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Abstract: To address the fuzzy reconstruction effect on distant objects in unbounded scenes and
the difficulty in feature matching caused by the thin structure of power lines in images, this paper
proposes a novel image-based method for the reconstruction of power transmission lines (PTLs).
The dataset used in this paper comprises PTL progressive motion sequence datasets, constructed
by a visual acquisition system carried by a developed Flying-walking Power Line Inspection Robot
(FPLIR). This system captures close-distance and continuous images of power lines. The study
introduces PL-NeREF, that is, an enhanced method based on the Neural Radiance Fields (NeRF)
method for reconstructing PTLs. The highlights of PL-NeRF include (1) compressing the unbounded
scene of PTLs by exploiting the spatial compression of normal L®; (2) encoding the direction and
position of the sample points through Integrated Position Encoding (IPE) and Hash Encoding (HE),
respectively. Compared to existing methods, the proposed method demonstrates good performance
in 3D reconstruction, with fidelity indicators of PSNR = 29, SSIM = 0.871, and LPIPS = 0.087. Experi-
mental results highlight that the combination of PL-NeRF with progressive motion sequence images
ensures the integrity and continuity of PTLs, improving the efficiency and accuracy of image-based
reconstructions. In the future, this method could be widely applied for efficient and accurate 3D
reconstruction and inspection of PTLs, providing a strong foundation for automated monitoring of
transmission corridors and digital power engineering.

Keywords: FPLIR; PTLs; 3D reconstruction; NeRF; progressive motion sequences

1. Introduction

PTLs play a crucial role in meeting daily electricity demands for various aspects of life
and work. However, their distribution across diverse terrains such as mountains, plains,
deserts, or other natural environments makes them susceptible to environmental impacts
that can lead to problems like power line breakage, damage, and erosion. These issues
have the potential to cause large-scale blackouts and result in significant national economic
losses. Therefore, conducting regular inspections becomes indispensable to guarantee the
safety of PTLs [1-3].

There are four types of inspections: manual inspections, vehicle inspections, airborne
inspections, and robot inspections. Among them, manual inspections for PTLs are always
costly, dangerous, and prone to false results [4—6]. Vehicle inspections and airborne inspec-
tions use vehicles or aircraft as carrying platforms, but are limited to inspecting PTLs in
urban areas [7]. Although manual inspections currently dominate the field, in contrast,
robot inspections present enhanced convenience, safety, and flexibility, positioning them
as the future trend [8]. In current robot inspections, a critical task is the 3D reconstruction
of PTLs [9,10]. The 3D reconstruction of PTLs enables efficient line layout planning, mon-
itoring, and management of the power system with its surroundings, enhancing safety
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and reliability in the power system while optimizing the line layout and reducing resource
wastage and environmental pollution. It can also reduce the need for on-site inspections,
especially in difficult-to-reach areas. This not only improves efficiency, but also reduces
maintenance costs and personnel safety risks. Therefore, it is of significant value in the
field of power engineering. In addition, through 3D reconstruction, the fault points can be
quickly located and effectively repaired in emergency situations, improving operational
efficiency, maintenance management, and safety risk control [11]. In the future, 3D recon-
struction of PTLs will become an essential technology in supporting the development of
power engineering [12].

Currently, there are two main categories of 3D reconstruction techniques for PTLs:
LiDAR-based and image-based methods. LiDAR-based methods offer high data acquisition
efficiency, modeling quality and measurement accuracy, and are less affected by various
lighting conditions. However, they are expensive and not suitable for large-scale applica-
tions [13]. On the other hand, image-based methods are less expensive, offer good flexibility,
and provide impressive 3D visualization. Nevertheless, these methods tend to have lower
accuracy and require more complex algorithms to overcome their limitations [14-16]. Con-
ventional image-based methods for 3D reconstruction have certain limitations regarding
accuracy and complexity. They rely on capturing images from a single angle during in-
spection, which decreases the overall reconstruction quality [17,18]. In addition, challenges
like unknown depth information in unbounded scenes, thin structures of power lines, and
feature-point matching further complicate the reconstruction task for PTLs [19,20].

