more complex metric function, e.g., related to
the minimum power needed to complete a single transmission to the neighboring node.
Next, if the node is a relay, then Ei is extended with an edge from the node to a neighbor
candidate. Similarly, an edge from a neighbor candidate to the node is added to the SCEi if
the candidate is a relay. When all iterations are completed, the SCEi and SCVi of SCGi are
stored in the SCL.

The radio-connectivity-related functions radioCoverage and boundingRegion are ad-
vised to be either precomputed for each node of the SCVi at the beginning of iteration i, or
computed at the first usage and stored (cached) for future use, depending on the imple-
mentation. In the general urban use case, it can be assumed that the radioCoverage and
network area dimensions would be of different orders of magnitude. Therefore, not using
boundingRegion, especially with a large number of highly dispersed nodes, would lead to
a significant increase in the computational complexity. In cases where the radioCoverage
and dimensions of the network area tend to be of the same or similar orders of magnitude,
especially in sparse networks, it might be beneficial to omit the computation and usage of
boundingRegion. Similarly, the use of boundingRegion may be counter-effective if it is of a
similar or higher computational complexity than checking if a node belongs to a region
defined by radioCoverage.

Sensors 2023, 23, 9559 8 of 41

The upper bound of the complexity of the algorithm is O(|slots| · |SCV|MAX
2), i.e., is

related to the number of slots (topology length) and the number of nodes in a graph with
the largest number of nodes of all graphs of the topology.

2.3. Space Connectivity List to Space–Time Connectivity Graph

The construction of a space–time connectivity graph (STCG) is defined as a more complex
Algorithm 3, space connectivity list to space–time connectivity graph (SCL-STCG), composed
of several procedures. Based on the structure of each directed space graph SCGi of SCL,
time node instances as well as space–time edges are added to the STCG. These edges are
of two types, i.e., space, and time, which indicates their role in the structure. Space edges
connect different neighboring space nodes (devices) while time edges connect consecutive
time instances of the same space node. Moreover, the notion of intra-slot and inter-slot edges
is introduced to distinguish their graph roles. Intra-slot edges, that can be of space and time
types, are used to construct the graph structure related to spatiotemporal relations within
a given slot of nodes (based on SCGi). Inter-slot edges are of the time type and connect
slot-related structures (stages) to produce a space–time connectivity graph. An STCG is
therefore a one-way multipath multistage layered structure that follows the direction of
time and is a directed acyclic graph, as depicted in Figure 5.

Algorithm 3: Space connectivity list to space–time connectivity graph
Input:

SCL← (SCGi)
j
i←1 : // list of j subsequent directed space connectivity graphs

SCGi ← (// directed graph i
SCEi , // set of edges (arcs)
SCVi // set of vertices (nodes)

)
intraSlotTimeEdgeSpaceUnitCost ∈ R≥0 // space unit cost of a time edge within a slot
interSlotTimeEdgeSpaceUnitCost ∈ R≥0 // space unit cost of a time edge between slots
intraSlotSpaceEdgeTimeUnitCost ∈ R≥0 // time unit cost of a space edge within a slot
intraSlotTimeEdgeTimeUnitCost ∈ R≥0 // time unit cost of a time edge within a slot
interSlotTimeEdgeTimeUnitCost ∈ R≥0 // time unit cost of a time edge between slots

Output:
STCG ← (// directed space–time connectivity graph

STCE, // set of space–time connectivity edges
STCV // set of space–time connectivity vertices

)

1 STCE← ∅ // initialize an empty set of space–time connectivity edges

2 STCV ← ∅ // initialize an empty set of space–time connectivity vertices

3 j← |SCL| // obtain the number (cardinality) of graphs in SCL

// process each graph

4 for i← 1 to j do
5 SCGi ← SCL[i] // obtain a copy of graph SCGi

// add nodes and edges from first space connectivity graph also as graph zero

6 if i = 1 then
7 addTimeNodeInstancesAndEdges(0, SCGi, STCE, STCV)

8 addTimeNodeInstancesAndEdges(i, SCGi, STCE, STCV)
9 addSpaceEdges(i, SCGi, STCE)

10 STCG ← (STCE, STCV) // compose space–time connectivity graph

11 output STCG

To enable the usage of various algorithms, such as the well-known ones related to
finding shortest paths or trees, to process the constructed STCG as the input structure, the
edges share the same set of attribute types, e.g., spaceDistance, and timeDistance. These
weights are computed or set based on defined unit costs. They are a means of modifying or
tweaking the resulting cost structure to meet the needs of further modeling and analysis:

• intraSlotTimeEdgeSpaceUnitCost—space unit cost of a time edge within a slot:

Sensors 2023, 23, 9559 9 of 41

– default value: 0;
– meaning: nonzero value stands for unit space cost related to the node (device)

operating within a time slot. It can be used, for example, to model the cost of
receiving location beacons;

• interSlotTimeEdgeSpaceUnitCost—space unit cost of a time edge between slots:

– default value: 0;
– meaning: nonzero value stands for unit space cost related to the node (device)

transitioning between time slots. It can be used, for example, to model the cost of
transmitting location beacons;

• intraSlotSpaceEdgeTimeUnitCost—time unit cost of a space edge within a slot:

– default value: 0;
– meaning: nonzero value indicates unit time cost related to transmitting a message

between two devices, e.g., due to technology-dependent buffering or delays. It
can be used, for instance, together with intraSlotSpaceEdgeTimeUnitCost to favor
intra-slot time edges over intra-slot space edges by path-finding algorithms. It
will lead to maximizing buffering time in a single relay, minimizing the number of
inter-node transmissions, and hence, the nodes involved. Although, it can happen
at the expense of an overall increase in the space cost of the constructed STCG;

• intraSlotTimeEdgeTimeUnitCost—time unit cost of a time edge within a slot:

– default value: 0;
– meaning: should be considered in relation to intraSlotSpaceEdgeTimeUnitCost for

given modeling scenario. It can also be used with interSlotTimeEdgeTimeUnitCost
to shape time-path cost properties of STCG, e.g., as a tie-breaker;

• interSlotTimeEdgeTimeUnitCost—time unit cost of a time edge between slots:

– default value: 1;
– meaning: indicates unit cost related to transitioning (buffering) a message over

time by a node. It is of key significance for path searching scenarios that aim
to optimize the message delivery time, e.g., to minimize the total time cost
of a path. If set to 0 it may lead to unexpected or erroneous results in opti-
mization algorithms which are based on ordering the weights of the edges. It
can be of use though when consciously used with properly selected values of
intraSlotSpaceEdgeTimeUnitCost and intraSlotTimeEdgeTimeUnitCost.

s1s s1es0s s0e s2s s2e s3s s3e s4s s4e

n1

n2

n3

n4

n5

n6

n7

n8

n9

s5s s5e s6s s6e

mobile advanced

nodes
stationary simple

stationary advanced

time

edges
space (from mobile)
space (from stationary)

Figure 5. Example space–time connectivity graph.

Iterating over SCL, Procedure addTimeNodeInstancesAndEdges is invoked twice for
SCG1. The first, i.e., additional call, extends the sets of space–time connectivity edges (STCEs)
and space–time connectivity vertices (STCVs) with time node instances and edges which
represent the non-existent graph zero, as shown by Huang et al. [10]. Such an abstract
graph SCG0 with no space edges is required to provide correct starting points for path- and
tree-finding algorithms and enable traversals based on the space and time metrics of the
graph. For the remaining SCGi graphs, both space and time edges are constructed.

Sensors 2023, 23, 9559 10 of 41

Procedure addTimeNodeInstancesAndEdges(i, SCG, STCE, STCV)
Input:
i // space connectivity graph number
SCG // space connectivity graph
STCE // set of space–time connectivity edges (arcs)
STCV // set of space–time connectivity vertices (nodes)

1 foreach spaceNodeInstance ∈ SCG.SCV do
2 timeNodeInstances← (
3 start← makeTimeNodeInstance(i, spaceNodeInstance, “start”)
4 end← makeTimeNodeInstance(i, spaceNodeInstance, “end”)
5)
6 STCV ∪ ← timeNodeInstances.start ∪ timeNodeInstances.end
7 addTimeEdges(STCE, STCV, timeNodeInstances)

// store end time node instance in the list of end instances of current space node

identified by globalId

8 global Id← spaceNodeInstance.id
9 STCV.global Ids[global Id].endInstances ∪ ← timeNodeInstances.end

To add time node instances and edges in Procedure addTimeNodeInstancesAndEdges,
each node of a given graph is used to make two new STCV nodes, which represent the
instances of the node at the “start” and “end” of time slot i. The creation of these nodes
is defined in Procedure makeTimeNodeInstance. To initialize a new timeNodeInstance, first
the attributes of spaceNodeInstance are copied. Then, the id of the space node is stored
as global Id to keep the reference of time node instance to its parent space node. Next, a
new id is composed, i.e., the id of the space node is prefixed with slot number i and a time
instance type indicator, either “_s_” for slot start, or “_e_” for slot end. In this way, for
example, node “1357” of slot (space connectivity graph) number 3 will be converted to slot
start instance “3_s_1357”.

Procedure makeTimeNodeInstance(i, spaceNodeInstance, timeInstanceType)
Input:
i // space connectivity graph number
spaceNodeInstance // instance of a space node of graph i
timeInstanceType // type of time node instance to be created

Output:
timeNodeInstance // time instance of requested type

// initialize time node instance and copy the attributes of space node instance

1 timeNodeInstance← spaceNodeInstance
2 timeNodeInstance.slotNumber ← i // store slot (graph) number

// store global (time-invariant) id of space node

3 timeNodeInstance.global Id← spaceNodeInstance.id // e.g., 1357

// make time-prefixed id of space–time node instance based on its type

4 timeNodeInstance.id← i // e.g., 3

5 switch timeInstanceType do
6 case “start” do
7 timeNodeInstance.id ∪ ← “_s_” // e.g., 3_s_

// destination type set to node classes

8 case “end” do
9 timeNodeInstance.id ∪ ← “_e_”

10 timeNodeInstance.id ∪ ← spaceNodeInstance.id // e.g., 3_s_1357

11 output timeNodeInstance

Sensors 2023, 23, 9559 11 of 41

Afterwards, following Procedure addTimeEdges, intraSlotTimeEdge and interSlotTimeEdge
are added to STCE. The directions are defined by the start and end node attributes and ad-
ditional labels are set, i.e., spaceDistance, timeDistance, slotNumber, and type set to “time”.
Here, timeDistance can mean, for example, the delay or buffering time related to traversing
the edge by a message. Current slot node instances are connected with a time edge of
intraSlotTimeEdgeSpaceUnitCost and intraSlotTimeEdgeTimeUnitCost. The current slot
start instance is then linked with the newest slot end instance that exists in the set of
globalIds, which is an attribute of STCV. This does not always mean it is connected with
the end instance of the previous slot. The node instance might have not been present in the
directly preceding slot, or the space node has not yet been present in the space–time graph.
Then, the slot end instance is added to the list of endInstances of global Id in the global IDs
set related to the space nodes of STCV. Next, in Procedure addSpaceEdges, each space edge
of SCGi is converted to intraSlotSpaceEdge and added to STCE. Finally, STCE and STCV
are used to compose the STCG.

