
Citation: Petitprez, E.; Guérin, F.;

Guinand, F.; Germain, F.; Kerthe, N.

Decentralized Coordination of a

Multi-UAV System for Spatial Planar

Shape Formations. Sensors 2023, 23,

9553. https://doi.org/10.3390/

s23239553

Academic Editor: Bijan Shirinzadeh

Received: 9 October 2023

Revised: 15 November 2023

Accepted: 24 November 2023

Published: 1 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Decentralized Coordination of a Multi-UAV System for Spatial
Planar Shape Formations
Etienne Petitprez 1,2,3 , François Guérin 1,4,* , Frédéric Guinand 1,3,5 , Florian Germain 1 and Nicolas Kerthe 1

1 Le Havre Normandy University, 76600 Le Havre, France; etienne.petitprez@squadrone-system.com (E.P.);
frederic.guinand@univ-lehavre.fr (F.G.); florian.germain@univ-lehavre.fr (F.G.);
nicolas.kerthe@univ-lehavre.fr (N.K.)

2 Squadrone System, 38000 Grenoble, France
3 LITIS Laboratory, 76600 Le Havre, France
4 GREAH Laboratory, 76600 Le Havre, France
5 Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University, 01-815 Warsaw, Poland
* Correspondence: francois.guerin@univ-lehavre.fr

Abstract: Motivated by feedback from firefighters in Normandy, this work aims to provide a simple
technique for a set of identical drones to collectively describe an arbitrary planar virtual shape in a 3D
space in a decentralized manner. The original problem involved surrounding a toxic cloud to monitor
its composition and short-term evolution. In the present work, the pattern is described using Fourier
descriptors, a convenient mathematical formulation for that purpose. Starting from a reference point,
which can be the center of a fire, Fourier descriptors allow for more precise description of a shape as
the number of harmonics increases. This pattern needs to be evenly occupied by the fleet of drones
under consideration. To optimize the overall view, the drones must be evenly distributed angularly
along the shape. The proposed method enables virtual planar shape description, decentralized
bearing angle assignment, drone movement from takeoff positions to locations along the shape, and
collision avoidance. Furthermore, the method allows for the number of drones to change during
the mission. The method has been tested both in simulation, through emulation, and in outdoor
experiments with real drones. The obtained results demonstrate that the method is applicable in
real-world contexts.

Keywords: multi-UAVs; decentralized coordination; Fourier’s descriptors; formation control; pattern
formation; collision avoidance

1. Introduction

Many multi-robot systems, including swarm robotics, are inspired by collective be-
haviors observed in nature. The topic has emerged as a promising concept with numerous
applications across various domains [1]. The development of key elements underlying
self-organization, namely, collaboration, cooperation, and robustness, has enabled break-
throughs in many challenging and time-consuming tasks [2–4].

Multi-robot systems demonstrate their efficiency by sharing tasks among robots. For
instance, they can rapidly cover a designated geographic area or perform search and
tracking, particularly in the context of rescue missions [5–7]. Along the same lines, data
exchange (including images and positions) can prevent collisions and assist the group in
navigating complex environments, as is required for inspecting critical infrastructures [8].

Other advantages of these systems are their flexibility, adaptability, and robustness.
Thanks to a decentralized approach facilitated by communication among group members,
robots can reorganize themselves in response to dynamic and often unpredictable changes
even when a few robots become inoperative. These properties prevent system failure, mak-
ing multi-robot systems desirable for long-lasting tasks such as environmental monitoring,
where individual robots may take over for others due to failure or lack of energy [9].

Sensors 2023, 23, 9553. https://doi.org/10.3390/s23239553 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23239553
https://doi.org/10.3390/s23239553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8694-9940
https://orcid.org/0000-0003-4163-4459
https://orcid.org/0000-0002-7915-2781
https://doi.org/10.3390/s23239553
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23239553?type=check_update&version=1


Sensors 2023, 23, 9553 2 of 29

Behind these few examples, thousands of scientific papers and books have been
published over the last few decades on the topic of swarm robotics (over 15,000 hits in
google scholar for the last decade, and even more for multi-robot systems). These works
range from purely theoretical studies to real experiments conducted in harsh environmental
conditions. Researchers have explored centralized and decentralized methods as well as
hybrid approaches, studied a wide array of robotic platforms, including aerial, ground, and
underwater robots, and proposed applications spanning numerous domains. In addition,
many surveys have been written in an attempt to classify the problems, approaches,
methodologies, experimental platforms, and results.

The work presented in this paper focuses on multi-UAV systems, which are groups of
identical Unmanned Aerial Vehicles (UAVs), sometimes referred as drones. While many
works have been published in this field [10–12], the present paper specifically addresses the
problem of pattern formation. In the context of this study, the goal consists of positioning a
set of drones evenly along a predetermined planar shape, such as a circle, polygon, butterfly,
etc. The term ‘evenly’ can be interpreted as maintaining equal distances between the drones
or, alternatively, as arranging them at regular angular intervals from a fixed reference point
along the shape. In this work, we investigate the latter option. Additionally, unlike several
previous works described in [3], the shape itself is defined before the mission by a human
operator. Thus, it does not result from interactions among the robots, as is usually the case
for swarm robotics.

The original motivation for this work stemmed from an industrial accident that oc-
curred in Normandy in 2019 (https://www.francetvinfo.fr/faits-divers/incendie/incendie-
d-un-site-seveso-a-rouen/ (French television news), accessed on 29 November 2023). The
Lubrizol petrochemical factory and several neighboring warehouses caught fire, and the
toxic and dense cloud quickly spread high into the sky close to the city of Rouen. Due to
its size and the proximity of houses, firefighters encountered great difficulty in controlling
the fire. Later on, the debrief of this accident sparked discussions about possible future
strategies for improving the conditions of action. One part of the discussion focused on
the possibility of deploying a set of drones for observational purposes. The idea was to
enable a multi-UAV system equipped with specific sensors [13] to surround the cloud at a
relevant distance, with each drone pointing its camera towards the source of the fire. The
current paper presents a decentralized and flexible solution for achieving this goal. The
implementation of such a solution faces several problems.

Information should arrive continuously from the multi-UAV system; thus, due to
battery capacity limitations, the composition of the group may change during the mission.
This constraint eliminates solutions relying on a leader or any form of centralization,
such as the one proposed by Raja and his colleagues [14]. Identifying the area of interest
for observation and defining the shape delimiting this area is another issue. According
to the situation, environment, and physical constraints, the area of interest may vary
widely, invalidating all solutions targeting a specific set of shapes. In 2021, Huang and
his colleagues [15] performed 3D representation with a UAV fleet using graph theory. For
N UAVs, each 3D model is meshed by N nodes at specific coordinates. When an event
transition is triggered, the fleet of UAVs moves from one shape to another by solving a
task assignment optimization problem and planning a collision-free trajectory. An artificial
potential field is used to manage obstacle avoidance in real-time. This work shows a
concrete realization of a robust system with six UAVs; however, the model for each desired
shape is meshed by a central machine beforehand, and the number of drones is fixed.

In order to define a wide variety of shapes delimiting potential areas of interest, we
propose the use of Fourier Descriptors (FDs) [16–18]. When coupled with the Fourier
Transform (FT), FDs allow a planar formation shape to be defined as a virtual rigid-body
structure. Methods based on FDs ensure the representation and retrieval of a shape.
They derive from a shape signature (in general, a 1D function) representing 2D areas or
boundaries. Zhang and Lu [19] compared several methods based on FDs on a set of complex
shapes. This approach provides results for the centroid distance with better robustness,

https://www.francetvinfo.fr/faits-divers/incendie/incendie-d-un-site-seveso-a-rouen/
https://www.francetvinfo.fr/faits-divers/incendie/incendie-d-un-site-seveso-a-rouen/


Sensors 2023, 23, 9553 3 of 29

convergence speed, and computation complexity, and is able to handle open curves. The FT
approximates the shape signature with a finite number of harmonics in order to transform
an unknown function into a low-computational sum of sinusoidal functions. To cope with
the reactivity and flexibility constraints of decentralized networks, we decided to use a
composition of virtual actions [20–22] to ensure collision avoidance. Each UAV adjusts its
velocity according to the presence of static or dynamic obstacles in a defined range.