To address the mentioned challenges, this paper proposes a method for acquiring
motion sequence images and establishing PTL reconstruction datasets. Additionally, this
approach improves the spatial compression and coding techniques of the original NeRF
to reconstruct PTLs. Overall, it eliminates the requirement of depth information and
enables a more efficient reconstruction method for PTLs based on images and camera poses,
supported by supervised scene learning.

The main contributions of this study are as follows:

(1) Using progressive motion sequences, datasets are established for the 3D reconstruc-
tion of PTLs. To achieve accurate position estimation over long trajectories, the trajectories
are segmented to dynamically generate the neural radiance field. This serves as the basic
dataset for the progressive motion sequence images, which consists of multiple views of
PTLs captured by a vision acquisition system;

(2) Considering the long and narrow spatial structure of the PTLs, the spatial compres-
sion method in the original NeRF has been further improved to enhance scene reconstruc-
tion. Instead of using the NDC method, this paper employs the L norm scene contraction
method to shrink the unbounded scene into a fixed-size bounded space, aligning the scene
model more effectively with the hash code, thereby improving the reconstruction efficiency
of PTLs;

(3) Considering the thin structure of the power line, the position encoding (PE) method
has been improved to better encode sample points in the original NeRF. IPE and HE are
used for the direction and position of the sample points, respectively, as shown in Figure 1.
IPE uses truncated cones to segment the sample points, and then generates the encoding
results by calculating the integral and expected value on a circular table in Gaussian
space. The method solves the problem of jagged and discontinuous results with PE; thus,
it can effectively reconstruct continuous PTLs and improve the reconstruction quality.
Meanwhile, HE enhances the efficiency of PTL reconstruction by adaptively focusing on the
effective region.
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Figure 1. PL-NeRF position-encoding system.

The PL-NeRF position-encoding system is shown in Figure 1. We train two MLPs: an
MLP for points’ colors and another one for points” positions. The former has 4 layers with
256 hidden units per layer, while the latter has 8 layers with 256 hidden units per layer.

The rest of this paper is organized as follows. Section 2 provides an overview of
the current research and related work. Section 3 describes the process of building the
dataset for progressive motion sequence of PTLs. Section 4 presents the proposed method
used to reconstruct PTLs. Section 5 conducts a comparison test to verify the effectiveness
and feasibility of the proposed method. Section 6 discusses the experimental results and
presents both limitations and prospects of the proposed method. Section 7 summarizes the
results and engineering value of PL-NeRF.

2. Related Works

This paper introduces a PL-NeRF method for 3D reconstruction, focusing specifically
on progressive motion sequence images. This section discusses three aspects within related
works: (1) image-based 3D reconstruction of PTLs; (2) NeRF; (3) multi-view images.

2.1. Image-Based 3D Reconstruction of PTLs

The methods for reconstructing PTLs based on images can be categorized into two
categories: traditional methods and deep learning methods. Their respective descriptions
and characteristics are listed in Table 1.

Traditional methods generally meet the basic requirements but still have limitations,
including difficulties in accurately capturing complex lighting conditions or handling
intricate geometric details that require manual adjustments for each specific scenario. In
contrast, deep learning methods offer greater flexibility and intelligence for generating
high-quality and realistic 3D effects. Therefore, they may become a dominant research
direction in the future. In line with this trend, this paper proposes an improved deep
learning method called PL-NeRF, which is based on the original NeRF method [21].
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Table 1. Image-based 3D reconstruction methods for PTLs.
Methods Classification Description Advantages Limitations Literatures
Limited accuracy,
distorted model,
limited ability in
Reconstruct PTLs through processing
3 StM feature matching and High flexibility. ~ |ar8escaledata, g6 14 9 99
Traditional triangulation of the aerial requiring a
images captured by UAVs. significant amount
of image and
computing
resources.
Requiring for
Continuously update the . ‘dynarmc .changes
. More emphasis on  in the environment,
map by processing a large localization also requiring the
SLAM amount of images data in o4 & [24-26]
. rather than 3D device have the
real-time and calculate . o
reconstruction. ability to capture
camera poses. . /
images in
real-time.