Procedure addTimeEdges(STCE, STCV, timeNodeInstances)
Input:
STCV // set of space–time vertices connectivity (nodes)
STCE // set of space–time edges connectivity (arcs)
timeNodeInstances // time instances of a space node

// define space–time edge from current time node slot start to end instance

1 intraSlotTimeEdge← (
2 start← timeNodeInstances.start,
3 end← timeNodeInstances.end,
4 spaceDistance← intraSlotTimeEdgeSpaceUnitCost,
5 timeDistance← intraSlotTimeEdgeTimeUnitCost,
6 slotNumber ← timeNodeInstances.end.slotNumber,
7 type← “time”
8)
9 interSlotTimeEdge← ∅ // initialize an empty inter-slot time edge

10 global Id← timeNodeInstances.start.global Id
// check if an instance of current node already exists in STCV

11 if global Id ∈ STCV.global Ids then
// obtain previous time instance of current node

12 previousEndNodeInstance← newest(STCV.global Ids[global Id].endInstances)
// define space–time edge from previous slot end instance to current start instance of the

node

13 interSlotTimeEdge← (
14 start← previousEndNodeInstance,
15 end← timeNodeInstances.start,
16 spaceDistance← interSlotTimeEdgeSpaceUnitCost,
17 timeDistance← interSlotTimeEdgeTimeUnitCost ·

(timeNodeInstances.start.slotNumber− previousEndNodeInstance.slotNumber),
18 slotNumber ← timeNodeInstances.start.slotNumber,
19 type← “time”
20)

21 STCE ∪ ← intraSlotTimeEdge ∪ interSlotTimeEdge // add time edges to STCE

Sensors 2023, 23, 9559 12 of 41

Procedure addSpaceEdges(i, SCG, STCE)
Input:
i // space connectivity graph number
SCG // space connectivity graph
STCE // set of space–time connectivity edges

1 j← |SCG.SCE| // obtain the number (cardinality) of edges in SCE

// process each space connectivity edge of SCG

2 for i← 1 to j do
3 spaceEdge← SCG.SCEi // obtain a copy of edge i of SCG.SCE

// define space–time edge based on space edge

4 intraSlotSpaceEdge← (
5 start← i ∪ “_s_” ∪ spaceEdge.start,
6 end← i ∪ “_e_” ∪ spaceEdge.end,
7 spaceDistance← spaceEdge.distance,
8 timeDistance← intraSlotSpaceEdgeTimeUnitCost,
9 slotNumber ← i,

10 type← “space”
11)
12 STCE ∪ ← intraSlotSpaceEdge // add space edge to STCE

The upper bound of the time complexity of Algorithm 3 is O(|SCL| · |SCV|MAX ·
|SCE|MAX), and hence, is related to the number of space connectivity graphs, the number
of nodes in the graph with the largest number of nodes, as well as the number of edges in
the graph with the largest number of edges of all graphs of the topology.

The space–time connectivity graph (STCG) is an extension of the existing layered space–
time graph (STG) concept [10,13]. It unambiguously reflects the space and time dimensions
of changing network topology, and hence, enables multi-criteria spatiotemporal design
and analysis. The essential innovations are the presented duplication of space nodes for
each time slot as start and end node instances, as well as the introduction of intra-slot and
inter-slot edges and metrics (e.g., the sets of s1s and s1e nodes and edges in Figure 5). They
enable the development of new optimization algorithms and the proper usage of existing
effective path-finding ones designed for graphs of more traditional time-flow-ignoring
contexts, i.e., static as compared to dynamic (evolving) graphs. It is worth noting the term
time-expanded graph, which was used in a related context [14]. In spite of that structure
being an even more simplistic model, the term itself can additionally be of use in relation to
space–time graphs because it captures and highlights the time-related graph structure span.

In [14], the model of a time-aggregated graph is presented. This uses single instances
of each node and edges between them. The edges are labeled with occurrence times of
each connection. This alternative representation of a spatiotemporal graph, defined as a
space connectivity list visible in Figure 4, is presented in Figure 6a. There, the directed edge
label s1,2,5 means that the link originated by a mobile node existed in time slots 1, 2, and
5. Similarly, s1−6 denotes that the connection between stationary nodes that were present
throughout the whole time span of modeled network.

Time-aggregated representation is not used to model STCGs because it does not
enable direct use of well-known graph optimization and analysis algorithms which provide
optimal solutions. However, methods are being developed that are aimed at solving these
problems in time-aggregated graphs. The problem of determining minimum temporal paths
is addressed by the algorithms for finding earliest-arrival, latest-departure, fastest, and
shortest paths [15]. Methods for constructing a directed Steiner tree (DST) in a structure
that resembles a space–time graph transformed from a time-aggregated graph called a temporal
graph are also presented [16]. Similarly, in [10], they aim to construct a DST directly in the
space–time graph used in their topology control efforts.

Importantly, a time-aggregated graph is a representation well-suited to capture the
outcomes of algorithms that solve problems in STCGs. Therefore, it is used in the present

Sensors 2023, 23, 9559 13 of 41

research as a practical representation of the modeled first-contact and multicast graphs.
Please see Figure 6b,c for examples.

n1

n2

n3

n4

n5n6

n7

n9
n8

s6

s1,2,5

s1s1

s1-6
s1-6

s3

s3

s1-6s1-6

s4s4

(a) Space–time connectivity graph

n1

n2

n3

n4

n5n6

n7

n9
n8

s6

s1

s1s1

s1
s1

s3

s3

s1s1

s4s4

(b) First-contact graph

n1

n2

n3

n4

n5

n7

n9
n8

s1
s1

s3
s4

s4

s6

s2

(c) Multicast graph

Figure 6. Example time-aggregated graphs.

2.4. Space–Time Connectivity Graph to First-Contact Graph

To build a first-contact graph (FCG), Algorithm 4, space–time connectivity graph to first-
contact graph (STCG-FCG), is used. Such a graph is a time-aggregated graph with single
instances of all spaceNodes located at the coordinates of their first instances, i.e., the ones
in f irstSlot (first SCG) in which the node was present. Each node is connected to each
neighbor with a directed first-contact space or time edge. Space edges connect the nodes
that are neighbors in the same f irstSlot. Time edges connect them otherwise.

Algorithm 4: Space–time connectivity graph to first-contact graph
Input:
STCG ← (// directed space–time connectivity graph

STCE, // set of space–time connectivity edges
STCV // set of space–time connectivity vertices

)

Output:
FCG ← (// directed first-contact graph

FCE, // set of first-contact edges
FCV // set of first-contact vertices

)

1 spaceNodes← f indFirstInstancesAndTimeNeighbors(STCG)
2 FCG ← buildFirstContactGraph(STCG.STCV, spaceNodes)
3 output FCG

An illustrative time-expanded FCG presented in Figure 7 was constructed in the
STCG introduced in Figure 5. The related time-aggregated form is depicted in Figure 6b.
The presented edge labels, for instance, s3 and s4, indicate in which time slot of a given
slotNumber the f irstContactEdge existed between two nodes. Similarly, an example space–
time multicast graph was constructed and is presented in Figures 6c and 8. It is a time-

Sensors 2023, 23, 9559 14 of 41

respecting tree that connects, over time, mobile source node n1, via intermediate relay
nodes, with four stationary destination nodes n2, n4, n5, and n9.

s1s s1es0s s0e s2s s2e s3s s3e s4s s4e

n1

n2

n3

n4

n5

n6

n7

n8

n9

s5s s5e s6s s6e

mobile advanced

nodes
stationary simple

stationary advanced

time

edges
space (from mobile)
space (from stationary)

Figure 7. Example expanded first-contact graph.

n1

n2

n3

n4

n5

n6

n7

n8

n9

s1s s1es0s s0e s2s s2e s3s s3e s4s s4e s5s s5e s6s s6e

mobile relay

nodes
stationary destination

stationary relay

time

edges
space (from mobile)
space (from stationary)

mobile source

Figure 8. Example expanded space–time multicast graph.

The STCG-FCG algorithm starts with finding first instances of space nodes and their
first time neighbors in the STCG. The Procedure findFirstInstancesAndTimeNeighbors it-
erates over each nodeInstance of the STCG. At the beginning, it adds a new space node
to the set of spaceNodes if it does not contain a node indexed with the global Id of the
current nodeInstance. Key attributes of the new space node are inherited from the current
nodeInstance, i.e., global Id becomes id, its id is set as f irstInstance and its slotNumber
becomes f irstSlot. Moreover, an empty set of edges to successors is initialized. If a node
indexed with global Id was present in spaceNodes, then f irstInstance and f irstSlot are up-
dated if the slotNumber of the current nodeInstance is lower than f irstSlot currently stored
in spaceNodes for the current global Id of interest. This means, that current nodeInstance
precedes the instance which has been so far considered the f irstInstance (occurrence) of
the given global Id (space node). The procedure closes with adding successors of current
nodeInstance, which are instances of different space nodes. Its complexity is related to the
number of nodes of the STCG, and hence, upper bounded by O(|STCV|2).

Sensors 2023, 23, 9559 15 of 41

Procedure findFirstInstancesAndTimeNeighbors(STCG)
Input:
STCG // directed space–time connectivity graph

Output:
spaceNodes // set of space nodes

1 spaceNodes← ∅ // initialize an empty set of space nodes

2 foreach nodeInstance ∈ STCG.STCV do
3 global Id← nodeInstance.global Id

// add first instance of space node if not already in the set

4 if global Id /∈ spaceNodes then
5 spaceNodes[global Id]← (
6 id← global Id,
7 f irstInstance← nodeInstance.id,
8 f irstSlot← nodeInstance.slotNumber,
9 edges← ∅ // initialize an empty set of edges to successors of this space node

10)

// set this node instance as first if it precedes current first instance

11 else if nodeInstance.slotNumber < spaceNodes[global Id]. f irstSlot then
12 spaceNodes[global Id]. f irstInstance← nodeInstance.id
13 spaceNodes[global Id]. f irstSlot← nodeInstance.slotNumber

// add successors which are instances of different space nodes

14 foreach successor ∈ getSuccessors(nodeInstance, STCG) do
15 if successor.global Id 6= nodeInstance.global Id then
16 spaceNodes[global Id].edges ∪ ← (nodeInstance.id, successor.id)

17 output spaceNodes

When the set of spaceNodes is ready, Procedure buildFirstContactGraph can be used
to construct the FCG out of the STCG. At the beginning, all first node instances need
to be added to the FCG. Therefore, for each spaceNode a f irstContactNode is obtained.
Such a node is the space node of the STCG, which was determined to be the f irstInstance
of a given spaceNode. Its id is set to the id of spaceNode, and then, the f irstContactNode
can be added to the set of vertices FCV of the FCG. In the next step, the edges going
out from each f irstContactNode are added to the FCG. For each node of the FCG, each
edge going out from the current node is evaluated. The end node of the edge is set to be
the current neighbor of the node. Then, the timeDistance between them is calculated and
contactEdge defined as any edge connecting a node to a neighbor, based on their id and
global Id, respectively. If such an edge does not exist in the FCG, then edgeType is set. It is
“time” if timeDistance is positive and “space” otherwise. Then, f irstContactEdge is defined
and added to the FCG. If contactEdge exists in the FCG and its timeDistance is larger than
timeDistance to the current neighbor instance, then the timeDistance of the edge of the FCG
is updated to the shorter timeDistance.

As a result, FCG contains first instances of nodes labeled with space id. Those nodes are
connected to their neighbors with first-contact edges. The upper bound of this procedure’s
time complexity is O(|spaceNodes|2).