In the Section 2, the FD and FT formulation used to depict the desired formation is
described. The decentralized allocation of the bearing angle between robots when the
number of UAVs is known prior to the mission and when this number changes during the
mission is described and explained in Section 3. Section 4 discusses modeling and control,
along with obstacle avoidance management. The simulation protocols and experiments are
presented in Section 5, followed by the results and commentary in Section 5.3.

2. Designing Planar Shapes with Fourier Descriptors
2.1. Problem Statement

It is desirable to have a way to control the formation regardless of the number of UAVs.
The formation should be maintained when the number of UAVs varies over time. For
certain applications, conditions such as the number of deployed UAVs, target movement,
objectives, etc., may vary during the execution of the mission. These variations may entail
a change in the formation, such as its size, position, orientation, etc. Thus, it is appropriate
to seek a way of describing the pattern irrespective of its absolute position, orientation,
and size.

One way to ensure this is to use a combination of Fourier Descriptors (FDs) and the
Fourier Transform (FT). This method allows shapes to be described through modifications
while maintaining formation coherence using three parameters: amplitude, phase, and
reference point.

In this study, we chose to equally distribute the UAVs (index i) around the shape with
bearing angles (βi) computed according to the number of available UAVs. It is worth noting
that the number of UAVs can be unknown a priori; the decentralized method enabling the
determination and allocation of the bearing angles between UAVs is described in Section 3.
Note that the term ‘equally’ (or ‘evenly’) refers to the angular distance from a UAV to a fixed
reference point, not the Euclidean distance to that point or between UAVs. From now on,
we consider that each UAV knows the bearing angle to be reached, which is implemented
in the high-level control as a direction instruction.

Here, we want the UAV to find the coordinates of the point to be reached (Mi) while
only knowing the reference point of the shape. Therefore, we have designed our functions
to fit a real cyclic period of 2π by describing them in polar coordinates from this point.
These functions do not need to be continuous; they can be sampled or piecewise continuous.
To allow the planar shape to rotate in 3D, a rotational quaternion is provided to all UAVs
alongside the harmonics from the FT.

Each UAV has to regulate their distance errors from the point towards zero in order to
reach (Mi). At all times, they must point towards the reference point, which is the opposite
of the direction βi (Figure 1).

2.2. Fourier Descriptor

Fourier descriptors [16,17,19] describe a planar function dβ with a single variable β
from a reference point M(XM, YM) (Figure 2). This one-dimensional function dβ is called
the shape signature, and must be periodic.

In this study, we use the centroid distance to describe the signature shape dβ of the
desired curve (Figures 1 and 2), as it captures and retrieves complex patterns with the most
accuracy [19]. Additionally, it matches the polar description used to retrieve the desired
position. It is expressed by the distance of the boundary points (M) from the centroid (C)
of the shape. To match our problem statement, the reference point C can be any point as
long as one angle provides one possible distance.



Sensors 2023, 23, 9553 4 of 29

Figure 1. Example of an angular equidistribution of UAVs around an elliptical shape with its center
at C. The red and green dots allow distinguishing the front from the back of the drone, with red
indicating the front and green indicating the back.

Figure 2. Example of a closed curve defined by dβ with FD from the reference point C.



Sensors 2023, 23, 9553 5 of 29

Discrete Fourier Transformation (DFT) is applied to retrieve the harmonics (1). Their
number fmax depends on the sampling frequency fe of the continuous function of the
shape signature with respect the Nyquist–Shannon condition (2); N denotes the number
of samples generated, and βt is the associated angle of the sample t parameter of the
signature function.

an = 1
N ∑N

t=1 dβt exp
(
−j2πnt

N

)
Re(an) =

1
N ∑N

t=1 dβt cos
( 2πnt

N
)

Im(an) =
1
N ∑N

t=1 dβt sin
(−2πnt

N
) (1)

fmax <
fe

2
(2)

The Fourier coefficients are determined using the DFT. The distance dβ from the reference
point is computed with the bearing angle β and the coefficients:

φn = atan2(Im(an), Re(an))

Xβ = ∑N+1
n=0 ε|an| cos (nβ + φn)

Yβ = ∑N+1
n=0 ε|an| sin (nβ + φn)

dβ =
√

X2
β + Y2

β

(3)

φn : phase of the nth harmonic
dβ : distance from the reference point C to the point M
β : angle between the X (north) axis and the direction defined by point M and the reference
point C
Xβ : distance along the X axis (north) of point M from the reference point C
Yβ : distance along the Y axis (east) of point M from the reference point C

2.3. Spatial Rotations

At this state, the position that is reached is determined by the altitude of the reference
point Zc, and is purely planar (Figure 2). Thus, a quaternion is defined to provide the third
dimension of the planar shape, allowing 3D rotations. This only requires a revolutionary
axis coupled with an angle.

Let q the initial quaternion resulting from DF and let FT be defined as follows:

q =


a1 = 1

v1 =


cos (β)
sin (β)
0

(4)

The rotational quaternion qrot is interpreted from the rotational angle αrot and the normal-
ized vector (xrot, yrot, zrot)T :

qrot =


a2 = cos (αrot/2)

v2 =


sin (αrot/2) ∗ xrot
sin (αrot/2) ∗ yrot
sin (αrot/2) ∗ zrot

(5)

The new normalized position vector X, which is the result of the rotation of q around qrot,
can be expressed as

X = 2 ∗ (v1 · v2) ∗ v2 + a2
2 − (v2 · v2) ∗ v1 + 2 ∗ a2 ∗ (v2 ⊗ v1). (6)

Next, the normalized position vector X is multiplied by the distance dβ to retrieve the
desired position of point M.

To conclude, the management of the formation involves leading each UAV i to their
point Mi defined around the 3D shape (β, dβ) while avoiding obstacles and collisions.



Sensors 2023, 23, 9553 6 of 29

In summary, the method allows each drone to obtain its destination position belonging
to the shape using four main information: the reference point of the shape, the harmonics,
magnetic north, and the bearing angle. In the context of this work, we additionally want
this whole process to be decentralized in order to guarantee its flexibility and robustness.
Flexibility means that before the mission any drone might be replaced by another one
without the need to assign it a unique identifier. Robustness means that drones may
leave the formation during the mission, while others can arrive and insert themselves
into the shape. Regarding the necessary information for performing the mission, only one
parameter has to be determined in a decentralized and online way for the dynamic version.
Notably, the reference point and harmonics are predefined mission parameters that remain
constant throughout the mission. As far as the UAVs are concerned, magnetic north is
assumed to be common knowledge. Thus, the only information that needs to be computed
is the bearing angle. Allocating the bearing angles to the drones prior to the mission as
part of their parameters is a possibility; however, this choice would make the method less
flexible and less robust. In such a case, the bearing angles would have to be individually
transmitted to each drone by a central device, which implies a unique identifier for each
drone, which contradicts the core principles of decentralized algorithms. Furthermore,
such an approach reduces robustness, as the number of drones cannot change during the
mission. The next section addresses these issues by presenting the algorithms used to
ensure decentralization.

3. Decentralized Allocation of Bearing Angles

In this section, we present algorithms that enable drones to self-determine their bearing
angles through message exchanges. These algorithms are executed asynchronously by each
drone. In all cases, the drones do not have identifiers. Thus, all broadcast messages are
anonymous. Three cases are investigated:

1. Static and reliable communication: the size of the group (number of drones) is known
by every drone and no messages are lost during the exchanges.

2. Static and unreliable communication: the number of UAVs is known and messages
may be lost during communication.

3. Dynamic and reliable communication: the number of drones is unknown and may
change during the mission, meaning that drones may leave the formation and new
drones may join it, while no message are lost during communication.

In all scenarios, the drones communicate by broadcasting messages and the communi-
cation topology is a fully connected graph. Thus, no routing is needed. All of the drones
have a compass, enabling every drone to consider magnetic north as the reference null
angle. The drones have to be equally distributed over the shape; thus, computing an angle
is equivalent to each of them choosing a number between 0 and N − 1, where N refers to
the number of drones. These numbers are called positions, and two drones cannot have
the same position. Note that for the 3 (dynamic-reliable-com) case N can change during
the mission. In this study, the term consensus refers to the situation where each position
has been chosen by one and only one drone. The algorithms presented in the sequelae are
designed such that consensus is reached through a decentralized process.