Deep learning

Use neural networks to
learn the 3D geometric
information about PTLs
from images without
/ human intervention. By

Fast training speed,
strong processing

Requiring a large
amount of data

[23,27-30]

. ! ability, and and model
constructing a deep learning hieh accurac trainin
model, the input 2D images & Y &
of the PTLs are converted
into a 3D model.
A deep learning model is Slow rendering
Neural used to learn the radiance Low cost and poor
Radiance field representation of the and realism reconstruction of [21]
Fields, NeRF  scene and rendered using a ’ complex

ray-tracing algorithm. scene details.

2.2. Neural Radiance Fields

The NeRF algorithm, developed in recent years, has significant research value and
promising application prospects in image-based 3D reconstruction. It was first proposed
by Mildenhall et al. in 2019 [21], who used a deep learning model to acquire a radiance
field representation of the scene, followed by rendering using a ray-tracing algorithm. This
technique has made a breakthrough and has attracted widespread attention in the field
of 3D reconstruction. However, the original NeRF had slow reconstruction speed and
limitations in reconstructing complex scene details. To address these issues, Mildenhall
et al. [31] further introduced NeRF++ in 2020, which used multiple decoders to address
different spatial scales, resulting in an improvement in the rendering speed. In the same
year, Alex Yu et al. [32] proposed pixelNeRF to capture tiny features and textures in the
scene, enabling detailed scene reconstruction. Recognizing the impact of illumination in
these methods, NeRV [33] was proposed by Pratul P. Srinivasan et al. in 2021. It employs
a random variational autoencoder to learn scenes, which can change lighting conditions
and synthesize new perspectives in existing images, ultimately improving rendering qual-
ity. Over the past four years, many innovative techniques and application studies have
emerged based on NeRF framework. For example, mip-NeRF [34] has improved its anti-
aliasing capabilities, while PointNeRF [35] enables high-quality model acquisition without
dense sampling. FastNeRF [36] is a fast and accurate neural rendering technology, while
Instant-NGP [37] is a fast reconstruction technology that supports real-time inter-action
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and dynamic modification. Furthermore, NeuRay [38] is a ray-tracing technique that can
account for occlusion issues and generate more realistic images. MvsNeRF [39] is another
technique for reconstructing radiance fields from multi-view stereo images. There are also
NeRF- [40] and SCNeRF [41], which can model radiance fields and perform pose estimation
without camera parameters.

2.3. Multi-View Images

Single-view information is insufficient to accurately reconstruct a complete 3D scene
due to many factors, such as the surface obstructions, the effect of lighting angle, and
in-tensity on the images. In contrast, multi-view images can overcome these limitations
to effectively process complex scenes and achieve a more comprehensive reconstruction.
Therefore, multi-view images play a crucial role in high-quality image-based 3D recon-
struction. At present, there are three types of multi-view data collection methods in the
field of 3D reconstruction based on camera motion trajectory: free, forward facing, and
object-centric. The methods, such as Structure-from-Motion (SFM) [42], Multi-view Stereo
(MVS) [43], and F?-NeRF [44], are the representations of free camera trajectory. The LLFF
method [45] represents forward-facing camera trajectory. The methods, such as NeRF [21],
Mip-nerf 360 [46], Anything-3D [47], and OmniPhotos [48] represent object-centric ones.
Their respective advantages and disadvantages are listed in Table 2.

Table 2. Collection methods for multi-view images.

Camera Trajectory Pros and Cons

Slow rendering and poor reconstruction of complex scene details, but

Free . .
require complex algorithms and processes.

Simple trajectory, small amount of data, leading to missing

Forward-facin . .
& some information.