Sensors 2023, 23, 9559 16 of 41

Procedure buildFirstContactGraph(STCV, spaceNodes)
Input:
STCV, // space–time connectivity graph vertices
spaceNodes // set of space nodes

Output:
FCG ← (// directed first-contact graph

FCE, // set of first-contact edges
FCV // set of first-contact vertices

)

1 FCE← ∅ // initialize an empty first-contact edges
2 FCV ← ∅ // initialize an empty first-contact vertices
// add all first node instances to the FCV

3 foreach spaceNode ∈ spaceNodes do
// obtain first instance of current space node

4 f irstInstance← spaceNode. f irstInstance
// copy first instance and its attributes as first-contact node

5 f irstContactNode← STCV[f irstInstance]
// set id of first-contact node to id of space node

6 f irstContactNode.id← spaceNode.id
// add first-contact node to first-contact graph

7 FCV ∪ ← f irstContactNode

// add edges going out from each first-contact node
8 foreach node ∈ FCV do
9 foreach edge ∈ spaceNodes[node].edges do

10 neighbor ← STCV[edge.end]
11 timeDistance← neighbor.slotNumber− node. f irstSlot
12 contactEdge← (node.id, neighbor.global Id)

// check if contact edge is not already in FCE
13 if contactEdge /∈ FCE then
14 if timeDistance > 0 then
15 edgeType← “time”

16 else
17 edgeType← “space”

// define first-contact edge
18 f irstContactEdge← (
19 start← node.id,
20 end← neighbor.global Id,
21 spaceDistance← edge.spaceDistance,
22 timeDistance← edge.timeDistance,
23 slotNumber ← edge.slotNumber,
24 type← edgeType
25)
26 FCE ∪ ← f irstContactEdge // add first-contact edge to FCE

// update time distance if current contact edge is of shorter time distance
27 else if FCE[contactEdge].timeDistance > timeDistance then
28 FCE[contactEdge].timeDistance← timeDistance

29 FCG ← (FCE, FCV) // compose first-contact graph
30 output FCG

3. Simulation and Analysis Methodology

The main objective of the simulation study is to enable a multi-criteria evaluation and
comparison of the proposed models and algorithms. Due to unknown characteristics of the
underlying urban infrastructure, numerous features of the constructed networks are also
of interest.

The simulation environment was built as an extension of custom-made network
modeling software [9] which implements the network modeling architecture presented
in Figure 9. It is based on Linux, PostgreSQL, and Python, as well as on the NetworkX library
that implements basic data structures and numerous standard graph-related operations [17].
The graphs are visualized using map data provided by OpenStreetMap [18]. The presented
research environment has been implemented based on this software framework due to its

Sensors 2023, 23, 9559 17 of 41

ubiquity of use, detailed documentation, and broad community support. They provide
numerous base functionalities used by graph researchers, hence have high popularity and
proven value for data scientists.

network modeling communication models optimization algorithms

data processing

data gathering CSV JSON Protocol Buffers

modeled network

data storage data integration and retrieval

data extraction and cleaning

graph metrics visualizationmodeling
parameters

Figure 9. Open-data-based network modeling architecture [9].

The network modeling flow of the simulation follows a logical order in which the
algorithms introduced in Section 2 are related to one another. The high-level steps of
the simulation are depicted in Figure 10. The network topologies are constructed and
analyzed as graphs. No actual radio propagation models, communication protocols, or
power management mechanisms are simulated. By this means, technology and protocol
agnosticism is ensured in all aspects. In this way, the efficacy and efficiency of the algorithms
can be investigated and compared using graph theory methods. The key features and
metrics of the modeled networks can be thoroughly analyzed as well.

3.1. Comparative Study Methodology

There exist no equivalent algorithms designed for modeling heterogeneous urban
sensor networks. Therefore, the trends in the metrics of interest are compared and analyzed
in relation to different urban areas, topology durations, and radio ranges. Space minimum
and maximum spanning forests are constructed for each space connectivity graph undi-
rected analog using Kruskal’s algorithm [19]. These forests are the generalized solutions
of the problem of a time-sub-interval minimum spanning tree (TSMST) in a spatiotemporal
network defined in [20]. Key metrics of the forests are compared to provide more insight
into the momentary space connectivity topologies. Those forests are graphs composed of
sets of trees built for every connected component of a space connectivity graph. The most
informative node-related metrics of the constructed space–time connectivity graphs are
compared to the related first-contact graphs. Further FCG-related parameters are gathered
and investigated as well.

Sensors 2023, 23, 9559 18 of 41

space connectivity

slots of space nodes
to space connectivity list (SSN-SCL)

space connectivity list

network devices data
to slots of space nodes (NDD-SSN)

slots of space nodes

maximum spanning forest algorithm

space maximum
spanning forest

minimum spanning forest algorithm

space minimum
spanning forest

space-time connectivity

space connectivity list to space-time
connectivity graph (SCL-STCG)

space-time
connectivity graph

space-time connectivity graph
to first-contact graph (STCG-FCG)

first-contact
graph

network devices data

Figure 10. Simulation modeling flow.

3.2. Statistical Analysis and Visualization

Statistical data are generated and gathered in the processes related to each step of the
network modeling. Some of the metrics are calculated using custom-developed functions,
while others are computed with the methods provided by the NetworkX graph modeling
framework. The data are then represented as a pandas data structure called DataFrame [21].
In this way, advanced multidimensional data combining, filtering, categorization, and
statistical processing is performed. Although, the values of individual data points and
their numerical aggregates are not the center of attention in this study. The trends and
relationships between the parameters of the networks and their metrics are the key concerns.
Therefore, the analyzed data are visualized with the Seaborn data visualization library [22].

The data of interest are of a discrete nature, and therefore, the analyzed sets are
presented in the form of scatter plots. The styles of the points represent different subsets
of the data. Regression lines are overlaid on the plots to make the trends more visible
in larger, denser, and overlapping data sets of a single chart, as in Figure 18. The sets of
closely related subplots are grouped in named rows or columns of a single plot, e.g., the
charts related to different graph types and radio ranges in Figure 23. Furthermore, pair
plots are used to present the relationships between the sets of variables, as in Figure 26. A
number of plots are categorical to group and shift the data horizontally around the values
of interest, which makes the categories more distinguishable, such as city or knowledge
mode. This kind of plot also introduces small jitter, i.e., random deviations, to horizontal
distributions of the categories to make them more visible when there are multiple closely
related values present. It does not change the values, i.e., the vertical distribution of the
measurements, as visible in Figure 34. Due to the multidimensional nature of the data,
the figures related to the subsets of metrics are also grouped and discussed in dedicated
sections, e.g., in Section 4.1, focused on the space connectivity nodes’ parameters.

3.3. Simulation Data Sources and Node Classes

An investigation and analysis of the data sources discussed in [9] lead to the conclusion
that sets of open data sources which meet the requirements of the study only exist for four

Sensors 2023, 23, 9559 19 of 41

Polish cities. Other cities provide limited scope or do not provide similar open data at all.
The authors did not succeed in discovering equivalent open sets related to urban areas in
other countries either. Therefore, Gdańsk, Poznań, Warsaw, and Wrocław, sources listed
in Table 1, are used—being the ones that provide the data of comparable scope, granularity,
and update frequency.

The geographic coordinates of the urban infrastructure elements extracted from the
data are used in the presented comparative research and transformed using the introduced
network modeling algorithms. In all four cities, the real-time locations of buses and trams
are available. In Gdańsk and Poznań, the locations of public transport stops and ticket
machines can be used. In Warsaw and Wrocław, ticket machines’ location data are not
available. Although, in the case of Wrocław, the coordinates of city bike rental stations and
parking lots (as shown in Figure 1a) of Vozilla (city electric car rental service) can be used
instead. Most of the data are available in JavaScript Object Notation (JSON) format while the
Poznań-related mobile nodes data are in Protocol Buffers (protobuf). The update frequencies
of these data range from a few seconds in the cases of the continuously updated ones, to 10
and 20 s for Warsaw and Gdańsk, respectively. The numbers and locations of stationary
nodes do not change that frequently. This means that even when the source updates the
whole data set frequently, e.g., for air quality meters and city bike rental stations, the
location-related data can remain unchanged for hours or days, just like for each 24 h of
more infrequently updated ones. To enable heterogeneous structure modeling, the data
sources were classified into three meaningful logical classes—mobile advanced, stationary
advanced, and stationary simple. The nodes of each class are assigned a network role in
the connectivity modeling scenarios:

• mobile advanced class⇒mobile relays;
• stationary advanced class⇒ stationary relays;
• stationary simple class⇒ stationary destinations.

It is assumed that advanced nodes are the nodes with more significant computing,
storage, communications, and power resources. Therefore, they are capable of performing
complex delay-tolerant network (DTN)-forwarding operations. In contrast, simple nodes are
the simple recipients of the communication.

Table 1. Urban open data sources used in simulation study.

City Class Scope Format Updates Provider

Gdańsk
Mobile advanced Buses and trams [23] JSON 20 s Open Gdańsk
Stationary simple Public transport stops [24] JSON 24 h Open Gdańsk
Stationary advanced Ticket machines [25] JSON 24 h Open Gdańsk

Poznań
Mobile advanced Buses and trams [26] protobuf Continuous ZTM Poznań
Stationary simple Public transport stops [27] JSON Infrequent Poznan City Hall
Stationary advanced Ticket machines [28] JSON Infrequent Poznan City Hall

Warsaw
Mobile advanced Buses and trams [29] JSON 10 s City of Warsaw
Stationary simple Public transport stops [30] JSON Infrequent City of Warsaw

Wrocław
Mobile advanced Buses and trams [31] JSON Continuous Open Data Wrocław
Stationary simple City bike rental stations [32] JSON 5 min Open Data Wrocław
Stationary simple Vozilla parking lots [33] JSON Continuous Open Data Wrocław

All Stationary advanced Air quality meters [34] JSON Continuous Airly

3.4. Simulation Areas and Example Modeled Networks

The four cities of interest—Gdańsk, Poznań, Warsaw, and Wrocław—are among the
largest and the most populated ones in Poland, as presented in the next paragraphs. Warsaw
is the most populated urban area, more than two and a half times the population of Wrocław.
Wrocław is twenty three percent more populated than Poznań, while the population of

Sensors 2023, 23, 9559 20 of 41

Poznań is thirteen percent larger than the one of Gdańsk. The population densities also
differ in a related way—Gdańsk is the least densely populated urban area, followed by
Poznań, Wrocław, and Warsaw, which is almost two times more densely populated than
Gdańsk. Interestingly, in terms of the expected numbers of public transport routes (lines)
that operate during the day, Poznań is the city with the lowest number, followed by
slightly more routes in Gdańsk and Wrocław. In Warsaw, twice as many routes are present
on average.

An area of 3 by 2 kilometers was selected in each of the cities. This choice was aimed
at covering partially alike and partially distinct regions that include both the busy heart
as well as less dense surroundings of each urban area. A closer examination of the city
topologies, visible in the presented figures, reveals unique terrain, building, street, and
infrastructure layouts. Therefore, the modeled networks are expected to indicate both
different and similar features.

Example presented graphs constructed in those areas show the state modeled on
Wednesday, 27 November 2019, at 3:00 p.m., when omnidirectional radio coverage is
assumed. The relays are dark blue triangles and destination nodes are pink circles. The
mobile nodes are the ones with black borders. Each node is presented in the location it
occurred for the first time. The destination regions are marked as red dashed rectangles. A
solid link depicts a space connection, i.e., one that occurs without message buffering (in the
same time interval). Label 30 (24 s, 21 m) in Figure 14 indicates that the edge exists in slot
number 30, the message has to be buffered for 24 slots in the relay before being forwarded,
and that the space distance between the relay and the next hop node is 21 m.

3.4.1. Gdańsk

• Population:

– Total: 486 thousand [35] in the metropolis, of around one million in northern
Poland;

– Density: 1797 per km2 [36];

• Public transport day routes: around 80 [37];
• Simulation area:

– Latitude: 54.34398–54.36191;
– Longitude: 18.62036–18.66666;

• Example space connectivity graph in Figure 11:

– Slot length: 6 s;
– Radio range: 100 m;
– Nodes: 121—mobile relays: 9, stationary relays: 20, stationary destinations: 92;
– Average node degree: 2.45, edges: 148, space cost: 6177 m, connected components: 66.

3.4.2. Poznań

• Population:

– Total: 547 thousand [38] in the metropolis, of almost one million in west-central
Poland;

– Density: 2031 per km2 [36];

• Public transport day routes: around 70 [39];
• Simulation area:

– Latitude: 52.39853–52.41645;
– Longitude: 16.88965–16.93389;

• Example space minimum spanning forest in Figure 12:

– Time interval: 6 s;
– Radio range: 100 m;
– Nodes: 171—mobile relays: 38, stationary relays: 17, stationary destinations: 116;

Sensors 2023, 23, 9559 21 of 41

– Average node degree: 1.20, edges: 103, space cost: 4904.00 m, connected compo-
nents: 68.