3.1. Known Constant Number of UAVs

For this first case, we assume that several conditions are fulfilled. We suppose that
the drones communicate by broadcasting messages and that each broadcast message is
received by the other drones. We suppose that the number of drones initially equals N and
that no drone leaves or joins the group during the mission.

The principle lies in the use of an array of Boolean values. In this array, cell i is true
when position i has been chosen by a drone and is false when no drone has chosen this
value. When necessary, drones broadcast both their array of Booleans and their chosen
position. If two drones have chosen the same position, there is a conflict. Thus, upon
reception of such a message, the drone compares its position and the received one; in the



Sensors 2023, 23, 9553 7 of 29

case of conflict, it performs a new random choice of position such that its corresponding
cell in the array contains false. The method is formally written out in Algorithm A1 (and
see Appendix A.2).

To measure the performance of the algorithm, the asynchronous execution of the
algorithm by each drone was obtained through a multi-threaded simulation. Each drone
was assigned to an independent thread that executed the algorithm. Two scenarios were
considered. In the first scenario, message loss was not considered, while in the second
scenario a substantial percentage of broadcast messages were lost.

The algorithm is highly efficient in the scenario without message loss, with an average
of only 2.5 broadcast messages per drone required to achieve consensus. In this process,
each drone selects a unique number from [0, N − 1] such that each number is associated
with one and only one drone. The experimental results are reported in Figure 3.

Figure 3. Average total number of messages broadcast by drones for reaching consensus during the
bearing angle choice phase. On average, 2.5 messages are broadcast by the drones. Each point on the
graph corresponds to 100 runs. In this scenario, it is assumed that no messages are lost.

In the second scenario, broadcast messages loss may lead to a deadlock. In case of
a conflict, the two involved drones have to choose another number and broadcast their
new choice. If one of the two messages is lost, the other members of the group receive
one message from the other drone with a cell containing “false”; as the other message is
never received, the drones may wait forever. To cope with this issue, a timeout mechanism
is introduced into the algorithm. If a drone does not receive any message after a given
period of time and continues to have cells containing “false” within its array, it repeats
broadcasting of its position array and its own position. This new broadcast triggers allows
the correct positions to be marked “false” in the received array. Thus, the condition in line
5 of Algorithm A1 becomes: if change OR timeout then.

As reported in Figure 4, the number of broadcast messages increases with the percent-
age of lost messages. However, the method remains very robust, as large loss percentages
(up to 50%) do not prevent the algorithm from reaching consensus. Furthermore, the
number of additional messages needed to cope with the lost messages grows linearly with
the number of drones (with a factor close to 4.5 for a 50% loss rate), making communica-
tions congestion unlikely.



Sensors 2023, 23, 9553 8 of 29

Figure 4. Average number of broadcast messages needed when a given percentage of messages
are lost. The considered loss rates range from 10 to 50%. The increase in the number of broadcast
messages remains limited even when the rate of loss is high.

3.2. Dynamically Changing Number of UAVs

For this last scenario, the composition of the group is dynamic. Two opposite events
may occur: a drone joins the group or a drone leaves the group. We assume several
conditions to be true:

• Communication is assumed to be reliable, i.e., no messages are lost.
• There is enough time between two events (join or leave) for the group to reach a

consensus on each drone’s respective chosen position.
• The topology of the communication network is a fully connected graph; thus, no

routing is needed.
• It is assumed that messages are received in the same chronological order in which

they are emitted. Specifically, it is expected that a message sent at time t by drone Di
is received by all other drones before any message broadcast at a later time t′ > t by
drone Dj. This assumption can be considered generally valid in the context of a fully
connected communication topology.

• The drones process their messages in First-In First-Out (FIFO) order.

Because of these changes, unlike the previous scenario the allocation of bearing angles
is a never-ending process. The method lies in the broadcast messages. Each message
contains three fields: the position chosen by the drone, its array of positions (Boolean
values), and the type of the message.

My position [true, true, f alse, . . . , true] MSG_TYPE

Three types of messages are considered:

• JOIN: when a drone wants to join the group, it broadcasts a JOIN-type message with
its position (0 by default) and an array of only one cell containing true.

• LEAVE: when a drone leaves the group, it broadcasts a LEAVE-type message with its
current position and the corresponding array with false at its own position.

• UPDATE: several situations may lead to the emitting of an UPDATE-type message:

1. When a drone changes its position (caused by a conflict), it broadcasts a new
UPDATE-type message with its newly chosen position and the new array with
the Boolean false in the cell of its former position.



Sensors 2023, 23, 9553 9 of 29

2. When a drone receives a JOIN-type or LEAVE-type message, it modifies its array
of positions according to the situation and broadcasts an UPDATE-type message.

3. For newly arriving drones, a drone updates the size of its array after receiving
an UPDATE-type message.

As an example, consider a drone D that has chosen a position j. Its array of positions
contains true at index i ( 6=j) if and only if it receives a message from another drone claiming
i as its own position. If D receives a message with false at index j in the array, it broadcasts
a new UPDATE message claiming j as its position with true at index j in the array.

After a first consensus has been found (i.e., the drones have all chosen their respective
positions), the decentralized method positions any newly arriving drone at the last position.
When a drone leaves the group, only those drones with a larger position value change it,
decreasing its value by 1. This ensures minimal distance changes for all drones in both
cases and reduces the likelihood of collisions.

The algorithm is composed of two processes: a reception process that gathers received
messages into a FIFO structure (mailbox in the Algorithms) and the main process described
by Algorithms A2 and A3 (provided in Appendix A).

In Figure 5, it can be observed that the number of broadcast messages increases linearly
with the number of changes occurring within the group. However, this increase is mainly
due to drones joining the group, as illustrated by Figure 6.

Figure 5. Average number of broadcast messages when drones join or drones leave the group; the
considered numbers of changes are 0, 5, and 10.



Sensors 2023, 23, 9553 10 of 29

Figure 6. Increase in the number of broadcast messages with respect to the number of drones joining
the group. The considered number of changes is always 10; thus, three joins means that three drones
joined the group and seven left it.

4. Control Framework

The formation of UAVs (marked with an index i) must surround a predefined shape
computed using Fourier descriptors. The UAVs orient themselves towards the desired
direction βi (Figure 1), defined as the angle between the X axis and the direction of the UAV
in the North/East/Down (NED) reference. The UAVs must reach their target position Mi
while avoiding each other to prevent collisions. The GPS coordinates of the reference point
(C) are known. The Fourier descriptor returns the distance dβi and altitude angle γi from
point C for a given angle βi and a rotational quaternion (see Section 2, Figure 7). Each UAV
has to regulate their distance errors with respect to the point to be reached (Mi) toward
zero while pointing towards it according to the desired direction βi (Figure 1). Double
exponential smoothing [23–25] is performed in real time to compute a filtered estimation
and predict the distance d̂i and bearing angle ψ̂i.

4.1. Control Law

The main goal of the proposed cascade controller is to regulate the position of the
UAV compared to the fixed target point while maintaining good safety conditions. For
this, two different controllers have been designed and implemented. The speed controller
(inner loop) takes into account the speed errors according to the x, y, and z axes and their
respective variations as functions of time. To ensure safe behavior, a first saturation function
(f) is implemented to limit the pitch/yaw angles and the vertical acceleration when the
sum of the speed errors (weighted by three parameters that have to be tuned) exceeds a
given speed. Below this limit, the UAV starts to regulate its speed; otherwise, it moves
at constant pitch/yaw angles and vertical acceleration. The speed controller outputs are
the reference inputs (attitude and vertical acceleration) of the flight controller of the UAV.
The three parameters of the speed controller have to be set first in order to obtain a closed
loop behavior for the the speed control (inner loop) that is significantly faster than the
position control (outer loop). The position controller (outer loop) takes into account the
position errors according to the x, y, and z axes and their variations as functions of time.
To ensure safe behavior, a second saturation function (f) is implemented to limit the speed
according to x, y, and z when the sum of the position errors (weighted by three coefficients



Sensors 2023, 23, 9553 11 of 29

that have to be tuned) exceeds a given distance. Below this limit, the UAV starts to regulate
its position compared to the target point; otherwise, it moves at a maximum constant speed.
The outputs of the position controller are the reference inputs of the speed controller.

