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Abstract: Optical methods such as ultraviolet/visible (UV/Vis) and fluorescence spectroscopy are
well-established analytical techniques for in situ water quality monitoring. A broad range of bio-
logical and chemical contaminants in different concentration ranges can be detected using these
methods. The availability of results in real time allows a quick response to water quality changes. The
measuring devices are configured as portable multi-parameter probes. However, their specification
and data processing typically cannot be changed by users, or only with difficulties. Therefore, we
developed a submersible sensor probe, which combines UV/Vis and fluorescence spectroscopy
together with a flexible data processing platform. Due to its modular design in the hardware
and software, the sensing system can be modified to the specific application. The dimension of
the waterproof enclosure with a diameter of 100 mm permits also its application in groundwater
monitoring wells. As a light source for fluorescence spectroscopy, we constructed an LED array
that can be equipped with four different LEDs. A miniaturized deuterium–tungsten light source
(200–1100 nm) was used for UV/Vis spectroscopy. A miniaturized spectrometer with a spectral range
between 225 and 1000 nm permits the detection of complete spectra for both methods.

Keywords: UV/Vis spectroscopy; fluorescence spectroscopy; in situ water monitoring; model–view–
controller architecture; submersible sensor probe

1. Introduction

The application of in situ sensors permits the detection of contaminants in aquatic
ecosystems with a high spatial and temporal resolution. This high data density enables
the precise localization of contamination or anomalies and their rapid detection [1]. Time
series analyses can contribute to the monitoring of inflows to waterworks, for example.
Direct measurement in the field avoids a number of measuring errors such as undesirable
transfer of volatile compounds into the gas phase, adsorption and reactions leading to
non-quantifiable loss of the original substances [2]. Different water quality monitoring
technologies for the in situ and real-time detection of biological and chemical contaminants
are available today [3,4]. UV/Vis and fluorescence spectroscopy have proven to be versatile
and reliable methods for the in situ monitoring of aquatic systems [5,6]. Both methods can
detect a variety of substances or sum parameters at different sensitivities. UV/Vis sensors
are mainly applied for the monitoring of nitrate [7,8] or dissolved organic carbon (DOC)
and some other parameters [9], while fluorescence spectroscopy permits the sensitive
detection of microbial contamination [10], cyanobacteria [11], chlorophyll [12] and a few
sum parameters such as dissolved organic matter (DOM) [13]. A more detailed overview of
the most common applications of both methods and the experimental parameters used are
summarized in Table 1. Turbidity indicates the presence of suspended particulate matter
and can be detected using UV/Vis spectroscopy at high concentrations (40–4000 FAU;
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Formazine Attenuation Units), while scattered light measurements permit its more sensitive
determination (<0.05–400 FNU; Formazine Nephelometric Units).

Various technical developments are described in the literature with the aim of minia-
turizing the sensors and measuring different parameters simultaneously [14]. A number
of in situ sensors were developed in scientific projects for special applications such as
turbidity sensors [15], portable fluorescence sensors [16], low-cost and smart chlorophyll-A
sensors [17], fluorescence spectrometers for DOM [18], fecal contamination sensors [19]
and multi-platform sensors [20].

Table 1. Water quality parameters measured using in situ optical sensing devices.

Parameter Wavelength Proxy For Calibrant Ref.

Fluorescence Spectroscopy

Tryptophan-like
fluorescence (TLF)

λex = 280 nm
λem = 365 nm

biological activity, microbial
contamination with L-Tryptophan [21]

Humic-like
fluorescence (HLF)

λex = 280 nm
λem = 450 nm

autochthonous (within stream algal
and microbial activity) and

allochthonous (soil-derived organic
matter) generation

of small colloidal and dissolved
organic matter

Quinine sulfate [22]

Fluorescent DOM
(FDOM)

λex = 325 nm
λem = 470 nm total DOC concentration Quinine sulfate [23]

Chlorophyll a (f-Chl a) λex = 430 (470) nm
λem = 675–750 nm biomass of algae Dyes, pure or extracted

Chlorophyll a [24]

Phycocyanin (f-PC) λex = 590 nm
λem = 640–690 nm biomass of cyanobacteria Phycocyanin [25]

Fluorescence index (FI) λex = 370 nm
λem = 470 and 520 nm

microbial (high FI~1.8) or terrestrial
(low FI~1.2) source of DOM FI = Intensity λem(470)