3.4.3. Warsaw

• Population:

– Total: 1.794 million [40] in the metropolis, of 3 million in east-central Poland;
– Density: 3469 per km2 [36];

• Public transport day routes: around 190 [41];
• Simulation area:

– Latitude: 52.22082–52.23879;
– Longitude: 20.97058–21.01454;

• Example space maximum spanning forest in Figure 13:

– Slot length: 6 s;
– Radio range: 100 m;
– Nodes: 213—mobile relays: 49, stationary relays: 4, stationary destinations: 160;
– Average node degree: 1.10, edges: 117, space cost: 8199.00 m, connected compo-

nents: 96.

3.4.4. Wrocław

• Population:

– Total: 674 thousand [42] in the metropolis, of around 1.25 million in southwestern
Poland;

– Density: 2192 per km2 [36];

• Public transport day routes: around 85 [43];
• Simulation area:

– Latitude: 51.10015–51.11813;
– Longitude: 17.01273–17.05570;

• Example first-contact graph in Figure 14:

– Slot length: 6 s;
– Radio range: 100 m;
– Nodes: 217—mobile relays: 145, stationary relays: 2, stationary destinations: 70;
– Average node degree: 1.66, edges: 180, space cost: 3089.00 m, connected compo-

nents: 120.

3.5. Simulation Architecture and Parameters

To enable multi-faceted modeling and analysis, the simulation architecture is based
on object-oriented data structures implemented as a hierarchy of nested lists, presented
in Figure 15. The simulations are executed with the parameters related to the algorithms
which are the main steps in the modeling flow depicted in Figure 10. The key simulation
scope characteristics (numbers), denoted with single capital letters, resulting from the
architecture and parameters are also indicated:

• Algorithm 1, network device data to slots of space nodes (NDD-SSN):

– period: 27 November 2019 from 3:00 p.m. to 5:00 p.m.;
– areas: 4⇒ J = 4;

* area1: ([54.34398, 54.36191], [18.62036, 18.66666])—Gdańsk;
* area2: ([52.39853, 52.41645], [16.88965, 16.93389])—Poznań;
* area2: ([52.22082, 52.23879], [20.97058, 21.01454])—Warsaw;
* area2: ([51.10015, 51.11813], [17.01273, 17.05570])—Wrocław;

Sensors 2023, 23, 9559 22 of 41

– topology lengths: (75, 150, 300, 600, 1200);

* durations: (7.5 min, 15 min, 30 min, 60 min, 120 min)⇒ L = 5;
* topologies: (16, 8, 4, 2, 1)⇒ N = 31;

– slot length: 6 s⇒ S = 1200;
– classes: (mobile advanced, stationary simple, stationary advanced);
– windows: (10 s, 24 h, 24 h);
– relays: (mobile advanced, stationary advanced).

• Algorithm 2, slots of space nodes to space connectivity list (SSN-SCL):

– radio coverage: omnidirectional;

* radio ranges: (25 m, 50 m, 100 m)⇒ Q = 3;
* space distance: great-circle distance between two nodes.

• Algorithm 3, space connectivity list to space–time connectivity graph (SCL-STCG):

– unit cost:

* intra-slot time edge space unit cost: 0;
* inter-slot time edge space unit cost: 0;
* intra-slot space edge time unit cost: 0;
* intra-slot time edge time unit cost: 0;
* inter-slot time edge time unit cost: 1.

Figure 11. Example space connectivity graph in Gdańsk.

Sensors 2023, 23, 9559 23 of 41

Figure 12. Example space minimum spanning forest in Poznań.

Figure 13. Example space maximum spanning forest in Warsaw.

Sensors 2023, 23, 9559 24 of 41

43 (43 s, 16 m
)

43 (43 s, 16 m)

58 (58 s, 23 m)

50 (50 s, 6 m)

18 (18 s, 11 m)

64 (64 s, 19 m)

52 (52 s, 13 m)

64 (64 s, 22 m)

20 (20 s, 24 m)

32 (32 s, 16 m)

8 (8 s, 14 m)

18 (18 s, 24 m
)

18 (18 s, 11 m)

35 (35 s, 23 m
)

16
 (1

6 s
, 1

8 m
)

18
 (1

8
s,

15
 m

)

29 (29 s, 19 m
)

62 (62 s, 7 m)

9 (9 s, 25 m)

12 (12 s, 20 m) 29 (29 s, 16 m)

47 (47 s, 7
 m)

20 (20 s, 25 m)

20 (20 s, 24 m)
22 (22 s, 24 m)

30 (30 s, 11 m)

53 (53 s, 15 m)

18 (18 s, 24 m
)

18 (18 s, 13 m)

18 (18 s, 6
 m)

5
(5

 s,
 9

 m
)

53 (53 s, 12 m)

18
 (1

8
s,

15
 m

)

57 (57 s, 17 m)

68 (68 s, 22 m) 2 (21 m)

5 (3 s, 19 m)

34 (32 s, 23 m
)

6 (4 s, 24 m)

9 (7 s, 25 m)

47 (45 s, 7
 m)

5 (3 s, 17 m)

12 (10 s, 21 m)

37
 (3

5
s,

21
 m

)

43
 (4

1
s,

24
 m

) 49
 (4

7
s,

13
 m

)

57 (55 s, 2
5 m)

2 (25 m)14 (12 s, 8 m)

8 (6 s, 14 m)

5 (3 s, 19 m)

22 (20 s, 24 m
)

3
(1

 s,
 2

4
m

)

55
 (5

3
s,

14
 m

)

60
 (5

8
s,

21
 m

)

63
 (6

1 s
, 1

2 m
)

25 (23 s, 1
1 m)

34 (32 s, 20 m)

54
 (5

2 s
, 1

7 m
)

35 (3
2 s,

15 m
)

26
 (2

3
s,

16
 m

)
26

 (2
3

s,
14

 m
)

32 (29 s, 13 m)

64 (61 s, 22 m)

71 (68 s, 22 m)

70 (67 s, 21 m)

30 (27 s,
21 m) 46 (43 s, 17 m)

52 (49 s, 22 m)

62 (59 s, 15 m)

35 (32 s, 23 m
)

52 (49 s, 19 m)
53 (50 s, 18 m)

18
 (1

5
s,

8
m

)
58

 (5
5

s,
22

 m
)

58
 (5

5
s,

13
 m

) 64
 (6

1
s,

10
 m

)
71

 (6
8

s,
21

 m
)

3
(2

4
m

)
27

 (2
4

s,
13

 m
)

34 (31 s, 23 m
)

18 (15 s, 9 m)

18 (15 s, 6
 m)

22 (19 s, 2
4 m)

22 (19 s, 5 m)

35 (31 s, 22 m)
39 (35 s, 22 m)

53 (49 s, 15 m)

5 (1 s, 17 m)5 (1 s, 25 m)

23
 (1

9
s,

22
 m

)

4 (24 m)14 (10 s, 8 m)

22 (18 s, 24 m)

39 (35 s, 22 m)
56 (52 s, 15 m)

12 (8 s, 21 m)

29 (25 s, 22 m)

22
 (1

8
s,

22
 m

)

22
 (1

8
s,

23
 m

)

62 (58 s, 7 m)

14
 (1

0
s,

15
 m

)

43 (39 s, 16 m
)

34 (30 s, 17 m
)

53 (49 s, 18 m)

53 (49 s, 24 m)

57 (53 s, 1
7 m)

57 (53 s, 17 m)

72 (68 s, 9 m
)

29 (25 s, 19 m
)

35 (31 s, 15 m)

53 (49 s, 1
8 m)

49 (45 s, 5 m
)

5
(9

 m
)

34 (29 s, 17 m
)

26
 (2

1
s,

17
 m

)
41

 (3
6

s,
25

 m
)

5 (21 m)

64 (59 s, 8 m)14
 (9

 s,
 1

5
m

)

14 (9 s, 25 m)

5 (25 m)

30 (24 s,
21 m)

52 (46 s, 23 m)

16
 (1

0 s
, 1

8 m
)

54
 (4

8 s
, 1

7 m
)

21
 (1

5
s,

20
 m

)

25 (19 s, 1
1 m)

53 (47 s, 15 m)
18

 (1
2

s,
8

m
)

45
 (3

9
s,

25
 m

)

53 (47 s, 15 m)

33 (25 s, 24 m)

31
 (2

3
s,

20
 m

)

14
 (1

4
m

)

18 (4 s, 13 m)
18 (4 s, 9 m)

52 (38 s, 13 m)

52 (38 s, 25 m
)

47 (29 s, 7
 m)

70 (52 s, 21 m)

39 (19 s, 16 m)

53 (33 s, 10 m)

52 (32 s, 19 m)

53 (33 s, 24 m)

62 (42 s, 11 m)

35 (1
3 s,

15 m
)

22
 (1

9
m

)

22 (5 m)

52 (30 s, 25 m
)

70 (48 s, 25 m)70 (48 s, 9 m)

45
 (2

3
s,

24
 m

)

52
 (3

0
s,

15
 m

)

55
 (3

3
s,

14
 m

)

26
 (2

1
m

)

32 (3 s, 13 m) 40 (11 s, 25 m)
40 (11 s, 15 m)

41 (10 s, 24 m)

40 (7 s, 15 m)

57 (24 s, 2
5 m)

63
 (3

0 s
, 1

2 m
)

53 (18 s, 12 m)

42 (7 s, 16 m)

64 (27 s, 8 m)

64
 (2

5
s,

18
 m

)

39 (16 m)

53 (14 s, 1
8 m)

47 (6 s, 7
 m)

64
 (2

3
s,

18
 m

)

49 (6 s, 5 m
)

64 (21 s, 19 m)

57 (14 s, 1
7 m)

62 (14 s, 11 m)

68 (20 s, 22 m)

72 (18 s, 9 m
)

56 (25 m)

64
 (1

9
m

)
64

 (1
9

m
)

Figure 14. Example first-contact graph in Wrocław.

radio coveragep

areai

durationk

simulation

topologym

space connectivity list

...

...

...

...

...

area1 areaJareai

radio coveragep

duration1 durationk durationL

topology1 topologym topologyN

radio coverage1 radio coverageQ

first-contact
graph

space-time
connectivity graph

space minimum
spanning forests

space
connectivity list

space maximum
spanning forests

space
connectivity graph1

space
connectivity graphr

space
connectivity graphS

Figure 15. Simulation architecture.

Sensors 2023, 23, 9559 25 of 41

The node data sources for the simulation are grouped into three classes—mobile
advanced, stationary simple, and stationary advanced, as introduced in Table 1. A data-
lookup window is related with each of the classes. The widths of these were determined
based on an analysis of the update frequencies of the sources. The data on mobile nodes are
updated most frequently, i.e., as often as every few seconds. Therefore, a window of 10 s
ensures that location changes will be reflected correctly in the modeled structures. Each
node location is marked with the occurrence time. When the slot length is set to 6 s, a
window of 10 s is also the means to correct brief node data or source outages—to avoid the
node being missed in a single space connectivity graph when actually it was still present
in the network. A longer window, in case of rapidly moving nodes and frequent data
outages, may lead to misrepresentation of the node in its previous known location. Hence,
connections may appear which, in reality, would not be possible to establish at that point in
time since the node was, in fact, already at a different location. Also, the node could be able
to establish links that were not modeled when the data were not available. Observation of
the stationary nodes’ data leads to the conclusion that their location changes or is updated
not more frequently than once every 24 h. Therefore, this interval is used as the window
for fixed-node-related location data.