The attitude control was designed by Squadrone Systems [26]; the control inputs of the
UAVs, namely, the roll (Φ), pitch (Θ), yaw (Ψ), and vertical acceleration (AZ), are available
in the C++ API. Below, we describe the control law for UAV1.

Figure 7. Definition of the position errors for UAV 1.

4.1.1. Velocity Regulation

The filtered velocity errors ε̂v1 of UAV1 are as follows (Figure 7):

ε̇v1 :


˙evx1 = Vx1 − V̂x1
˙evy1 = Vy1 − V̂y1
˙evz1 = Vz1 − V̂z1

(7)

For UAV1, the velocity control objective is as follows (8):

lim
t→∞

ε̇v1(t) = 0 :


lim
t→∞

˙evx1(t) = 0

lim
t→∞

˙evy1(t) = 0

lim
t→∞

˙evz1(t) = 0
(8)

To ensure the control objective (8), the following velocity control law (9) has been
implemented:  ˙̂evx1

˙̂evy1
˙̂evz1

 = −

 f (∑3
j=1 kvxj.εvxj, Θ̄1, V̄x1, 0)

f (∑3
j=1 kvyj.εvyj, Φ̄1, V̄y1, 0)

f (∑3
j=1 kvzj.εvzj, Āz1, V̄z1, g)

 = −~VCMD1 (9)

~VCMD1 =

 f (∑3
j=1 kvxj.εvxj, Θ̄1, V̄x1, 0)

f (∑3
j=1 kvyj.εvyj, Φ̄1, V̄y1, 0)

f (∑3
j=1 kvzj.εvzj, ¯Az1, V̄z1, g)

 (10)



Sensors 2023, 23, 9553 12 of 29

εvx1 = êvx1 , εvx2 = ˙̂evx1 , ε̇vx3 = êvx1 ;
εvy1 = êvy1 , εvy2 = ˙̂evy1 , ε̇vy3 = êvy1 ;
εvz1 = êvz1 , εvz2 = ˙̂evz1 , ε̇vz3 = êvz1 ;

kvxj, kvyj, kvzj: the coefficients to be customized,
~VCMD1 = (Θ1, Φ1, Az1)T : the command vector of UAV1,
Θ̄1, Φ̄1, Āz1: the maximal angular positions and vertical acceleration, respectively, reached
when the velocity errors are higher or equal to the velocities V̄x1, V̄y1, V̄z1,
g is the gravity acceleration in m/s2.

Note that the full command vector of UAV1 is ~VCMD1 = (Θ1, Φ1, Ψ1, Az1)T

4.1.2. Position Regulation

To reach the desired orientation β1 provided by the Fourier descriptors, we only have
to obtain β1 as the reference value Ψ1 of the yaw control:

Ψ1 = β1.

The filtered position errors ε̂p1 of UAV1 are as follows (Figure 7):

ε̂p1 :


êpx1 = d̂1 cos (β1 − ψ̂1) cos(γ1)− dβ1

êpy1 = d̂1 sin (β1 − ψ̂1) sin(γ1)

êpz1 = (Zc − dβ1 sin (γ1))− Z1

(11)

β1 : the bearing angle of UAV1 computed by the Fourier descriptors (Figure 2),
dβ1 : the desired distance of UAV1 computed by the Fourier descriptors (Figure 2),
γ1 : the altitude angle between the target point M1 and reference point C computed by the
Fourier descriptors and the quaternion (Figure 2),
d̂1 : the filtered distance between UAV1 and the reference point C,
ψ̂1 : the filtered bearing angle (yaw) of UAV1,
ZC, Z1 : the respective altitudes of the reference point C and UAV1.

For UAV1, the position control objective is as follows (12):

lim
t→∞

ε̂p1(t) = 0 :


lim
t→∞

êpx1(t) = 0

lim
t→∞

êpy1(t) = 0

lim
t→∞

êpz1(t) = 0
(12)

To ensure the control objective (12), the following position control law (13) has been im-
plemented:  ˙̂epx1

˙̂epy1
˙̂epz1

 = −

 f (∑3
j=1 kpxj.εpxj, V̄x1, D̄x1, 0)

f (∑3
j=1 kpyj.εpyj, V̄y1, D̄y1, 0)

f (∑3
j=1 kpzj.εpzj, V̄z1, D̄z1, 0)

 = −~V1 (13)

We obtain

=⇒ ~V1 =

 f (∑3
j=1 kpxj.εpxj, V̄x1, D̄x1, 0)

f (∑3
j=1 kpyj.εpyj, V̄y1, D̄y1, 0)

f (∑3
j=1 kpzj.εpzj, V̄z1, D̄z1, 0)

 (14)

εpx1 = êpx1 , εpx2 = ˙̂epx1 , ˙εpx3 = ˆepx1 ;
εpy1 = êpy1 , εpy2 = ˙̂epy1 , ˙εpy3 = êpy1 ;
εpz1 = êpz1 , εpz2 = ˙̂epz1 , ˙εpz3 = êpz1 ;

kpxj, kpyj, kpzj: the coefficients to be customized,
~V1 = [Vx1 , Vy1, Vz1]

T : the linear velocity vector of UAV1,
V̄x1, V̄y1, V̄z1: the maximal linear velocities reached when the position errors are respec-
tively higher or equal to the distance D̄x1, D̄y1, D̄z1.

The saturation function f is defined as follows:



Sensors 2023, 23, 9553 13 of 29

f (ε, max , lim , offset) =
−max+ offset if ε < − lim
max
lim ε + offset if − lim ≤ ε ≤ lim
max+ offset if ε > lim

(15)

Note that the manufacturer [26] provided us with the dynamic closed loop model
of the UAV, which corresponds to the attitude and vertical acceleration control. We used
this dynamic model in Matlab/Simulink to first tune the three parameters of the speed
controller and then the three parameters of the position controller in order to obtain the
shortest response time for each loop (pole placement) without static errors, damping, or
oscillations.

4.1.3. Stability Analysis

For the speed controller (inner loop), we defined three positive gains correspond-
ing to the slopes (max/lim) of the saturation function in the intervals [− ¯Vx1. . . + ¯Vx1],
[− ¯Vy1. . . + ¯Vy1], and [− ¯Vz1. . . + ¯Vz1]:

λx1=Θ̄1/ ¯Vx1, λy1=Φ̄1/ ¯Vy1, λz1= ¯Az1 / ¯Vz1

Consider the following (positive) candidate Lyapunov function:

Vs1 = ( ˆεvx1
2 + ˆεvy1

2 + ˆεvz1
2)/2.

Its time derivative can be written as

˙Vs1 = ( ˆεvx1. ˙̂εvx1 + ˆεvy1. ˙̂εvy1 + ˆεvz1. ˙̂εvz1),

˙Vs1 = ˆεvx1.(−λx1. ˆεvx1) + ˆεvy1.(−λy1. ˆεvy1) + ˆεvz1.(−λz1. ˆεvz1).

In conclusion, it is apparent that ˙Vs1 < 0, as λx1, λy1, and λz1 are all positive gains.
For the position controller (outer loop), we define three positive gains corresponding to

the slopes (max/lim) of the saturation function in the intervals [−D̄x. . . +D̄x], [−D̄y. . . +D̄y],
and [−D̄z. . . +D̄z]:

γx1= ¯Vx1/ ¯Dx1, γy1= ¯Vy1/ ¯Dy1, γz1= ¯Vz1 / ¯Dz1

Let us consider the following (positive) candidate Lyapunov function:

Vp1 = ( ˆεpx1
2 + ˆεpy1

2 + ˆεpz1
2)/2.

Its time derivative can be written as

˙Vp1 = ( ˆεpx1. ˙̂εpx1 + ˆεpy1. ˙̂εpy1 + ˆεpz1. ˙̂εpz1),

˙Vp1 = ˆεpx1.(−γx1. ˆεpx1) + ˆεpy1.(−γy1. ˆεpy1) + ˆεpz1.(−γz1. ˆεpz1).

In conclusion, it is apparent that ˙Vp1 < 0, as γx1, γy1, and γz1 are all positive gains.