Intensity λem(520)
[26]

Scattered light measurement

Turbidity

portion of light
scattered at angle 90◦

from the incident beam
(λ > 800 nm)

loss of clarity in water Formazin turbidity
standard [27]

UV/Vis spectroscopy

Nitrate A217–240 nm
eutrophication of freshwater

ecosystems NO3-N [7]

Spectral absorption
coefficient (SAC254) A254 nm organic loads of water [9,28]

Colored dissolved
organic

matter (CDOM)
A254 nm or A370 nm

colored and photoactive fraction of
DOM

TOC = 0.492 A250
−1.23 A364 + 1.83 [29,30]

Chemical oxygen
demand (COD) A225–260 nm

pollution of water by reducing
substances’ [31]

Phycocyanin (PC) A615 nm and A652 nm cyanobacterial components PC = A615 − 0.474 A652
5.34 [32]

Turbidity A>800 nm loss of clarity in water Formazin turbidity
standard [27]

A: absorption coefficient, λex: excitation wavelength, λem: emission wavelength.

In addition to developments in laboratories, a number of commercially available
sensor systems based on optical spectroscopy can be used for different analytical purposes.
A summary of the common online UV/Vis instruments for water quality monitoring is
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shown in [33], while Lee et al. also summarize UV/Vis and DOM sensors [23]. Sensors for
nitrate, algae, tryptophan or chlorophyll are available from different manufacturers.

However, the majority of these sensor probes are characterized by a predefined con-
figuration, a fixed hardware setup and static data processing methods. Therefore, new
applications developed in the laboratory cannot simply be realized with the existing sensors
in the field.

For this reason, we developed a compact field-deployable optical instrument using
fluorescence, absorbance and scattering to identify and quantify contaminants and natural
substances in water bodies. The aim of this development was to simultaneously ascertain
as many of the parameters listed in Table 1 as achievable. Due to the application of a broad-
band light source in UV/Vis spectroscopy and detection with a miniature spectrometer
with a wavelength range between 225 and 1000 nm, all the parameters listed in Table 1 for
UV/Vis spectroscopy can be detected by taking one measurement. Our LED module with
four slots for different LEDs permits excitation with four wavelengths, while the emission
spectra can be observed over the whole wavelength range, in contrast to the use of a simple
photodiode. As the measurements generate data at a high velocity and in a high volume,
new concepts in data processing and data transfer were realized. The sensor platform
developed is characterized by the following features:

• Synchronous data acquisition: UV/Vis and fluorescence measurements can be an-
alyzed in one step. The absorbance measurement is made in a 180◦ configuration
while fluorescence emission is measured in 90◦ geometry. The path length of the
measurement cell is 10 mm. The water sample is pumped through the measuring
cell. Due to its position inside the sensor probe, external interfering influences were
minimized. The spectrometer permits detection over the entire wavelength range.

• Adaptable hardware configuration: To adapt the sensor probe to different aquatic con-
ditions, the sensor configuration can be easily changed. This includes the replacement
of light sources and the adjustment of their intensities. The operational conditions of
the spectrometer and the integration parameters can also be easily changed.

• Open data processing platform: The integrated processing platform facilitates the fur-
ther handling and fusion of the spectral data (quantification, turbidity compensation,
qualitative and quantitative assessment of water quality information). All data are
available and adjustable for users at each level of processing.

• Open Data Model: Processed data, measurement methods and metainformation are
stored in a holistic structure. All these data can be transferred by the user.

• Data visualization: The data are displayed in real time on a dashboard for analysis
and pattern identification.

• Remote control: A specially programmed app enables access to the sensor probe. It
allows the monitoring of operating status, the definition of measurement intervals and
times, as well as the execution of functional tests on the light sources. Furthermore,
the app shows quantitative results of predefined analytes.

Our developed sensor probe was tested in the lab by calibrating it with the substances
mentioned in Table 1. Additionally, a field test was carried out for verifying the long-
term stability.