The simulations were conducted in four urban areas of interest based on the data
gathered on Wednesday, 27 November 2019 between 3:00 p.m. and 5:00 p.m. This 2 h
period was selected because it includes afternoon rush hours in the middle of a work week
and enables coverage of all the desired modeling and analysis scenarios. In the modeling
process, the period is divided in Algorithm 1 into topologies with durations defined by
topologyLength. The values of interest are 75, 150, 300, 600, and 1200, which are the subset of
a geometric sequence with a common ratio of 2. These are the numbers of space connectivity
graphs in the space connectivity list of a given topology. They allow the modeling and
study of network structures that are related, and yet, have different properties and time
spans. Therefore, the trends connected to the matters of scalability and optimization can
be investigated.

When the slotLength is set to 6 s, a series of topologies of 16, 8, 4, 2, and 1 space–time
connectivity graphs are distinguished that last for 7.5, 15, 30, 60, and 120 min, respec-
tively. The time of slotLength is expected to be sufficient to transmit the message between
two neighboring nodes. Unlimited message storage (buffer) is assumed in each relay.
Omnidirectional radio coverage is modeled for three effective radio ranges, i.e., 25 m,
50 m, and 100 m. These range limits are based on empirical observations that current
popular sensing-related short-range wireless connectivity technologies tend to provide up
to around 100 m range at higher throughputs in outdoor urban non-line-of-sight scenarios,
depending on the transmit power [44] and data transmission parameters [45]. The space
distance between two nodes is determined with the haversine formula, which computes
the great-circle distance between two points on a sphere [12]. For each of the resulting
graphs, minimum and maximum spanning forests are constructed.

Then, space–time connectivity graphs (networks) are modeled based on each of
31 space connectivity lists. The default values of the unit costs of Algorithm 3, SCL-
STCG, are used. By this means, correct time-shortest paths can be determined using
Dijkstra’s algorithm based on the time distance weight of the edges. The process set up
in this way aims to balance the buffering time with message forwarding, and therefore,
buffering resources use with transmission-related power consumption of the relays. The
related first-contact graphs are constructed as well. Time distance in those graphs means
how much time, i.e., time slots, has to pass before the node will be close enough to the
neighboring node (device) to establish a connection.

The chosen simulation scope and parameters resulted in a total of 43,944 graphs being
modeled, as listed in Table 2.

Sensors 2023, 23, 9559 26 of 41

Table 2. Numbers of modeled graphs.

Category Type Number of Graphs

Space
Connectivity 14,400

Minimum spanning forest 14,400
Maximum spanning forest 14,400

Space–time
Connectivity 372
First-contact 372

In total 43,944

3.6. Simulation Study Metrics

The studied metrics are depicted in the next sections, first in absolute values, then
some are presented as ratios (percentages) related to the reference ones. The metrics are
listed in this section in relation to the first type of modeled structures they are discussed
for. Other types may use the same or related metrics. The parameters are further divided
into those that pertain to nodes (devices) and those that relate to edges (connections) of the
graphs (networks). All of the used metrics are non-negative.

1. Space connectivity:

(a) nodes:

i. stationary destination nodes—the number of stationary destinations;
ii. stationary relay nodes—the number of stationary relays;
iii. mobile relay nodes—the number of mobile relays;
iv. mobile relay nodes to all nodes ratio—the percentage of mobile relay

nodes as compared to the number of all nodes;
v. all nodes—total number of nodes;
vi. connected components—the number of sets of nodes that are connected

with each other by direct or indirect paths;
vii. nodes per component—average number of nodes in a component;

(b) edges:

i. average node degree—average number of edges adjacent to a node;
ii. edges—total number of edges;
iii. cost—the sum of space distances of all edges;

2. Space–time connectivity:

(a) nodes

i. instances per node—the number of time nodes (instances) per unique
device (space node)

ii. instances per mobile relay node—the number of time nodes (instances)
per unique mobile relay device (space node).

4. Space Connectivity Analysis

Following the objectives and parameters defined in Section 3, Algorithm 1, network
device data to slots of space nodes (NDD-SSN) was used to select and group physical device
(space nodes) data into time slots. Then, Algorithm 2, slots of space nodes to space connectivity
list (SSN-SCL) was applied to construct space connectivity lists (SCLs) related to each city
and modeled radio ranges. With 6 s slots and a 2 h period of interest, each SCL consists of
1200 subsequent space connectivity graphs (SCGs). Four cities and three radio ranges require
twelve SCLs. This results in 14,400.00 space connectivity graphs with 2.3 million nodes and
1.6 million edges in total. Those space connectivity lists are both the object of the analysis
in this section, as well as the key starting elements to construct the space–time connectivity
graphs modeled in the next sections.

Sensors 2023, 23, 9559 27 of 41

4.1. Space Connectivity Nodes

Each city network is characterized by a constant number of stationary destination
nodes—Warsaw: 160, Poznań: 116, Gdańsk: 92, Wrocław: 70—as compared in Figure 16.
The numbers of stationary relay nodes presented in Figure 17 are also constant but the
decreasing order is quite different—Gdańsk: 20, Poznań: 17, Warsaw: 4, Wrocław: 2.

0 200 400 600 800 1000 1200
graph

80

100

120

140

160
st

at
io

na
ry

 d
es

tin
at

io
n

no
de

s

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 16. Stationary destination nodes in space connectivity graphs.

0 200 400 600 800 1000 1200
graph

5

10

15

20

st
at

io
na

ry
 re

la
y

no
de

s

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 17. Stationary relay nodes in space connectivity graphs.

The mobile relay numbers are the ones that vary significantly across cities; they can
be examined in Figure 18. These numbers also change over time in the areas of interest,
although they oscillate around characteristic values—Warsaw: 74, Poznań: 39, Wrocław: 32,
Gdańsk: 13. Only in the case of Warsaw can a distinctive slope increase in the regression line
be observed. This shows that the number of mobile relays (vehicles) increases on average,
which may be caused both by the need to address the increasing number of rush hours
commuters, and by the traffic jams that may slow down the nodes. Warsaw also expresses
the largest deviations from the regression line, especially for lower values. Conversely, in
Gdańsk the numbers increase more dynamically but the maximum values, i.e., the number
of public transport vehicles, drop by around 10 in about the last 150 graphs (15 min). The
number of mobile relay nodes in Wrocław tends to be more evenly distributed while in
Poznań the numbers are more tightly grouped.

0 200 400 600 800 1000 1200
graph

0

20

40

60

80

100

m
ob

ile
 re

la
y

no
de

s

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 18. Mobile relay nodes in space connectivity graphs.

The number of mobile nodes represents a different percentage of all the nodes in given
city. What is visible in Figure 19 is that the relative numbers are substantially lower in
Gdańsk, while Warsaw and Wrocław tend to be close and characterized by the highest

Sensors 2023, 23, 9559 28 of 41

ratios, with Poznań falling slightly behind—Warsaw: 30, Wrocław: 30, Poznań: 23, Gdańsk:
9. The sums of the respective stationary node numbers are the lower bounds of the total
numbers of nodes in SCL compared in Figure 20. The deviations, and hence the maximum
values, are related to the number of mobile relay nodes changing over time—Warsaw: 237,
Poznań: 172, Gdańsk: 125, Wrocław: 104.

0 200 400 600 800 1000 1200
graph

0

10

20

30

40

50
m

ob
ile

 re
la

ys
 to

 a
ll

no
de

s
%

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 19. Ratio of mobile relay nodes to all nodes in space connectivity graphs.

0 200 400 600 800 1000 1200
graph

100

150

200

250

no
de

s city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 20. All nodes in space connectivity graphs.

4.2. Space Connectivity Edges

While the numbers of nodes are shared by the networks in the given areas of all
of the investigated radio ranges, other graph metrics vary. It is clearly visible in the
graphs of Figure 21 that as the radio range increases, the number of connected components
decreases. The topologies in Wrocław are the most sparse, while in other cities the average
number of nodes per connected component depends more on the radio range, as compared
in Figure 22. The number of average node degrees in Figure 23 and number of edges in
Figure 24 increase with radio range. This follows the intuitive understanding that with
increasing radio range, the resulting network will be less fragmented. Moreover, in different
cities the changes in node radio range influence the structure of the network to different
extents. This is related to the unique infrastructure topology and mobility patterns of each
area. It is visible in particular when the changes in Warsaw and Wrocław are compared.
Also, the average node degrees and edge numbers suggest that nodes in Poznań and
Warsaw are denser and evenly distributed.

0 200 400 600 800 1000 1200
graph

80

100

120

140

160

180

200

220

co
nn

ec
te

d
co

m
po

ne
nt

s

radio range = 25

0 200 400 600 800 1000 1200
graph

60

80

100

120

140

160

radio range = 50

0 200 400 600 800 1000 1200
graph

60

80

100

120

140
radio range = 100

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 21. Connected components in space connectivity graphs.

Sensors 2023, 23, 9559 29 of 41

0 200 400 600 800 1000 1200
graph

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

no
de

s
pe

r c
om

po
ne

nt

radio range = 25

0 200 400 600 800 1000 1200
graph

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
radio range = 50

0 200 400 600 800 1000 1200
graph

1.0

1.5

2.0

2.5

3.0

3.5

radio range = 100

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 22. Average number of nodes per connected component in space connectivity graphs.

0 200 400 600 800 1000 1200

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

av
er

ag
e

no
de

 d
eg

re
e

graph type = connectivity | radio range = 25

0 200 400 600 800 1000 1200

0

1

2

3

4

graph type = connectivity | radio range = 50

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

graph type = connectivity | radio range = 100

0 200 400 600 800 1000 1200
graph

0.0

0.2

0.4

0.6

0.8

av
er

ag
e

no
de

 d
eg

re
e

graph type = min span forest | radio range = 25

0 200 400 600 800 1000 1200
graph

0.0

0.2

0.4

0.6

0.8

1.0

1.2
graph type = min span forest | radio range = 50

0 200 400 600 800 1000 1200
graph

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

graph type = min span forest | radio range = 100

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 23. Average node degree of space connectivity graphs and minimum spanning forests.

Moreover, the parameters of minimum spanning forests constructed in space connec-
tivity graphs are influenced by increasing radio range in different way in different cities.
When the networks are less fragmented, the number of edges in such trees, as well as the
average node degrees, increase. Albeit, they do not influence the distributions in the same
way, as visible in the bottom row graphs of Figures 23 and 24. Those figures do not present
the parameters of maximum spanning forests since the numbers of edges and average node
numbers were the same as for minimum spanning forests. The costs of the structures are
different though, as presented side-by-side in Figure 25. There, the larger the radio range,
the greater the cost and the difference between the costs of the minimum and maximum
spanning forests.

0 200 400 600 800 1000 1200

0

20

40

60

80

100

120

ed
ge

s

graph type = connectivity | radio range = 25

0 200 400 600 800 1000 1200

0

50

100

150

200

250

300

graph type = connectivity | radio range = 50

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

graph type = connectivity | radio range = 100

0 200 400 600 800 1000 1200
graph

0

20

40

60

ed
ge

s

graph type = min span forest | radio range = 25

0 200 400 600 800 1000 1200
graph

0

20

40

60

80

100

120

graph type = min span forest | radio range = 50

0 200 400 600 800 1000 1200
graph

0

50

100

150

200
graph type = min span forest | radio range = 100

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 24. Edges of space connectivity graphs and minimum spanning forests.