4.1.4. Collision Avoidance

The proposed collision avoidance method can be used with either static obstacles
(poles, etc.,) or dynamic obstacles (other UAVs) if their GPS coordinates are known or
sent in real time. Let Vi, the velocity of UAVi, be the subtraction of a repulsive speed
Vr

i from an attractive one Va
i (10); Vr

i is the repulsive effect applied by the neighboring
UAVj on UAVi. When UAVi crosses the defined protected circular area of UAVj (i.e., Dij
is below a threshold D̄j), UAVi is subject to a repulsive effect homogeneous to a velocity
with an intensity |~Vij| that changes according to the inter-UAV distance dij (Figure 8). Each
UAV computes its distance Dij, altitude angle γij, and bearing angle βij with respect to
its neighbor j using the Haversine function based on its GPS coordinates emitted in real
time over the communications network. When including the collision avoidance method,
Equation (14) becomes



Sensors 2023, 23, 9553 14 of 29

~Vi =

 f (∑3
j=1 kpxj.εpxj, V̄x1, D̄x1, 0)−∑n

j=1,j 6=i ‖ ~Vij‖ cos (βij − ψi) cos γij

f (∑3
j=1 kpyj.εpyj, V̄y1, D̄y1, 0)−∑n

j=1,j 6=i ‖ ~Vij‖ sin (βij − ψi) cos γij

f (∑3
j=1 kpzj.εpzj, V̄z1, D̄z1, 0)−∑n

j=1,j 6=i ‖ ~Vij‖ sin γij

 (16)

with
γij = arctan (Zj − Zi, dij)

Dij =
√

d2
ij + (Zj − Zi)2

(17)

The intensity of the repulsive effect (Figure 8) applies when

‖~Vij‖ =

 V̄j cos
(

πDij
2D̄j

)
if Dij < D̄j

0 else
(18)

Figure 8. Collision avoidance scheme based on attractive and repulsive speeds, as described by
Formulas (16) and (18).

5. Simulations and Experiments

To demonstrate the decentralized coordination efficiency using FD and FT, several
simulations were conducted on different shapes.

5.1. Simulations Description

In keeping with the previous explanations, the shapes were restricted to be polar,
continuous, and 2π periodical. This allows drones to compute their desired position from
only the reference point and each drone’s desired bearing angle. Thus, we selected astroidal
(star), peanut, pear, shell, and square signal shapes (see Equation (19) and Figure 9). This
set was used to test the method’s robustness on asymmetrical, discontinuous, convex, and
concave shapes.

astroidal: f (x) = (|cos(x)|n + |sin(x)|n)− 1
n ; ∀x ∈

]
−π

2 ; π
2
[

with n = 2
3

peanut: f (x) = n + |cos(x)| ; ∀x ∈ [0; 2π[ with n = 1
2

shell: f (x) = x + 2 ; ∀x ∈ [0; 2π[

geoidal/pear: f (x) = 5 + cos (3x)
6 ; ∀x ∈ [0; 2π[

square signal:

{
f (x) = 1 ; ∀x ∈

{[
0; π

4
[
,
[

π
2 ; 3π

4
[
,
[
π; 5π

4
[
,
[ 3π

2 ; 7π
4
[}

f (x) = 2 ; ∀x ∈
{[

π
4 ; π

2
[
,
[ 3π

4 ; π
[
,
[ 5π

4 ; 3π
2
[
,
[ 7π

4 ; 2π
[}

(19)

Figure 9. From left to right: the astroidal, peanut, pear, shell, and square signal shapes.



Sensors 2023, 23, 9553 15 of 29

Each signature shape was sampled from 0 to 2π by 1000 points, allowing up to 500 har-
monics without folding effects (i.e., the Nyquist–Shannon criteria). For all simulations, we
used 250 harmonics to retrieve the described shape. For each simulation, the parameters
were set to a scale factor of 20, no rotation, and (0, 0) as the reference point. This was the
setup used by default unless otherwise specified.

First, we evaluated our method for retrieving shapes to demonstrate its accuracy on
the set of shapes. On the astroidal and the peanut formations, the n function parameter
was varied to make the initial description more or less concave and convex, respectively.

In addition, these simulations were used to illustrate the impact of the number of
harmonics used during the shape retrieval.

Transformations were applied to validate the non-variation of shape design in 3D
space through modifications.

In the simulations, starting from their origin, the UAVs were required to equally
distribute themselves angularly along the shape’s border while facing the reference point.
Then, to depict the total shape and ensure shape continuity, we carried out runs in which
one drone needed to follow the shape border by continuously incrementing its desired
bearing angle (+0.5◦ per second).

Finally, a drone was deployed to reproduce the pear shape. A second drone was used
to validate collision avoidance with both virtual and real obstacles.

5.2. Flight Simulations

The first flight simulations were conducted on Processing [27] to simulate any number
of drones. The second set of runs were conducted on a system composed of the following:

1. Four “MiniSim” simulators (designed by Squadrone Systems [26]) of the “hardware
in the loop” (HITL) type, reproducing the dynamic behaviour of the UAVs (Figure 10);

2. Four embedded RaspBerry PI 3B+ companion computers, on which our algorithms
were implemented in C++. These were the same embedded computers installed on
the real UAVs.

3. An operator computer to connect the four embedded computers together for program-
ming and executing the algorithms.

4. A flight simulator on a separate computer on the “MiniSim” simulators linked via
rooter. Open-source FlightGear (v. 2020.3) [28] software was used to visualize the
flight of the drones. This setup allowed several sessions to be run simultaneously
in order to observe the flight of the group (one UAV per window, as illustrated on
Figure 11).

Figure 10. Squadrone Systems “MiniSim” simulators and their Raspberry PI 3B+ companion computers.



Sensors 2023, 23, 9553 16 of 29

Figure 11. Flight visualisation on FlightGear during the emulation phase [28].

This whole system emulates the workings and behavior of real drones in a field test
without being subject to communication hazards.

5.3. Simulations Results

We used Matlab 2015B [29] to evaluate our shape retrieval method on the set of
formations presented in Figure 9. On the concave (peanut) and convex (star) shapes, we
modified the curve factor n in Equation (19) to increase the given shape test panel. As a
result, the more curvy the shape in Figure 12, the more the retrieval accuracy decreases.
When the star shape is almost a straight line in each direction, the method transcription
falls drastically to an error of almost 50%.

Figure 12. Evolution of the retrieval error according to the curve factor of the peanut and star shapes
based on Tables A1 and A2 in Appendix A.



Sensors 2023, 23, 9553 17 of 29

It seems that the method using a polar FD lacks efficiency and robustness on shapes
with high variations. We noticed the same phenomenon on the square signal and shell
shapes even with large number of harmonics (see Figure A3 in Appendix A). Nonetheless,
the non-continuity of the derivative seems to be handled flawlessly.

When varying the number of harmonics, the shape retrieval method does not behave
the same on the whole set of shapes. In Figure 13, the only shape for which the error
continuously increases with the reduction of harmonics is the shell. For the other shapes,
an increase or decrease in the number of steps reduces the retrieval accuracy.

Figure 13. Evolution of the retrieval error according to the number of harmonics (based on Table A3
in Appendix A).

The increase in the error at certain specific steps provides clear evidence of the presence
of null harmonics for certain shapes. Depending on the ease with which the shape can be
interpreted with fewer harmonics, it is possible to reduce the number of harmonics in order
to limit the amount of information required by the drones.

As an example, we deleted all harmonics with a radius lower than 1× 10−3 prior to
depiction by the FD. The resulting retrieval error is illustrated in Table 1.

Table 1. Retrieval distance relative error with reduced harmonics.

Shape nb.har. Moy. Max. Var. %

Sqr.Signal 63 0.068459 1.4309 0.025236 6.85
Peanut 18 0.045551 0.10431 0.0032394 4.56
Star 32 0.016736 0.042251 0.00040562 1.67
Shell 250 0.10098 5.2529 0.13764 10.1
Pear 2 0.010257 0.024512 0.00016158 1.03

Even when reducing the number of harmonics, the proposed method performs as
if there were all 250 harmonics. Interestingly, the pear shape had only 2 harmonics after
reduction. This means that only six values (2× (frequency, amplitude, phase)) need to be



Sensors 2023, 23, 9553 18 of 29

sent to the drones in order for them to have the full shape depiction. Instead of sending
a precomputed (x, y, z) coordinate each time the drone needs to move along the shape, it
now requires only a bearing angle (β) after having sent the harmonics. Thus, for the pear
shape, if a drone needs to move around it more than twice, the amount of data that needs
to be exchanged is lower with our method.