2. Materials and Methods
2.1. Design and Development of the UV/Vis–Fluorescence Submersible Sensor Probe
2.1.1. Hardware Development

The UV/Vis–fluorescence submersible sensor probe is integrated into a watertight
enclosure with a cylindrical design, which is made of acrylic glass. With a height of 590 mm
and an outer diameter of 100 mm, the sensor probe can be used for measurements in water
bodies and groundwater wells. The general operational principles are shown in Figure 1.
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Short solarization-resistant FG600AEA optical fibers (Thorlabs, Newton, NJ, USA) with a 
diameter of 600 µm were used, which reduce UV absorbance and aging. Due to the limited 
space available, a 90° PL-25-12-90SS-SLIM2-CO collimator (Plasus, Mering, Germany) is 
used for the optical connection to the measuring cell (see Figure 2a). The measuring cell is 
sealed to the collimator using a 3 mm thick fused silica disk (Suprasil 2 Grade A, Aachener 
Quarzglas Technologie Heinrich, Aachen, Germany). 

For the fluorescence spectroscopy, a self-developed LED array circuit is used as the 
light source. This circuit is mounted directly onto the measuring cell, offset 90° to the 
UV/Vis light source. The measuring cell has slots for four LEDs (see Figure 2b). Fused 
silica disks with a thickness of 3 mm were also used to seal the measuring cell to the LEDs. 

The UV/Vis and fluorescence spectra were taken using a Qmini AFBR-S20M2WU 
spectrometer (Broadcom, San José, CA, USA) with a wavelength range from 225 to 1000 
nm and a spectral resolution of 1.5 nm. The spectrometer is connected to the measuring 
cell via a fused silica disk and a 90° collimator (see Figure 2a). Both collimators are posi-
tioned opposite each other in a 180° geometry.  

Figure 1. Sensor concept and final UV/Vis–fluorescence submersible sensor probe.

The measuring cell with a pathlength of 10 mm is located inside the submersible
sensor probe. The water sample is pumped through the measuring cell and then expelled
through the water outlet using a self-priming brushless micropump (MGD1000F, TCS
Micropumps, Faversham, UK). A filter with a mesh size of 1 mm is integrated into the inlet
in order to protect the sensor system from particles. The pump can be stopped during the
measurements. This function is integrated into the automated measurement process. A
miniaturized deuterium–tungsten light source FiberLight D2 (Heraeus, Hanau, Germany)
is used for the measurement of transmittance in the UV/Vis range. The continuous spectra
of deuterium (UV) and tungsten (Vis) are guided using an optical fiber to a collimator.
Short solarization-resistant FG600AEA optical fibers (Thorlabs, Newton, NJ, USA) with a
diameter of 600 µm were used, which reduce UV absorbance and aging. Due to the limited
space available, a 90◦ PL-25-12-90SS-SLIM2-CO collimator (Plasus, Mering, Germany) is
used for the optical connection to the measuring cell (see Figure 2a). The measuring cell is
sealed to the collimator using a 3 mm thick fused silica disk (Suprasil 2 Grade A, Aachener
Quarzglas Technologie Heinrich, Aachen, Germany).
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Figure 2. Measuring cell with two 90◦ collimators (a) and LED array (b).

For the fluorescence spectroscopy, a self-developed LED array circuit is used as the
light source. This circuit is mounted directly onto the measuring cell, offset 90◦ to the
UV/Vis light source. The measuring cell has slots for four LEDs (see Figure 2b). Fused
silica disks with a thickness of 3 mm were also used to seal the measuring cell to the LEDs.



Sensors 2023, 23, 9545 5 of 13

The UV/Vis and fluorescence spectra were taken using a Qmini AFBR-S20M2WU
spectrometer (Broadcom, San José, CA, USA) with a wavelength range from 225 to 1000 nm
and a spectral resolution of 1.5 nm. The spectrometer is connected to the measuring cell
via a fused silica disk and a 90◦ collimator (see Figure 2a). Both collimators are positioned
opposite each other in a 180◦ geometry.

The choice of a 180◦ configuration for the absorbance measurements and a 90◦ geome-
try for the fluorescence emission measurements resulted from the commonly used setups
described in the literature [16]. UV/Vis or transmission measurements are always carried
out in a 180◦ configuration [33]. For fluorescence detection, additional optical elements
such as mirrors should be avoided in the design, and the greatest possible sensitivity should
be achieved. The 90◦ angle between the excitation and detection is realized in almost all
laboratory devices, without which our rectangular measuring cell is not feasible.

The UV/Vis and four fluorescence spectra are recorded one after the other after the
pump is stopped. The entire measurement process takes less than 30 s.