Sensors 2023, 23, 9559 30 of 41

0 200 400 600 800 1000 1200

0

500

1000

1500

2000

co
st

graph type = connectivity | radio range = 25

0 200 400 600 800 1000 1200

0

2000

4000

6000

8000

10000
graph type = connectivity | radio range = 50

0 200 400 600 800 1000 1200

0

10000

20000

30000

40000

graph type = connectivity | radio range = 100

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

co
st

graph type = min span forest | radio range = 25

0 200 400 600 800 1000 1200

0

500

1000

1500

2000

2500

3000

graph type = min span forest | radio range = 50

0 200 400 600 800 1000 1200

0

2000

4000

6000

8000

graph type = min span forest | radio range = 100

0 200 400 600 800 1000 1200
graph

0

200

400

600

800

1000

1200

co
st

graph type = max span forest | radio range = 25

0 200 400 600 800 1000 1200
graph

0

1000

2000

3000

4000

graph type = max span forest | radio range = 50

0 200 400 600 800 1000 1200
graph

0

2500

5000

7500

10000

12500

15000

graph type = max span forest | radio range = 100

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 25. Cost of space connectivity graphs and spanning forests.

4.3. Space Connectivity Relationships

Figure 26 presents the relationships between multiple variables of the space connec-
tivity graphs when the radio range was set to 50 m. It has already been shown that each
range results in unique topological features of the networks. Although, this particular
range, being the middle one of the simulated values, was selected to give an overview of
the general differences in characteristics of the urban areas (cities) under scrutiny. One set
of parameters, i.e., the columns, changing along the horizontal axis of the figure, covers the
slot (graph) number and the number of mobile relay nodes, as well as the number of edges.
The other set, the rows, changing along the vertical axis of the figure, covers the numbers
of mobile relay nodes, the numbers of edges, graph costs, average node degrees, and the
number of connected components.

Both presented histograms, i.e., the number of mobile relay nodes and the number of
edges, suggest that each urban area and infrastructure has its own features and parameters.
Almost every other related graph proves this even more strongly by presenting mostly
disjoint groups of measurements for each city. They display, though, a degree of correlation
in terms of the increasing trends they follow. Interestingly, it is only in Warsaw that the
number of connected components clearly decreases with the increase in the number of
mobile relay nodes and edges. In Wrocław, the increases in the number of mobile relay
nodes and in the number of edges are followed by an increase in the connected components.
At first glance, one could think that this means that despite becoming more populated
with mobile relays, the structure becomes more disconnected. Here, the situation is quite
different, and when more mobile relay nodes are present, more nodes can be connected, and
yet they form new disconnected components rather than becoming connected to the larger
ones. The conditions in Poznań may seem even less intuitive, with the number of connected
components increasing with the number of mobile relays and decreasing with the increase
in the number of edges. This means that with more graph edges, the nodes are, on average,
connected in larger groups (components). In this urban area, more mobile relays, like
in Wrocław, cause more nodes to be connected and constitute more smaller groups. In
Gdańsk, which is the city with the lowest number of mobile relay nodes, those numbers
and slope features are influenced only to a small extent, but with noticeable deviations from
the trend. The highest direct correlation and overlapping is present between the number of
edges and the costs of the trees in all of the cities. The relationship is almost linear, with
little deviation, which suggests that the average edge costs are similar. The average node

Sensors 2023, 23, 9559 31 of 41

degrees differ more, and yet, depend on the number of mobile relays in a way resembling
the relationship between the number of mobile relay nodes and edges. In terms of edges
to average node degree relationship, the city-related distributions appear as distinctive
linearly condensed groups.

1.0

1.5

2.0
no

de
s

pe
r c

om
po

ne
nt

75

100

125

150

175

co
nn

ec
te

d
co

m
po

ne
nt

s

0

1

2

3

4

av
er

ag
e

no
de

 d
eg

re
e

0

2500

5000

7500

10000

co
st

0

100

200

300

ed
ge

s

0 200 400 600 800 1000 1200
graph

0

50

100

m
ob

ile
 re

la
y

no
de

s

0 20 40 60 80 100
mobile relay nodes

0 100 200 300
edges

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 26. Space connectivity parameters in Polish cities at 50 m radio range.

To investigate the features in more detail, the space connectivity parameters of each
city are presented and analyzed for all radio ranges separately in the next subsections.

4.3.1. Space Connectivity in Gdańsk

Taking a closer at the parameters of the space connectivity graphs in Gdańsk in
Figure 27 reveals that the trends related to the connected components are linked not only
with the number of mobile relay nodes and edges but also with the radio range. When the
range increases from 25 to 50 m, the slope of the regression line changes from increasing
to almost horizontal; when the radio range extends as far as 100 m it begins to decrease.
This tendency is also influenced by the largest number of stationary relays of all studied
cities, as visible in Figure 17. This means that with more radio range more nodes could be
reached and connected to make larger components of the graph. The average node degrees,
and hence, complexity and costs, of such structures are significantly higher. It cannot be
overlooked that in Gdańsk usually only a few mobile relays were present, which is about
one order of magnitude less than in other cities. The distribution of the numbers of edges
is correlated with the distribution of mobile relay nodes, becoming more flattened and
shifted in the direction of higher values as the radio range increases. It should be noted
that a similar situation occurs in the relationship between the number of edges and average
node degree.

Sensors 2023, 23, 9559 32 of 41

1.5

2.0

2.5

3.0

no
de

s
pe

r c
om

po
ne

nt

60

80

100

co
nn

ec
te

d
co

m
po

ne
nt

s

2

4

6

av
er

ag
e

no
de

 d
eg

re
e

0

10000

20000

co
st

200

400

ed
ge

s

0 200 400 600 800 1000 1200
graph

0

20

40

60

m
ob

ile
 re

la
y

no
de

s

0 10 20 30 40 50
mobile relay nodes

100 200 300 400 500
edges

radio range
25
50
100

Figure 27. Space connectivity parameters in Gdańsk.

4.3.2. Space Connectivity in Poznań

The space connectivity parameters in the networks modeled in Poznań and compared
in Figure 28 at first seem similar to the ones in Gdańsk. They share common features,
but a number of the characteristics are quite distinctive. The first difference is the much
larger number of mobile relays in Poznań. The distributions of edge numbers are more
Gaussian and shifted as the radio range increases. The average node degrees and graph
costs are comparable in nature to Gdańsk. The slope of the trend of connected components
in relation to edges is decreasing in all the range cases. This shows that, even at the lowest
radio range, the numbers of mobile relays are high enough and their routes coincide with
other nodes at a level which makes the network more connected and dense. The situation
is also influenced by seventeen stationary relays, as introduced in Figure 17. It can be said
that Poznań is the city with a topology which is the easiest one in which to achieve a high
level of connectivity at the lowest cost.

Sensors 2023, 23, 9559 33 of 41

1.5

2.0

2.5

no
de

s
pe

r c
om

po
ne

nt

75

100

125

150

co
nn

ec
te

d
co

m
po

ne
nt

s

1

2

3

av
er

ag
e

no
de

 d
eg

re
e

0

5000

10000

15000

co
st

100

200

ed
ge

s

0 200 400 600 800 1000 1200
graph

20

30

40

50

60

m
ob

ile
 re

la
y

no
de

s

20 30 40 50 60
mobile relay nodes

50 100 150 200 250
edges

radio range
25
50
100

Figure 28. Space connectivity parameters in Poznań.

4.3.3. Space Connectivity in Warsaw

The average number of mobile relay nodes in Warsaw is almost six times higher than in
Gdańsk. Although, the distributions of the metrics of the Warsaw space connectivity graphs
in Figure 29 share more similarities with Gdańsk than with Poznań. In Warsaw, the numbers
of connected components, edges, and graph costs are twice as high as the ones in Gdańsk.
Moreover, most of the metrics increase over time. The average node degree is the metric
that stays at a similar level in both cities, being more compressed in Warsaw. Importantly,
despite having the largest number of mobile relays, for each radio range, there is a number
of graphs with only a few edges. Hence, stationary network nodes are more distributed
and disconnected on their own than in Gdańsk and Poznań. Only four stationary relay
nodes (see Figure 17) do not improve the connectivity enough. Although, the isolated
stationary nodes become connected owing to the largest, and increasing over time, number
of mobile relay nodes. This results in the highest numbers of edges of all the cities, as well
as the largest graph costs.

Sensors 2023, 23, 9559 34 of 41

1

2

3

no
de

s
pe

r c
om

po
ne

nt

100

150

200

co
nn

ec
te

d
co

m
po

ne
nt

s

0

2

4

av
er

ag
e

no
de

 d
eg

re
e

0

10000

20000

30000

40000

co
st

0

200

400

600

ed
ge

s

0 200 400 600 800 1000 1200
graph

25

50

75

100

125

m
ob

ile
 re

la
y

no
de

s

20 40 60 80 100
mobile relay nodes

0 200 400 600
edges

radio range
25
50
100

Figure 29. Space connectivity parameters in Warsaw.

4.3.4. Space Connectivity in Wrocław

In Figure 30, it is striking that Wrocław is the only city in which, in spite of tens
of mobile relays, there are numerous graphs with no edges. This means that stationary
nodes are heavily disconnected, especially when the radio range is at its lowest. Moreover,
many of them are located beyond the routes and range of mobile relays. Wrocław is also
the city with the lowest number of stationary relays, with only two nodes of this kind
(see Figure 17). On the one hand, despite Wrocław being the city with the lowest overall
numbers of nodes, it has around 30% of mobile relays, on a par with Warsaw. This is the
largest percentage among the cities under scrutiny, as presented in Figure 19. On the other
hand, the exact number of mobile relay nodes is comparable to Poznań, which has quite
different distributions related to the connected components. In the edges to connected
components relation, the trend is highly increasing at lower radio ranges, becoming almost
vertical for the largest range. This stresses the uniqueness of both the topology of the area
and the networked infrastructure deployment.

Sensors 2023, 23, 9559 35 of 41

1.00

1.25

1.50

1.75

2.00

no
de

s
pe

r c
om

po
ne

nt

80

100

120

co
nn

ec
te

d
co

m
po

ne
nt

s

0

1

2

3

av
er

ag
e

no
de

 d
eg

re
e

0

5000

10000

co
st

0

50

100

150

ed
ge

s

0 200 400 600 800 1000 1200
graph

0

25

50

75

m
ob

ile
 re

la
y

no
de

s

0 20 40 60
mobile relay nodes

0 50 100 150
edges

radio range
25
50
100

Figure 30. Space connectivity parameters in Wrocław.

5. Space–Time Connectivity Analysis

Based on the space connectivity graphs analyzed in Section 4, space–time connectivity
graphs (STCGs) were constructed using Algorithm 3, space connectivity list to space–time
connectivity graph (SCL-STCG). Then, each STCG was used to build the related first-contact
graph (FCG) with Algorithm 4, space–time connectivity graph to first-contact graph (STCG-
FCG). While an STCG, which is a time-expanded graph, is mostly an intermediate network
modeling structure, an FCG is a time-aggregated graph with a more practical meaning. The
analysis of the FCG provides a general and easier to comprehend impression of how the
space–time network changes in real environment and how the adjacencies occur for the
first time. Therefore, the results for 372 graphs of both space–time types are presented and
discussed side by side.

The graphs were constructed in four cities, at three radio ranges, and for five durations
that divide the period of interest into respective networks. Each consecutive duration is
twice the preceding one. Therefore, due to this geometric growth nature, the increasing
trend visible in Figure 31 for the connectivity graph which seems exponential is in fact of a
rather linear nature. Conversely, it looks linear in the case of the first-contact graph, and
hence, it is of a more logarithmic type.

Since the numbers of stationary nodes were constant in the space connectivity graphs,
in the respective space–time connectivity graphs they also remain at the same level in each
area and duration. The numbers of mobile relay nodes presented in Figure 32 are varying,
resulting in correlated changes in the overall number of nodes in the graphs. This is caused
by the fact that not only the number of mobile relays changes over time but also the number
of mobile nodes (the devices) present in the area changes. Moreover, some leave the area

Sensors 2023, 23, 9559 36 of 41

while others enter at different points in time. In the spatiotemporal network there are more
unique nodes (devices) than in each single space connectivity graph. This is the reason
why the number of mobile relays in first-contact graphs are at least a few times higher
than in the space connectivity graphs in Figure 18. This number hardly exceeds 200 mobile
relay nodes in Warsaw for the shortest duration. For the longest one, the number reaches
660 mobile relays. In other areas the numbers are lower. Interestingly, Poznań-related
STCGs consist of more mobile nodes than the ones related to Wrocław. In FCGs, due to the
structure of the connections, the situation is the opposite. Gdańsk remains the area with
the lowest number of mobile relay nodes for all durations.