Can provide complete geometric information about an object, but take

Object-centric . .
longer, cost more, and require more storage and processing resources.

The method of multi-view data collection should consider many factors, such as the
complexity of the scene, the limitations of the equipment, and the requirements for 3D
modeling accuracy. Considering that PTLs are detected along the power transmission lines
in our study, which helps in reducing the cost and energy consumption by extending the
detection distance, we have, ultimately, chosen the forward-facing collection method.

3. Progressive Motion Sequence Images
3.1. Vision Acquisition System

The vision acquisition system mainly consists of an image acquisition platform, a
developed FPLIR [3,49], and an on-board computer, as shown in Figure 2. The entire
inspection process of the FPLIR is illustrated in Figure 3, which includes taking off from
the ground, approaching the ground wire, landing on the ground wire, rolling along the
ground wire, flying over obstacles and tower heads, and, finally, leaving the ground wire
to land on the ground. Multi-view images are captured by the image acquisition platform
during the phase of rolling along the ground wire.
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Figure 3. The process of PTL inspection using FPLIR.

The multi-view motion sequence images of PTLs captured by the image acquisition
platform on the FPLIR are at a close range, which is necessary for PTL reconstruction. The
platform consists of a camera and two digital servos, as shown in Figure 4, with detailed
parameters given in Table 3.

Digital Servo 1
(Yaw)

Digital Servo 2
(Pitch)

Camera

Figure 4. The structural diagram of image acquisition platform.

Table 3. Collection platform-related parameters.

Device Digital Servo1l  Digital Servo 2 Camera
Field range/° 75~105 70~110 110 x 70 x 120 (H x V x D)
Depth/m / / 0.3~20

Resolution / / (2208 x 1242) @15fps
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Figure 5 illustrates the motion demonstration process of the platform, which exhibits
periodic cyclical motion. Each cycle comprises seven stages (D to (7)), with each stage
taking the same amount of time, for a total of 49 s. In the initial state, Digital servo 1 and
Digital servo 2 are both positioned at an angle of 90°, with movement ranges of 75~105°
and 70°~110°, respectively. During each cycle, the two digital servos rotate sequentially
(stages @, ®, ®, and @) represent the motion of Digital servo 1; stages @), @, and (®
represent the motion of Digital servo 2), alternating and continuing until the end of the
walking phase. Figure 6 shows the relevant motion trajectories and processes from different
perspectives. The arrow indicates the image captured at any frame during the process.

Initial Position O

ﬁu—:—L B(110°, 105°)
C I R

z 0| 0 ;

v

Pitch (°)

Figure 6. Camera trajectory.

3.2. Dataset Construction
3.2.1. Collection Sites and Path

The four different test sites are shown in Figure 7. Site A is a constructed test site with
dimensions of 5.8 m x 6.4 m, a tower height of 3.0 m, and a distance of 1.8 m between
the lowest point on the power line and the ground. Site B is a PTL inspection training site
with dimensions of 6 m x 10 m, a tower height of 1.5 m, and a distance of 1.2 m between
the lowest point on the ground wire and the ground. Site C is another PTL inspection
training site, covering an area of 6 m x 10 m, with a tower height of 2.0 m and a distance
of 1.2 m between the lowest point on the ground wire and the ground. Finally, Site D is a
virtual constructed scene model, covering an area of 12 m x 80 m, with a tower height of
30 m and a distance of 20 m between the lowest point on the ground wire and the ground.
The relevant information of these sites, including segment spacing and tower height, is
shown in Table 4. Additionally, the geographical location marks of real sites A, B, and C
are shown in Figure 8. In this paper, the length of the acquisition path is one segment,
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starting from the first power tower and ending at the second power tower in each site. The
FPLIR walking speed is fixed at 0.1 m/s, resulting in different data acquisition times for
each segment distance: 50 s, 86 s, 86 s, and 786 s.