All the electronic components in the submersible sensor probe are controlled by a
Raspberry Pi 4 Model B (Raspberry Pi Foundation, Cambridge, UK). The spectrometer
is connected with the embedded system via the USB interface. Communication with the
spectrometer is facilitated using the manufacturer’s provided software development kit.
Additionally, a custom-designed add-on board enables the seamless integration of all
hardware components into the embedded system. Notably, the digital interfaces for the
sensors are positioned along the outer edge of the add-on board for convenient accessibility
and efficient operation.

On the top of the enclosure, a TSYS01 high-accuracy, fast-response temperature sensor
(Blue Robotics, Torrance, CA, USA) and a Bar30 pressure sensor (Blue Robotics, Tor-
rance, CA, USA) are integrated. These sensors can be used to measure the water tempera-
ture and the depth of the UV/Vis–fluorescence sensor probe. Both sensors are connected via
the I2C interface to the add-on board. The sensor probe receives a reliable 12 VDC power
supply and establishes an Ethernet connection via the DBH13MSS connection terminal
(MacArtney, Esbjerg, Denmark). To oversee the LED array within the measuring cell, the
add-on board incorporates a TLC59108F driver from Texas Instruments (Dallas, TX, USA).
This integrated driver offers the capability to individually parameterize each LED’s current,
allowing for precise adjustment of brightness across 256 gradations.

To achieve higher intensities using a higher current, the LED driver can also pulse
the current. Since not every LED can be supplied with the same voltage, a separate power
supply circuit is integrated into the add-on board. The LM2731 (Texas Instruments, Dallas,
TX, USA) hardware component is used for this purpose and act as a boost converter. The
maximum current is separately adjustable using a series of resistances for each LED. The
developed LED driver is schematically shown in Figure 3.
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2.1.2. Software Development

To handle the hardware configurations, the UV/Vis–fluorescence submersible sensor
probe is equipped with a flexible data processing framework. This includes four steps: data
collection, data processing, data storage and data visualization. These tools are integrated
into an embedded system. To enable a flexible data processing framework, a Model–View–
Controller architecture is used for the software development. This approach separates the
software architecture into the three parts: Model, View and Controller (Figure 4). The data
management is provided by the Model module. This module consists of two components,
the Hardware Abstraction Layer (HAL) and the data storage.
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The HAL is designed for connecting all sensors and actuators using a standardized
interface for communication with all components within the UV/Vis–fluorescence sensor
probe. The HAL has a web interface based on the HTTP protocol allowing flexible access to
the hardware. HTTP request parameters can be used for the adaptation of the sensor and
actor settings. Based on the hardware configuration, it is possible to adjust the integration
time of the spectrometer, the averaging of the spectra by a user-defined number of iterations
and control of the light sources with different intensities. The second component is the data
storage model. The data storage model combines all spectral data. To change the settings or
to manipulate the model, the user can modify the process via the Controller module. The
Controller module is specified by the data processing method (DPM). The DPM provides
a software framework for the integration of the methods, which have been developed in
the laboratory. The software Node-RED (OpenJS Foundation, San Francisco, CA, USA,
Version 3.0.2) is used for this task.

Due to the flow-based programming framework, laboratory methods can be integrated
in a flexible way. DPM based on Node-RED offers also the advantage that a large library of
data processing tools can be created and used. If the UV/Vis–fluorescence sensor probe is
ready for use, the user can post-process (Data Fusion) and display (Dashboard) the results
via the View component. With data fusion, indicators can be calculated within a spectrum
but also between different spectra. This makes it possible to determine the fluorescence
index (FI), as well as other indicators published in the literature. These post-processing
steps can be carried out directly using the Grafana software (Version 10.1.5). In addition,
self-developed scripts can also be stored and executed in the View component. This allows
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an individual evaluation of spectra according to self-defined parameters. A summary of
the used software components is shown in Table 2.

Table 2. Software stack for the Model–View–Controller architecture.

Module Component Software

View Data Fusion
Dashboard Grafana

Model HAL
Storage

Python-FastAPI
InfluxDB 2.0

Control DPM Node-Red

2.1.3. Field Application Setup

The successful use of the sensor probe in the field requires some additional modifi-
cations to ensure seamless functionality and reliable acquisition and transmission of data.
This includes the integration of a power supply and a data communication unit.