Next, we visualized the shape retrieval process with different transformations applied
(translation, rotation, and resizing). As a result, we were able to dynamically change the
shapes without deformation or loss of continuity (Figure 14).

Figure 14. Astroidal shape transformation from previous parameters to new ones: scale = 100,
rotation = π/3, reference point = (15, 5).

In this way, dynamic formation control can be performed without recomputing the
harmonics or resampling the initial set of points fed to the DFT. The results prove that
our method saves computation time when applying transformations on the same shape
compared to standard method of point control of each drone, which needs to compute new
coordinate for the drones each time.

Using the proposed method, light shows using drones to depict moving objects no
longer require multiple computations to animate the represented shape.

We used Processing [27] to simulate the formation control of twenty drones on the
astroidal, pear, and shell shapes (Figure 15). UAVs were able to navigate to their self-
computed positions without collision. They were able to form an angular distribution
around the shape with only the shape’s harmonics. The angular distribution seems less
relevant in case of asymmetrical and non-centered formations, for which a notion of
curvilinear distance should be used instead.



Sensors 2023, 23, 9553 19 of 29

Figure 15. Simulation of astroidal, pear, and shell shape with twenty drones.

When we removed eight drones from the simulation, the drones were able to au-
tonomously manage the resulting rearrangement (Figure 16).

Figure 16. Simulation of astroidal, pear, and shell shapes with twelve drones after removing eight
drones from the initial formation of twenty drones.

Using the presented flight simulation setup, we made one drone navigate around
the astroidal and pear shape. Examination of the data collected during the simulation
(Figures 17 and 18) validates the method.

Figure 17. Pear shape simulation results, showing the signature shape (blue), approximated shape
(red), and drone’s path during the simulation (black).



Sensors 2023, 23, 9553 20 of 29

The drone maintained satisfying placements even with spatial rotations (Figure 19),
with positional deviations from the approximated shape of less than 10%. The deviations
were caused by the control law used by the drone and inaccuracy of the simulated GPS. For
the star shape (Figure 18), the drone showed signs of delay in following the bearing angle
instructions in the cardinal directions, which entailed an increase in the positioning error.
The retrieval method returned an approximated shape with a deviation lower than 2% in
each run. These results validate the shape interpretation by the simulated drone even in
with spatial rotations.

Figure 18. Astroidal shape simulation, showing the signature shape (blue), approximated shape (red),
and drone’s path during the simulation (black).

Figure 19. Pear shape simulation, showing the signature shape (blue), rotated approximated shape
(pink), and drone’s path during the simulation (black).



Sensors 2023, 23, 9553 21 of 29

In addition, the drones were able to avoid collisions during the simulations. Figure 20
shows the inter-drone distances during a run with five drones. With the distance threshold
for avoidance activation (D̄j) set to 6 m, the drones maintained a distance of 4.22 m even in
the worst case.

Figure 20. Minimum distance between drones during flight in the simulation. After take off, the
drones move to their final positions. During the first two seconds, while the drones remain close
to each other (the distance between them is less than 6 m), they never collide. Afterwards, they
move further from one another. During the interval from 4 s to 6 s, drones 0 and 2 are moving closer,
allowing the effect of the collision avoidance mechanism described in Section 4.1.4 to be observed.
The same phenomenon can be observed for the period from 7 s to 9 s, during which drones 0 and 1
are moving closer to each other without colliding.

5.4. Experiments

Experiments were been carried out using our home made drones (Figure 21), based
on the frame kit F450 proposed by DJI (the well-known drone manufacturer) and equipped
with a flight controller and an API designed by Squadrone Systems [26].

The flight controller and API were identical to those used in the Minisim Hardware-
in-the-Loop simulators (Figure 10). The Fourier descriptors and control laws were imple-
mented in C++ language on the Raspberry PI 3B+ embedded computers. Following our
successful simulations, it was possible to download the same C++ code into the UAVs. The
UAVs communicated with the ground station via MicroHard 2.4 GHz radio modules.

The goal of the experiments was to check whether one UAV was able to follow the
contours of a particular shape described by means of Fourier descriptors. The experimental
procedure consisted of choosing a shape and its characteristics (dimensions, inclination,
etc.) and programming the increase of β1 between 0 and 360◦ in small steps of about
2◦/s. Calculation of the values of dβ1 and γ1 was carried out using the Fourier descriptors
method. An inclined pear shape (10◦, 50 m) was chosen for the experiments. We registered
the GPS coordinates during the flight in order to represent the trajectory followed by the
UAV (Figure 22).



Sensors 2023, 23, 9553 22 of 29

Figure 21. Our experimental plaform consisting of DJI F450 drones. The upper left-hand picture
shows the computing devices (MiniSim and Raspberry PI), which were the same those used for the
simulation (Figure 10). The images at the bottom were taken during the experiments. The red circles
in the bottom left-hand image indicate the drones’ positions.

Figure 22. Pear shape followed by the UAV during the real experiment. The reference point and
shape description were provided as the parameters of the method before the experiment. After take
off, the drone successfully followed the shape while pointing in the direction of the reference point at
each moment.

To validate the collision avoidance method, we carried out an experiment in which
two UAVs flew to two opposite points (A and B) while avoiding a central point (C). In this
experiment, the first UAV is initially at point A and the second is at point B. The two UAVs
repeat this operation in a loop until the operator sends them the order to land. Taking
disturbances (wind, etc.) into account, the UAVs can avoid each other by moving right, left,
up, or down. Both UAVs are able to send their information (GPS coordinates, velocities,
etc.) through the communication network via UDP multicast protocol and threads. We



Sensors 2023, 23, 9553 23 of 29

registered the GPS coordinates during the flight in order to represent the trajectory followed
by the UAVs (Figure 23 (left image)).

In the right-hand image, the red and yellow dots illustrate the way in which the drones
were able to avoid collisions with static obstacles and with other drones, respectively. At
time stamp 1, the drones avoid collision with the obstacle and with each other. The first
drone (the red dot) randomly changes its position while moving toward its destination
(time 2). Its movement opsens up the space and allows the other drone (the yellow dot) to
move towards its own destination (time 3).

Figure 23. Collision avoidance of drones with obstacles and with each other. Two drones were
programmed to move from point A to point B, with the first drone, represented by a yellow dot)
starting at point A and the second (red dot) starting at point B. In the middle of the path between A
and B is a static obstacle, C. The black dots correspond to the coordinates of each drone during their
back and forth movement, positions that were logged during our real flight experiments. During the
flight we can distinguish three periods. During the first period, node are moving toward their target.
At time 1 they get close to the obstacle. Then, at time 2, due to the collision avoidance process, only
one drone (the yellow one) is advancing toward its target, preventing the second one (red dot) to do
the same and forcing it to remain at the same position. Finally during the last period (time 3), red
drone has enough room to advance toward its target.

6. Conclusions and Perspectives

In the aftermath of the industrial accident at Lubrizol in Normandy, France, which
occurred in 2019, numerous questions were raised regarding the potential assistance drones
could have provided in supporting the efforts of the firefighting teams. It became evident
that a multi-UAV system could potentially provide a comprehensive 360 degree view of
the operational theater, provided that a way could be found to offer such coverage. To
achieve this objective, considering the source of the fire’s origin, several challenges must
be overcome: (i) precisely describing the area to of interest; (ii) allowing changes in the
scale and orientation of the shape surrounding this area; and (iii) ensuring continuous 360
degree vision by allowing the group’s composition to be modified as drones depart from
the formation and new drones arrive.

In this context, we have proposed a method for multi-UAV formation control. This
method relies on Fourier descriptors and transform along with decentralized algorithms
for allocating the positions of drones within the group. The decentralized algorithms for
allocating bearing angles have only been tested through simulation. However, the restricted
number of exchanged messages (with respect to the number of drones) required to reach a
consensus provides optimism for their performance in real-world settings. For the descrip-
tion of the surrounding shape, polar signature functions were tested as formations and
several transformations have been applied for the astroidal shape. In addition, continuous
rotation around the shape border was tested for a UAV. The proposed method demonstrates
great accuracy in terms of shape reproduction even with transformations. The simulated



Sensors 2023, 23, 9553 24 of 29

multi-UAV system further validates the method, showing satisfying placements. Further
experiments and developments could be achieved by using virtual actions to smooth the
UAVs’ movements and prevent deadlock situations. An improvement in the robustness of
shape retrieval should be made to prevent border effects caused by discontinuous signature
functions. Finally, this system could be used to approximately model objects by referencing
points one-by-one at its border.