7.5 15.0 30.0 60.0 120.0
duration

0

100000

200000

300000

400000

500000

no
de

s

graph type = connectivity

7.5 15.0 30.0 60.0 120.0
duration

200

300

400

500

600

700

800

graph type = first-contact

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 31. All nodes in space–time connectivity and first-contact graphs.

7.5 15.0 30.0 60.0 120.0
duration

0

25000

50000

75000

100000

125000

150000

175000

m
ob

ile
 re

la
y

no
de

s

graph type = connectivity

7.5 15.0 30.0 60.0 120.0
duration

100

200

300

400

500

600

graph type = first-contact

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 32. Mobile relay nodes in space–time connectivity and first-contact graphs.

Importantly, the STCG construction algorithm is the reason for large numbers of
nodes being present in space–time connectivity graphs, since each node of each SCG
is represented by two instances in the STCG. This means that for each unique device
(space node) in the observation area and duration, multiple instances (time nodes) are
present in the space–time connectivity graph, as depicted in Figure 33. For example, the
number of nodes for the 30 min duration in the STCGs ranges from around 75 thousand
for Gdańsk to more than 140 thousand for Warsaw. These correspond to around 240 nodes
for Gdańsk and 540 nodes for Warsaw in the related first-contact graphs. The numbers of
instances of mobile relays are the highest in Poznań and Wrocław. This means that in those
areas of interest particular mobile relays are on average present for the longest total time.
Figure 33 shows the numbers only for the space–time connectivity graphs because in the
first-connectivity graphs each actual device is represented by a single node.

7.5 15.0 30.0 60.0 120.0
duration

200

400

600

800

1000

in
st

an
ce

s
pe

r n
od

e

city
Gdansk
Poznan
Warsaw
Wroclaw

7.5 15.0 30.0 60.0 120.0
duration

50

100

150

200

250

300

in
st

an
ce

s
pe

r m
ob

ile
 re

la
y

no
de

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 33. Instances per node in space–time connectivity graphs.

Sensors 2023, 23, 9559 37 of 41

In terms of the connected components in the first-contact graphs, see Figure 34, their
numbers for Gdańsk, Poznań, and Warsaw are lower than they are on average in the
space connectivity graphs compared in Figure 21. This difference grows when the network
duration and radio ranges increase. The same trend can be observed in Wrocław but there
is a difference. At the shortest durations and the smallest radio range, the numbers of
connected components exceed the ones in the SCGs. This shows that the infrastructure in
Wrocław is more fragmented and more time is needed to make the network more connected.

The opposite trends can be observed in relation to the numbers of nodes per component
in Figure 35 and the average node degrees in Figure 36, when compared to Figure 22 and
Figure 23, respectively, which are related to these parameters of the space connectivity
graphs. The much higher values of the space–time metrics are of key significance, because
they prove that when mobile relay nodes are used to build a space–time network, the
momentarily (temporarily) disconnected components (parts of the network) are connected
over time and, as a result, larger and more dense time-spanning networks are constructed.
Wrocław falls behind considerably, but it needs to be taken into account that the underlying
space connectivity graphs were of the lowest average node degree as well.

7.5 15.0 30.0 60.0 120.0
duration

0

20

40

60

80

100

120

140

co
nn

ec
te

d
co

m
po

ne
nt

s

radio range = 25

7.5 15.0 30.0 60.0 120.0
duration

10

20

30

40

50

60

radio range = 50

7.5 15.0 30.0 60.0 120.0
duration

5

10

15

20

25

radio range = 100

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 34. Connected components in first-contact graphs.

7.5 15.0 30.0 60.0 120.0
duration

0

10

20

30

40

50

60

70

no
de

s
pe

r c
om

po
ne

nt

radio range = 25

7.5 15.0 30.0 60.0 120.0
duration

0

20

40

60

80

100

120
radio range = 50

7.5 15.0 30.0 60.0 120.0
duration

0

50

100

150

200

radio range = 100

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 35. Nodes per connected component in first-contact graphs.

7.5 15.0 30.0 60.0 120.0
duration

0

10

20

30

40

av
er

ag
e

no
de

 d
eg

re
e

radio range = 25

7.5 15.0 30.0 60.0 120.0
duration

10

20

30

40

50

60

70

radio range = 50

7.5 15.0 30.0 60.0 120.0
duration

20

40

60

80

100

120
radio range = 100

city
Gdansk
Poznan
Warsaw
Wroclaw

Figure 36. Average node degree in space–time first-contact graphs.

6. Summary

This paper introduces new network connectivity modeling algorithms designed for
realistic heterogeneous urban sensor networks. The presented methods use emerging
publicly available data sources which provide the locations of different elements of urban
infrastructure, public transportation vehicles, etc. Other types of related information
are usually available as well. The family of related algorithms is presented as a set of
commented pseudocodes, examples, and clarifications. A multidimensional simulation
architecture has been proposed and used to construct static (momentary) and dynamic
(time-changing) topologies, i.e., space connectivity graphs, space–time connectivity graphs,
and first-contact graphs, in selected areas of four large Polish cities—Gdańsk, Poznań,
Warsaw, and Wrocław.

Sensors 2023, 23, 9559 38 of 41

Key observations related to space connectivity analysis:

• Large-scale network modeling with space connectivity graphs (SCGs) and multidimen-
sional analysis can be conducted based on open data;

• The unique topology and infrastructure features of each urban area influence the
networks that are constructed;

• When conducting analyses of the data obtained for individual cities, it can be seen that
the highest overall number of nodes does not necessarily correspond to the population
density of the individual cities.

• Mobile relays are present in the areas of interest in varying numbers and with varying
distributions, which depend on the infrastructure of the cities concerned, including
the number of daily public transport lines, vehicle frequency, street topology, and
density of stops;

• Changing the radio range of the nodes affects the modeled networks differently, de-
pending on the distribution of the nodes. Immediate topologies are more fragmented
for smaller radio ranges. In more fragmented areas, increased radio coverage is
required to connect more nodes;

• The radio coverage affects the costs of space connectivity graphs and their associated
minimum and maximum spanning forests. Studies have shown that as radio coverage
increases, the number of edges and the cost of structures also increase. These increases
are exponential, so the radio parameters of the designed networks must be carefully
planned. In this way, excessive use of the wireless medium, as well as the computing
and storage resources of the nodes, can be avoided;

Key observations related to space–time connectivity analysis:

• Space–time connectivity graphs (STCGs), which consist of as many as hundreds of
thousands of nodes, can be modeled based on space connectivity lists (SCLs) and used
as the intermediate structure in space–time network modeling;

• First-contact graphs (FCGs) are valuable compact-form indicators that capture how
space–time networks develop over time and how the adjacencies occur for the first time;

• The structures become more complex when network duration and radio coverage
grows. This means that topology and connectivity increase as well;

• The sets of mobile nodes present in the areas change over time—some enter and some
leave at different moments. In a space–time connectivity graph, there are more unique
space nodes (individual devices) than in a single space connectivity graph. As a result,
the number of mobile relays in first-contact graphs is at least a few times higher than
in the related space connectivity graphs;

• The average node degrees and the number of connected components are much higher
in first-contact graphs than they are in space connectivity graphs. This proves that
using mobile relays to construct space–time networks enables the momentarily dis-
connected parts of a network to be connected over time. As a result, larger and denser
time-spanning topologies are constructed.

Main contributions of presented work:

• Urban sensor network graph-based modeling algorithms:

– space connectivity modeling;
– space–time connectivity modeling;
– first-contact modeling;

• Simulation study of introduced models and algorithms:

– methodology for multidimensional modeling and analysis;
– simulation architecture and custom-developed environment;
– comparative investigation and observations for four Polish cities.

Suggested directions for further research:

• Urban sensor network modeling:

Sensors 2023, 23, 9559 39 of 41

– Development of a reliable parametric network topology generator based on
long-term observations of open data and timetables;

– Construction of movement traces based on gathered node location open data;
– Use of introduced modeling architecture as an element of stationary relay deploy-

ment planning;
– Use of presented modeling algorithms in other fields:

* social trends analysis;
* multi-criteria route optimization for public service vehicles;
* urban planning of bicycle paths, street infrastructure, etc.;

• Graph-based study of presented algorithms:

– Investigation of extended scale and scope:

* more data sources, including the closed ones, when available;
* more areas of different locations and sizes, e.g., suburbs, small cities, coun-

trysides, etc.;

– Advanced radio connectivity modeling:

* use of actual connectivity data, when available;
* use of complex radio coverage models.

In total, nearly 44 thousand graphs were built and enabled the study of the modeled
networks. Both well-known and newly introduced graph-theory metrics were presented.
The key features, trends, and relationships were analyzed, compared, and discussed,
showing the usability of the introduced urban sensor network modeling algorithms. Further
research directions were presented.

Author Contributions: B.M., M.P. and P.Z.: validation, writing—review and editing; B.M. and
P.Z.: conceptualization; B.M.: data curation, formal analysis, investigation, methodology, resources,
software, visualization, writing—original draft; P.Z.: funding acquisition, project administration,
supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Polish Ministry of Science and Higher Education
(No. 0313/SBAD/1310) and was also supported in part by the grant to maintain research potential of
Kazimierz Wielki University (Ministry of Education and Science, grant 2023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Musznicki, B.; Zwierzykowski, P. Survey of Simulators for Wireless Sensor Networks. Int. J. Grid Distrib. Comput. 2012, 5, 23–50.
2. Murty, R.N.; Mainland, G.; Rose, I.; Chowdhury, A.R.; Gosain, A.; Bers, J.; Welsh, M. CitySense: An Urban-Scale Wireless Sensor

Network and Testbed. In Proceedings of the 2008 IEEE Conference on Technologies for Homeland Security, Waltham, MA, USA,
12–13 May 2008; pp. 583–588. [CrossRef]

3. Bonola, M.; Bracciale, L.; Loreti, P.; Amici, R.; Rabuffi, A.; Bianchi, G. Opportunistic communication in smart city: Experimental
insight with small-scale taxi fleets as data carriers. Ad Hoc Netw. 2016, 43, 43–55. [CrossRef]

4. Dias, D.S.; Costa, L.H.M.; de Amorim, M.D. Data offloading capacity in a megalopolis using taxis and buses as data carriers. Veh.
Commun. 2018, 14, 80–96. [CrossRef]

5. Musznicki, B.; Kowalik, K.; Kołodziejski, P.; Grzybek, E. Mobile and Residential INEA Wi-Fi Hotspot Network. In Proceedings of
the 13th International Symposium on Wireless Communication Systems (ISWCS 2016), Poznań, Poland, 20–23 September 2016.

6. Biljecki, F. A Global Feature-Rich Network Dataset of Cities and Dashboard for Comprehensive Urban Analyses. Sci. Data 2023,
10, 1–15.