For this purpose, a field-deployable data and power management unit was de-signed.
As it is equipped with a BlueSolar MPPT 100 solar charge controller (Victron energy,
Almere, The Netherlands), an industrial NPC24-12i battery (Yuasa, Krefeld, Germany) and
an MPM-90-12ST AC–DC power supply unit (MEAN WELL, New Taipei City, Taiwan),
the system can be operated energy self-sufficiently as well as with conventional main
voltage. The integrated RUT955 IoT gateway (Teltonika, Kaunas, Lithuania) establishes the
Ethernet connection to the sensor probe and provides a Wi-Fi access point for accessing
the data processing platform. When connected to this network, the user can interact with
the control and display module via a web interface. A schematic structure of the field
configuration is illustrated in Figure 5. The modular design of the sensor probe allows its
use in different scenarios, with stationary and mobile profile measurements. Additionally,
a specially designed Grafana dashboard visualizes all the water parameters recorded by
the sensor probe.
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2.2. Lab Validation
2.2.1. Preparation of Water Samples

As summarized in Table 1, different substances and sum parameters are routinely mea-
sured using UV/Vis and fluorescence sensor probes in aquatic systems. The determination
of the sum parameters (e.g., DOM) requires calibration with suitable single compounds.
Our developed sensor probe must be able to detect these substances with sensitivities as
described in the literature or as they correspond to the specifications of commercial devices.
For this purpose, we prepared standard solutions in water. Stock solutions of formazin
turbidity standard (4000 NTU, Hach, Manchester, UK), quinine sulfate (Sigma-Aldrich, St.
Louis, MO, USA), L-tryptophane (Sigma-Aldrich, St. Louis, MO, USA), humic acid (Carl
Roth GmbH, Karlsruhe, Germany) and potassium nitrate (Merck, Darmstadt, Germany)
were diluted, so that a series of standard solutions within a range of below 1 mg L−1 to
12 mg L−1 (100 mg L−1 in case of nitrate) was obtained.
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2.2.2. LED Array Configuration

Different target analytes in fluorescence spectroscopy require different excitation
wavelengths and therefore different LEDs. As described, the developed LED array can be
equipped with four different light sources of different wavelengths. These can be changed
easily in order to modify the sensor to changing measuring tasks. The current supplied
for each LED can be adjusted in accordance with their maximum power dissipation for an
optimal performance. Based on these maximum power dissipations, the current of each
LED was pulsed or set constant. It is important to note that the LED driver has a maximum
current capacity of 120 mA. This limit is taken into consideration when configuring the
current settings for the LEDs. Table 3 summarizes the LEDs and their specifications which
were used for the validation experiments. We used industrial-standard LEDs with a
uniform housing.

Table 3. LED array configuration.

LED Excitation
Wavelength [nm] Current [mA] Parameter

DUV-HL5N, Roithner
LaserTechnik GmbH 340 40 (pulsed) DOM

VL440-5-15 440 100 (pulsed) Chlorophyll a
CY5111A-WY, Roithner 590 100 (pulsed) Phycocyanin

OP265FAB, TT Electronics 850 120 (constant) Turbidity

2.2.3. Data Collection and Data Processing

The flow cell was adapted for the lab validation experiments. Before measuring the
standard solutions, blank spectra were taken with pure water. These blank spectra are
stored on the embedded system and are available for any further preprocessing steps. Se-
quentially, the prepared standard solutions were filled into the flow cell. The measurement
process begins with UV/Vis spectroscopy and the activation of the deuterium–tungsten
light source. After an interval of one second, 10 spectra were acquired and then averaged.
The spectrometer operates with an integration time of 160 milliseconds for the UV/Vis
measurements. After the measurement, the light source is deactivated and the fluorescence
measurement starts. Depending on the target analyte, the corresponding LED from Table 3
is used. While the LED light source is active, the spectrometer records five corresponding
spectra and an average value is computed from these five spectra. Here, the integration
time is four seconds. Three series of measurements were carried out for each substance
and for each spectroscopy method. The data collection and data processing method are
implemented into the Control module. Therefore, Node-RED flows have been developed.
The results are saved by the Model module and made available for export via the View
module. The Node-RED HTTP modules are used to address the UV/Vis–fluorescence
submersible sensor via the HAL. The integration time and the number of measurements
per spectrum are set using the HTTP parameters. A measured spectrum is converted into a
key-value pair so that it can be processed as a JavaScript object. Supplemented with meta
information (time, location, water temperature, depth), the sample site is written into the
database via the Node-RED Influx module. The light sources can also be controlled via the
HTTP module.