Supplementary Materials: A video of the simulation of five drones describing the pear shape can be
downloaded at https://www.mdpi.com/article/10.3390/s23239553/s1.

Author Contributions: Conceptualization, F.G. (François Guérin) and F.G. (Frédéric Guinand);
Methodology, E.P., F.G. (François Guérin) and F.G. (Frédéric Guinand); Software, E.P., F.G. (François
Guérin), F.G. (Frédéric Guinand), F.G. (Florian Germain) and N.K.; Validation, E.P., F.G. (François
Guérin), F.G. (Frédéric Guinand), F.G. (Florian Germain) and N.K.; Formal analysis, F.G. (François
Guérin) and F.G. (Frédéric Guinand); Resources, F.G. (Florian Germain) and N.K.; Data curation,
F.G. (Florian Germain) and N.K.; Writing—original draft, E.P., F.G. (François Guérin) and F.G.
(Frédéric Guinand); Visualization, E.P., F.G. (Florian Germain) and N.K.; Supervision, F.G. (François
Guérin) and F.G. (Frédéric Guinand). All authors have read and agreed to the published version of
the manuscript.

Funding: This research was conducted with the support of the Association National Recherche
Technologie of France (E.P. cifre grant) and from Agence Nationale de la Recherche (ANR) France for
the DESIHR Project (ANR-21-SIOM-0008).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Material.

Conflicts of Interest: Author Etienne Petitprez was employed by the company Squadrone System.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Appendix A

Appendix A.1. Data Tables Resulting from Shape Retrieval Characterization

Table A1. Retrieved distance error for the peanut shape (concave shape) from Figure A1.

Absolute Error Relative Error

Coeff. Moy. Max. Var. Moy. Max. Var. %

0.1 0.72722 1.448 0.77411 0.15035 0.43336 0.041047 15.04
0.2 0.62662 1.2525 0.57414 0.10041 0.25381 0.016967 10.04
0.3 0.5518 1.1058 0.4445 0.073662 0.17531 0.0087876 7.37
0.4 0.49356 0.99175 0.35506 0.056942 0.13086 0.0051283 5.69
0.5 0.44679 0.89969 0.29053 0.045586 0.10247 0.003234 4.56
0.6 0.40834 0.82449 0.24235 0.037443 0.08294 0.002156 3.74
0.7 0.37613 0.7612 0.20539 0.031369 0.068797 0.0014996 3.14
0.8 0.34874 0.70763 0.17638 0.026701 0.058123 0.0010788 2.67

Figure A1. Peanut shape concave factor (n) variation. From left to right, the figures were obtained
using values of n equal to 0.1, 0.2, 0.5 and 0.8.

https://www.mdpi.com/article/10.3390/s23239553/s1


Sensors 2023, 23, 9553 25 of 29

Table A2. Retrieved distance error for the star shape (convex shape) from Figure A2.

Absolute Error Relative Error

Coeff. Moy. Max. Var. Moy. Max. Var. %

0.15 0.16281 4.7764 0.3243 0.4389 6.8007 0.70728 43.89
0.2 0.15252 4.2607 0.22692 0.15079 2.0895 0.066893 15.08
0.3 0.15976 2.7085 0.10127 0.06572 0.54591 0.0077634 6.57
0.4 0.1581 1.5494 0.05486 0.042037 0.2312 0.0027172 4.20
0.5 0.14267 0.94335 0.034822 0.029123 0.11666 0.0012425 2.91
0.6 0.12093 0.56702 0.022815 0.020734 0.0637 0.00062064 2.07
0.7 0.098478 0.33963 0.014614 0.014942 0.036249 0.00032156 1.49
0.8 0.077903 0.20364 0.009047 0.010811 0.024793 0.00016909 1.08

Table A3. Evolution of the retrieved distance relative error (in percentage) according to the number
of harmonics. These results are illustrated by Figure A3 for a subset of these numbers of harmonics.
An improvement in the description of the pattern can be observed when the number of harmonics
increases.

nb.har. Sqr.Signal Peanut Star Shell Pear

3 37.50 4.88 14.38 18.37 13.08
5 14.88 4.91 7.39 14.33 10.3
7 14.88 4.56 7.39 12.5 1.03
10 15.03 4.62 4.36 11.39 1.03
15 10.47 4.56 3.11 10.79 1.03
25 8.79 4.56 2.1 10.4 1.03
50 7.37 4.56 1.78 10.19 1.03

100 6.98 4.56 1.68 10.12 1.03
250 6.85 4.56 1.67 10.1 1.03

Figure A2. Star shape concave factor (n) variation. From left to right, the figures were obtained using
values of n equal to 0.15, 0.3, 0.5 and 0.8.

Figure A3. Cont.



Sensors 2023, 23, 9553 26 of 29

Figure A3. Shapes retrieved for various number of harmonics. From top to bottom, the number of
harmonics equals 3, 5, 10, 50, and 250.

Appendix A.2. Algorithms for Known Number of UAVs

Algorithm A1 Algorithm executed by each drone for known number of drones (N).

1: create and initialize Positions[N]
2: myPosition← random(N)
3: change← true
4: while ∃i, Positions[i] = f alse do
5: if change then
6: Positions[myPosition]← true
7: broadcast Positions[] and myPosition
8: change← f alse
9: else

10: if receivedPositions[] and peerPosition have been received then
11: if Positions[] 6= receivedPositions[] then
12: merge Positions[] and receivedPositions[]
13: /* if receivedPosition[j] is true then Positions[j] becomes true */
14: change← true
15: end if
16: if myPosition = peerPosition then /* conflict */
17: myPosition← random(N) such that Positions[myPosition] = f alse
18: Positions[myPosition]← true
19: change← true
20: end if
21: end if
22: end if
23: end while
24: broadcast Positions[] and myPosition
25: compute the angle then the destination point
26: move to the destination point



Sensors 2023, 23, 9553 27 of 29

Appendix A.3. Algorithms for Dynamic Number of UAVs

Algorithm A2 Algorithm executed by each drone for changing number of drones.

1: mailbox← ∅
2: N ← 1
3: create and initialize Positions[1]
4: myPosition← 1
5: change← true
6: broadcast (1, Positions, JOIN)
7: newToTheGroup← true
8: while mission is not finished do
9: if mailbox has some messages then

10: /* messages are received into the mailbox by another process asynchronously */
11: change← f alse
12: while mailbox has some messages do
13: change← Process Messages (Algorithm A3)
14: end while
15: else
16: if all cells of Positions[] are true then
17: compute bearing angle
18: else
19: change← true
20: end if
21: end if
22: if change then
23: broadcast (myPosition, Positions[], UPDATE)
24: change← f alse
25: end if
26: end while
27: Positions[myPosition]← f alse
28: broadcast (myPosition, Positions[], LEAVE)

Algorithm A3 Process messages.

1: read next message: uavPosition, receivedPositions, msgType
2: if msgType is JOIN then
3: N ← N + 1
4: Positions[N]← f alse
5: change← true
6: end if
7: if msgType is LEAVE then
8: N ← N − 1
9: if uavPosition < myPosition then

10: myPosition← myPosition−−
11: update Positions[]
12: end if
13: change← true
14: end if
15: if msgType is UPDATE then
16: if newToTheGroup AND size of receivedPositions[] > 1 then
17: update N
18: update Positions[]
19: change← true
20: else



Sensors 2023, 23, 9553 28 of 29

Algorithm A3 Cont.

21: if myPosition = uavPosition then
22: myPosition← find a random free position
23: update Positions[]
24: change← true
25: else
26: update Positions[]
27: if receivedPositions[myPosition] = f alse then
28: change← true
29: end if
30: end if
31: end if
32: end if
33: newToTheGroup← f alse
34: return change

References
1. Dorigo, M.; Theraulaz, G.; Trianni, V. Swarm Robotics: Past, Present, and Future [Point of View]. Proc. IEEE 2021, 109, 1152–1165.