7. Peixoto, J.P.J.; Bittencourt, J.C.N.; Jesus, T.C.; Costa, D.G.; Portugal, P.; Vasques, F. Exploiting geospatial data of connectivity and
urban infrastructure for efficient positioning of emergency detection units in smart cities. Comput. Environ. Urban Syst. 2024,
107, 102054. [CrossRef]

http://doi.org/10.1109/THS.2008.4534518
http://dx.doi.org/10.1016/j.adhoc.2016.02.002
http://dx.doi.org/10.1016/j.vehcom.2018.10.002
http://dx.doi.org/10.1016/j.compenvurbsys.2023.102054

Sensors 2023, 23, 9559 40 of 41

8. Musznicki, B. Empirical Approach in Topology Control of Sensor Networks for Urban Environment. J. Telecommun. Inf. Technol.
2019, 1, 47–57. [CrossRef]

9. Musznicki, B.; Piechowiak, M.; Zwierzykowski, P. Modeling Real-Life Urban Sensor Networks Based on Open Data. Sensors
2022, 22, 9264. [CrossRef] [PubMed]

10. Huang, M.; Chen, S.; Zhu, Y.; Xu, B.; Wang, Y. Topology Control for Time-Evolving and Predictable Delay-Tolerant Networks. In
Proceedings of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–22
October 2011; pp. 82–91.

11. Ferreira, A. On models and algorithms for dynamic communication networks: The case for evolving graphs. In Proceedings of
the ALGOTEL 2002, Mèze, France, May 2002

12. Robusto, C.C. The cosine-haversine formula. Am. Math. Mon. 1957, 64, 38–40. [CrossRef]
13. Merugu, S.; Ammar, M.H.; Zegura, E.W. Routing in Space and Time in Networks with Predictable Mobility; Technical Report; Georgia

Institute of Technology: Atlanta, GA, USA, 2004.
14. George, B.; Shekhar, S. Time-aggregated graphs for modeling spatio-temporal networks. In Journal on Data Semantics XI; Springer:

Berlin/Heidelberg, Germany, 2008; pp. 191–212.
15. Wu, H.; Cheng, J.; Huang, S.; Ke, Y.; Lu, Y.; Xu, Y. Path Problems in Temporal Graphs. Proc. VLDB Endow. 2014, 7, 721–732.

[CrossRef]
16. Huang, S.; Fu, A.W.C.; Liu, R. Minimum Spanning Trees in Temporal Graphs. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data (SIGMOD’15), New York, NY, USA, 31 May–4 June 2015; pp. 419–430.
[CrossRef]

17. NetworkX. Network Analysis in Python. Available online: https://networkx.org (accessed on 20 October 2023).
18. OpenStreetMap. Available online: https://www.openstreetmap.org/copyright (accessed on 20 October 2023).
19. Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50.

[CrossRef]
20. Gunturi, V.; Shekhar, S.; Bhattacharya, A. Minimum Spanning Tree on Spatio-Temporal Networks. In Database and Expert Systems

Applications; Bringas, P.G., Hameurlain, A., Quirchmayr, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 149–158.
21. McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,

Austin, TX, USA, 28 June–3 July 2010; pp. 56–61.
22. Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [CrossRef]
23. Open Gdańsk. GPS Positions of the Vehicles. Available online: https://ckan.multimediagdansk.pl/dataset/tristar/resource/

0683c92f-7241-4698-bbcc-e348ee355076 (accessed on 20 October 2023).
24. Open Gdańsk. List of Bus Stops. Available online: https://ckan.multimediagdansk.pl/dataset/tristar/resource/4c4025f0-01bf-

41f7-a39f-d156d201b82b (accessed on 20 October 2023).
25. Open Gdańsk. Positions of Ticket Machines. Available online: https://ckan.multimediagdansk.pl/dataset/tristar/resource/

af7bf4a9-e62e-4af2-906a-fa27c2532dfd (accessed on 20 October 2023).
26. ZTM Poznań. For Developers—GTFS-RT. Available online: https://www.ztm.poznan.pl/pl/dla-deweloperow/gtfsRtFiles

(accessed on 20 October 2023).
27. Poznań. Positions of Public Transport Stops. Available online: http://www.poznan.pl/mim/plan/map_service.html?mtype=

pub_transport&co=cluster (accessed on 20 October 2023).
28. Poznań. Positions of Ticket Machines. Available online: http://www.poznan.pl/mim/plan/map_service.html?mtype=

pub_transport&co=class_objects&class_id=4000 (accessed on 20 October 2023).
29. Warsaw Open Data. Public Vehicle Positions—API Documentation. Available online: https://api.um.warszawa.pl/files/

9fae6f84-4c81-476e-8450-6755c8451ccf.pdf (accessed on 20 October 2023).
30. Warsaw Open Data. Available online: https://api.um.warszawa.pl (accessed on 20 October 2023).
31. Wrocław Open Data. Positions of Public Transporation Vehicles. Available online: https://www.wroclaw.pl/open-data/dataset/

lokalizacjapojazdowkomunikacjimiejskiejnatrasie_data (accessed on 20 October 2023).
32. Wrocław Open Data. Wrocław City Bike Stations. Available online: https://www.wroclaw.pl/open-data/dataset/

nextbikesoap_data/resource/42eea6ec-43c3-4d13-aa77-a93394d6165a (accessed on 20 October 2023).
33. Wrocław Open Data. Vozilla—City Electric Car Rental—Parking Lots. Available online: https://www.wroclaw.pl/open-data/

dataset/wykaz-miejsc-parkingowych-miejskiej-wypozyczalni-samochodow-elektrycznych-vozilla (accessed on 20 October
2023).

34. Airly Developer. Documentation. Available online: https://developer.airly.org/en/docs (accessed on 20 October 2023).
35. Gdańsk w Liczbach. Liczba Mieszkańców Gdańska. Available online: https://www.gdansk.pl/gdansk-w-liczbach/

mieszkancy,a,108046 (accessed on 20 October 2023).
36. Geoportal Krajowy Na Mapie. Available online: https://geoportal-krajowy.pl (accessed on 20 October 2023).
37. Gdańsk Municipal Transport Authority. Timetables. Available online: https://ztm.gda.pl/rozklady (accessed on 20 October 2023).
38. Poznan.pl. Znamy Liczbę Mieszkańców Poznania. Available online: https://www.poznan.pl/mim/info/news/znamy-liczbe-

mieszkancow-poznania,188075.html (accessed on 20 October 2023).
39. Poznań Municipal Transport Company. Timetable. Available online: https://www.mpk.poznan.pl/en/timetable/ (accessed on

20 October 2023).

http://dx.doi.org/10.26636/jtit.2019.129918
http://dx.doi.org/10.3390/s22239264
http://www.ncbi.nlm.nih.gov/pubmed/36501964
http://dx.doi.org/10.2307/2309088
http://dx.doi.org/10.14778/2732939.2732945
http://dx.doi.org/10.1145/2723372.2723717
https://networkx.org
https://www.openstreetmap.org/copyright
http://dx.doi.org/10.1090/S0002-9939-1956-0078686-7
http://dx.doi.org/10.21105/joss.03021
https://ckan.multimediagdansk.pl/dataset/tristar/resource/0683c92f-7241-4698-bbcc-e348ee355076
https://ckan.multimediagdansk.pl/dataset/tristar/resource/0683c92f-7241-4698-bbcc-e348ee355076
https://ckan.multimediagdansk.pl/dataset/tristar/resource/4c4025f0-01bf-41f7-a39f-d156d201b82b
https://ckan.multimediagdansk.pl/dataset/tristar/resource/4c4025f0-01bf-41f7-a39f-d156d201b82b
https://ckan.multimediagdansk.pl/dataset/tristar/resource/af7bf4a9-e62e-4af2-906a-fa27c2532dfd
https://ckan.multimediagdansk.pl/dataset/tristar/resource/af7bf4a9-e62e-4af2-906a-fa27c2532dfd
https://www.ztm.poznan.pl/pl/dla-deweloperow/gtfsRtFiles
http://www.poznan.pl/mim/plan/map_service.html?mtype=pub_transport&co=cluster
http://www.poznan.pl/mim/plan/map_service.html?mtype=pub_transport&co=cluster
http://www.poznan.pl/mim/plan/map_service.html?mtype=pub_transport&co=class_objects&class_id=4000
http://www.poznan.pl/mim/plan/map_service.html?mtype=pub_transport&co=class_objects&class_id=4000
https://api.um.warszawa.pl/files/9fae6f84-4c81-476e-8450-6755c8451ccf.pdf
https://api.um.warszawa.pl/files/9fae6f84-4c81-476e-8450-6755c8451ccf.pdf
https://api.um.warszawa.pl
https://www.wroclaw.pl/open-data/dataset/lokalizacjapojazdowkomunikacjimiejskiejnatrasie_data
https://www.wroclaw.pl/open-data/dataset/lokalizacjapojazdowkomunikacjimiejskiejnatrasie_data
https://www.wroclaw.pl/open-data/dataset/nextbikesoap_data/resource/42eea6ec-43c3-4d13-aa77-a93394d6165a
https://www.wroclaw.pl/open-data/dataset/nextbikesoap_data/resource/42eea6ec-43c3-4d13-aa77-a93394d6165a
https://www.wroclaw.pl/open-data/dataset/wykaz-miejsc-parkingowych-miejskiej-wypozyczalni-samochodow-elektrycznych-vozilla
https://www.wroclaw.pl/open-data/dataset/wykaz-miejsc-parkingowych-miejskiej-wypozyczalni-samochodow-elektrycznych-vozilla
https://developer.airly.org/en/docs
https://www.gdansk.pl/gdansk-w-liczbach/mieszkancy,a,108046
https://www.gdansk.pl/gdansk-w-liczbach/mieszkancy,a,108046
https://geoportal-krajowy.pl
https://ztm.gda.pl/rozklady
https://www.poznan.pl/mim/info/news/znamy-liczbe-mieszkancow-poznania,188075.html
https://www.poznan.pl/mim/info/news/znamy-liczbe-mieszkancow-poznania,188075.html
https://www.mpk.poznan.pl/en/timetable/

Sensors 2023, 23, 9559 41 of 41

40. Statystyka Warszawy. Miasto Warszawa. Available online: https://um.warszawa.pl/statystyka-warszawy-2022 (accessed on 20
October 2023).

41. Warsaw Public Transport. Timetables. Available online: https://www.wtp.waw.pl/en/timetables/ (accessed on 20 October 2023).
42. Statistical Office in Wroclaw. Population. Available online: https://wroclaw.stat.gov.pl/en/zakladka2/ (accessed on 20

October 2023).
43. Wrocław Municipal Transport Company. Timetable. Available online: https://www.wroclaw.pl/komunikacja/rozklady-jazdy

(accessed on 20 October 2023).
44. Karvonen, H.; Pomalaza-Ráez, C.; Mikhaylov, K.; Hämäläinen, M.; Iinatti, J. Experimental Performance Evaluation of BLE 4

versus BLE 5 in Indoors and Outdoors Scenarios. In Proceedings of the Advances in Body Area Networks I; Springer International
Publishing: Berlin/Heidelberg, Germany, 2019; pp. 235–251.

45. Ferreira, A.E.; Ortiz, F.M.; Costa, L.H.M.; Foubert, B.; Amadou, I.; Mitton, N. A study of the LoRa signal propagation in forest,
urban, and suburban environments. Ann. Telecommun. 2020, 75, 333–351. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://um.warszawa.pl/statystyka-warszawy-2022
https://www.wtp.waw.pl/en/timetables/
https://wroclaw.stat.gov.pl/en/zakladka2/
https://www.wroclaw.pl/komunikacja/rozklady-jazdy
http://dx.doi.org/10.1007/s12243-020-00789-w

	Introduction
	Network Modeling Algorithms
	Network Device Data to Slots of Space Nodes
	Slots of Space Nodes to Space Connectivity List
	Space Connectivity List to Space–Time Connectivity Graph
	Space–Time Connectivity Graph to First-Contact Graph

	Simulation and Analysis Methodology
	Comparative Study Methodology
	Statistical Analysis and Visualization
	Simulation Data Sources and Node Classes
	Simulation Areas and Example Modeled Networks
	Simulation Architecture and Parameters
	Simulation Study Metrics

	Space Connectivity Analysis
	Space Connectivity Nodes
	Space Connectivity Edges
	Space Connectivity Relationships

	Space–Time Connectivity Analysis
	Summary
	References