3. Results
3.1. Lab Validation

All substances investigated can be clearly detected with intensities comparable to those
of other lab devices or commercial sensor probes. Figures 6–8 show the same examples
for both UV/Vis and fluorescence spectroscopy. Figure 6 summarizes the quantitative
absorbance measurements of nitrate and humic substances.
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Both target analytes are among the most frequently monitored parameters in aquatic
ecosystems. Humic substances must be monitored, particularly in the catchment area of
drinking water reservoirs. Nitrate pollutions belong to the most challenging and costly
environmental problems due to the permanent release of nitrates into natural waters. High
concentrations of nitrate can promote the growth of algae and phytoplankton. With limits
of detection (LODs) of 1 mg L−1 for nitrate (Calculated as NO3-N) and 0.2 mg L−1 for humic
acids, our sensor probe permits the sensitive detection of these parameters. The LODs
were calculated according to [34]. As can be seen from the spectra, high concentrations of
humic acids complicate the evaluation of nitrate concentration. However, this is a general
limitation of the method (UV/Vis spectroscopy) and not a special feature of our sensor
probe. The advantage of our sensor probe is that possible interferences can be seen from
the complete spectra, while simple sensor probes with photodiodes as detectors let these
influences go unnoticed.

FDOM is another essential parameter for characterizing natural waters and serves as
a significant proxy for the total DOC concentration. As stated in Table 1, the calibration
is conducted using quinine sulfate and the FDOM concentrations can be given as quinine
sulfate units (QSUs) where 1 QSU = 1 ppb quinine sulfate. The results of our measurements
using fluorescence spectroscopy are summarized in Figure 7. The values for excitation
wavelength were taken from the literature [23]. The fluorescence emission at 385 nm
was used for calculating the calibration line. A LOD of 0.3 mg L−1 was calculated for
quinine sulfate.

According to ISO 7027-1:2016, turbidity is another important parameter for the as-
sessment of water quality. As stated above, turbidity can be measured in transmittance
(850 nm) or using scattered light measurement (λex = λem = 850 nm) depending on the
corresponding concentration range. As expected, scattered light measurements provide a
more sensitive detection with a LOD of 0.2 FNU while transmittance measurement has a
LOD of 2.4 FAU. Although our probe does not achieve the sensitivity of laboratory devices
with LODs (<0.05 FNU), these LODs are well suited to sensitive turbidity measurement in
the field.

3.2. Results from Field Tests

In addition to laboratory validation, the sensor probe was applied in the field as part
of a water monitoring campaign along the Elbe River. During this campaign, the primary
focus was on the measurement of two key parameters: turbidity and FDOM.

For this purpose, our sensor probe was equipped with the corresponding LEDs. The
developed dashboard (Figure 9) permits it use as a pivotal tool for real-time data visu-
alization and management during the campaign. Besides displaying the fluorescence
measurement values, additional data on water temperature and water depth are inte-



Sensors 2023, 23, 9545 11 of 13

grated. Furthermore, the dashboard shows a map section where the current position of the
measurement is displayed.
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Figure 9. Dashboard for water monitoring campaign on the Elbe River. Water temperature, water
depth, turbidity and FDOM are displayed together with the geo-position.

The user receives all the essential information and results in real time via this dash-
board. It is also possible to download the results via data export for further post-processing
procedures. A result of data processing can be seen in Figure 10, where geographical
coordinates (longitude and latitude) have been combined with turbidity data to create a
spatial data plot. Such procedures can be used to visualize concentration profiles, as shown
in the example, and allow the user to quickly identify anomalies and significant changes in
concentration.
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4. Conclusions

The focus of this work was the development of an integrated sensor platform for
UV/Vis and fluorescence spectroscopy which can be used for analyzing a wide range
of unsaturated and aromatic compounds in aquatic ecosystems. The sensor platform is
defined by the six requirements mentioned in the introduction. For simultaneous use of
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UV/Vis and fluorescence spectroscopy, a new measurement cell was designed, which is
located inside the sensor probe to minimize external influences on the water sample. Four
LEDs and a broadband light sources are attached to the measurement cell. The LEDs can
be easily changed by the user for a high degree of flexibility in the configuration. The
developed adjustable LED driver allows the use of various standard LEDs with the desired
wavelength. An open processing framework is based on this hardware. The Model–View–
Controller architecture allows for the clear separation of key features, easy modifications
and independent advancements of the modules. With the capability for direct data fusion
and data presentation in the View module, the measurement results can be presented in a
clear and concise manner within field applications.
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