[CrossRef]
2. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering perspective. Swarm

Intell. 2013, 7, 1–41. [CrossRef]
3. Oh, H.; Shirazi, A.R.; Sun, C.; Jin, Y. Bio-inspired self-organising multi-robot pattern formation: A review. Robot. Auton. Syst.

2017, 91, 83–100. [CrossRef]
4. Debie, E.; Kasmarik, K.; Garratt, M. Swarm robotics: A Survey from a Multi-tasking Perspective. ACM Comput. Surv. 2023, 56,

1–38. [CrossRef]
5. Senanayake, M.; Senthooran, I.; Barca, J.C.; Chung, H.; Kamruzzaman, J.; Murshed, M. Search and tracking algorithms for

swarms of robots: A survey. Robot. Auton. Syst. 2016, 75, 422–434. [CrossRef]
6. Guinand, F.; Guérin, F.; Łubniewski, P. Allowing people to communicate after a disaster using FANETs. In Proceedings of

the International Workshop on Communication Technologies for Vehicles, Bordeaux, France, 16–17 November 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 181–193.

7. Trojanowski, K.; Mikitiuk, A.; Grzeszczak, J.; Guinand, F. Complete Coverage and Path Planning for Emergency Response by
UAVs in Disaster Areas. In Proceedings of the International Conference on Computational Collective Intelligence, Budapest,
Hungary, 27–29 September 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 647–659.

8. Yasin, J.N.; Mohamed, S.A.S.; Haghbayan, M.H.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Unmanned Aerial Vehicles (UAVs):
Collision Avoidance Systems and Approaches. IEEE Access 2020, 8, 105139–105155. [CrossRef]

9. Bjerknes, J.D.; Winfield, A.F. On fault tolerance and scalability of swarm robotic systems. In Proceedings of the Distributed
Autonomous Robotic Systems: The 10th International Symposium, Lausanne, Switzerland, 1–3 November 2010; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 431–444.

10. Ouyang, Q.; Wu, Z.; Cong, Y.; Wang, Z. Formation control of unmanned aerial vehicle swarms: A comprehensive review. Asian J.
Control 2023, 25, 570–593. [CrossRef]

11. Abdelkader, M.; Güler, S.; Jaleel, H.; Shamma, J.S. Aerial Swarms: Recent Applications and Challenges. Curr. Robot. Rep. 2021,
2, 309–320. [CrossRef] [PubMed]

12. Chung, S.; Paranjape, A.A.; Dames, P.; Shen, S.; Kumar, V. A Survey on Aerial Swarm Robotics. IEEE Trans. Robot. 2018,
34, 837–855. [CrossRef]

13. Berthelot, B.; Germain, F.; Kerthe, N.; Guérin, F.; Guinand, F.; Petitprez, E.; Level, A.; Ali, S.A.; Le Meur, S.; Queron, J.; et al.
Autonomous aerial swarm robotics for the management of the environmental and health impact in a post-accident situation. In
Proceedings of the 21th International Metrology Congress (CIM 2023), Lyon, France, 7–10 March 2023.

14. Raja, G.; Kottursamy, K.; Theetharappan, A.; Cengiz, K.; Ganapathisubramaniyan, A.; Kharel, R.; Yu, K. Dynamic Polygon
Generation for Flexible Pattern Formation in Large-Scale UAV Swarm Networks. In Proceedings of the 2020 IEEE Globecom
Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; IEEE: Piscataway, NJ, USA, 2020. [CrossRef]

15. Huang, J.; Tian, G.; Zhang, J.; Chen, Y. On Unmanned Aerial Vehicles Light Show Systems: Algorithms, Software and Hardware.
Appl. Sci. 2021, 11, 7687. [CrossRef]

16. Zahn, C.T.; Roskies, R.Z. Fourier descriptors for plane closed curves. IEEE Trans. Comput. 1972, 100, 269–281. [CrossRef]
17. Uesaka, Y. A new Fourier descriptor applicable to open curves. Electron. Commun. Jpn. (Part I Commun.) 1984, 67, 1–10. [CrossRef]
18. Rui, Y.; She, A.C.; Huang, T.S. Modified Fourier descriptors for shape representation-a practical approach. In Proceedings of the

First International Workshop on Image Databases and Multi Media Search, Washington, DC, USA, 14 August 1996; pp. 22–23.

http://doi.org/10.1109/JPROC.2021.3072740
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1016/j.robot.2016.12.006
http://dx.doi.org/10.1145/3611652
http://dx.doi.org/10.1016/j.robot.2015.08.010
http://dx.doi.org/10.1109/ACCESS.2020.3000064
http://dx.doi.org/10.1002/asjc.2806
http://dx.doi.org/10.1007/s43154-021-00063-4
http://www.ncbi.nlm.nih.gov/pubmed/34977595
http://dx.doi.org/10.1109/TRO.2018.2857475
http://dx.doi.org/10.1109/gcwkshps50303.2020.9367501
http://dx.doi.org/10.3390/app11167687
http://dx.doi.org/10.1109/TC.1972.5008949
http://dx.doi.org/10.1002/ecja.4400670802


Sensors 2023, 23, 9553 29 of 29

19. Zhang, D.; Lu, G. A comparative study of Fourier descriptors for shape representation and retrieval. In Proceedings of
the 5th Asian Conference on Computer Vision, Melbourne, Australia, 23–25 January 2002; pp. 641–656. Available online:
https://staff.itee.uq.edu.au/lovell/aprs/accv2002/ (accessed on 14 November 2023).

20. Barnes, L.E.; Fields, M.A.; Valavanis, K.P. Swarm formation control utilizing elliptical surfaces and limiting functions. IEEE Trans.
Syst. Man Cybern. 2009, 39, 1434–1445. [CrossRef] [PubMed]

21. Rezaee, H.; Abdollahi, F. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE
Trans. Ind. Electron. 2014, 61, 347–354. [CrossRef]

22. Falomir, E.; Chaumette, S.; Guerrini, G. Mobility strategies based on virtual forces for swarms of autonomous UAVs in constrained
environments. In Proceedings of the International Conference on Informatics in Control, Automation and Robotics (ICINCO
2017), Madrid, Spain, 27–28 July 2017; Volume 1, pp. 221–229.

23. LaViola, J.J. Double exponential smoothing: An alternative to Kalman filter-based predictive tracking. In Proceedings of the
Workshop on Virtual Environments, Zurich, Switzerland, 22–23 May 2003; pp. 199–206.

24. LaViola, J.J. An experiment comparing double exponential smoothing and Kalman filter-based predictive tracking algorithms. In
Proceedings of the IEEE Virtual Reality, Los Angeles, CA, USA, 22–26 March 2003; Proceedings; IEEE: Piscataway, NJ, USA, 2003;
pp. 283–284.

25. Bastourous, M.; Guerin, F.; Guinand, F.; Lemains, E. Decentralized high level controller for formation flight control of uavs. In
Proceedings of the 2020 6th International Conference on Mechatronics and Robotics Engineering (ICMRE), Barcelona, Spain,
12–15 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 226–231.

26. Squadrone-System. Available online: https://squadrone-system.com/ (accessed on 19 May 2023).
27. Processing. Available online: https://processing.org/ (accessed on 19 May 2023).
28. FlightGear. Available online: https://www.flightgear.org/ (accessed on 19 May 2023).
29. Matlab. Available online: https://www.mathworks.com/ (accessed on 19 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://staff.itee.uq.edu.au/lovell/aprs/accv2002/
http://dx.doi.org/10.1109/TSMCB.2009.2018139
http://www.ncbi.nlm.nih.gov/pubmed/19447722
http://dx.doi.org/10.1109/TIE.2013.2245612
https://squadrone-system.com/
https://processing.org/
https://www.flightgear.org/
https://www.mathworks.com/

	Introduction
	Designing Planar Shapes with Fourier Descriptors 
	Problem Statement
	Fourier Descriptor
	Spatial Rotations

	Decentralized Allocation of Bearing Angles
	Known Constant Number of UAVs
	Dynamically Changing Number of UAVs

	Control Framework
	Control Law
	Velocity Regulation
	Position Regulation
	Stability Analysis
	Collision Avoidance


	Simulations and Experiments 
	Simulations Description
	Flight Simulations
	Simulations Results 
	Experiments

	Conclusions and Perspectives
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3

	References