() (b)

(c) (d)

Figure 7. Test sites. (a) Site A; (b) Site B; (c) Site C; (d) Site D.

Table 4. The relevant information of the four sites.

Information Height of the Power Collecting
Sites Length/(m) Tower/(m) Time/(s)
Site A 6.4 3 50
Site B 10 1.5 86
Site C 10 2.0 86
Site D 80 30 786

XinJiang Uygur Autonomous Region, China

>z
a3

=
=

|5 : e 3 )

=r 5

Shihezi - \ E
City — .

() Site A
D 4

. ol 1

=

1 Karsk Auoomons Preecture

Faks ki Bayingoln Mongolian Avonomous Prfctre
Auovomous

(b) Site B, Site C

Figure 8. Locations of Site A, Site B, and Site C.

3.2.2. Range of Collection Angle Determination

A Zed 2i binocular camera was used for data collection and the view of the captured
image was regulated by adjusting the rotation angle of the digital servos. It is important to
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note that small variations in the camera rotation angle can cause estimation failure, while
excessive changes can result in an insufficient proportion of the power line being present
in unbounded scene images. Therefore, when the FPLIR was moving along the ground
wire, it was critical to determine the optimal capture angle range to avoid camera pose
estimation failure or redundant data generation.

Different scenarios for the power transmission corridor were created in the Unreal
Engine 5 (UE5) software, including plains, highways, grasslands, and mountains. The
rotation ranges for the rocker arm camera were set individually. The range and sequence
of the digital servo’s rotation angles were determined based on the distribution of PTLs
within the camera’s field of view, as illustrated in Figure 9. Then, as the FPLIR rolled
along the ground wire at Site A, the images captured by the camera were observed from
different angles, as shown in Figure 10. Subsequently, image sequences from different
ranges were established as datasets for pose estimation and comparison, using the technique
described in Section 4.1. Finally, the optimal rotation ranges were determined to be between
70 and 110° in the rolling direction and 75 and 105° in the pitching direction. These ranges
guarantee a high success rate in pose estimation for the generated progressive motion
sequence images, while reducing duplication in sparse point clouds.

Figure 9. Field of view at partial angles in UE5: (a) angle I; (b) angle II; (c) angle IIL; (d) angle IV; (e)
angle V; (f) angle VI.

Figure 10. Field of view at partial angles from Site A: (a) angle I; (b) angle II; (c) angle III; (d) angle IV.

3.2.3. Dataset Establishment

Two types of datasets were established: synthetic datasets (Datasets I and II) and real
datasets (Datasets III to VI). Among them, Datasets III and IV were collected from Site A,
Dataset V was from Site B, Dataset VI was from Site C, and Datasets I and II were from Site
D. Figure 11 shows some images from the original Datasets I to VI. The four sets in the real
dataset were all extracted from captured videos exported at a frequency of 2 frames per
second, while the two sets in the synthetic dataset were extracted from videos exported at
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a frequency of 1 frame per second. Table 5 lists parameters such as the number of images
and image clarity for each original dataset.

OOBZJpg 0083, Jpg 0084Jpg

0057.pg 0058.jpg 0059.jpg 00100.jpg 00101.jpg 00102.jpg

5

00114.jpg 00115.jpg 00116.jpg

-

00128.jpg 00129.jpg 00130.jpg

o Al e A e A
0063.jpg 0064.jpg 0065.jpg
| S
0069.jpg 0070.jpg 0071.jpg

(d) 6]

Figure 11. Some sequence images from datasets I to VI: (a) Set I; (b) Set II; (c) Set III; (d) Set IV;
(e) Set V; (f) Set VI.

Table 5. The related parameters of images.

Parameters

Length/(m) Height of the Power Tower/(m)
Datasets
Set] 1572 2048 x 1080
Set II 1572 2048 x 1080
Set III 200 1920 x 1080
Set IV 200 1920 x 1080
Set V 344 1920 x 1080
Set VI 344 1920 x 1080

4. Methodology

The overall method consists of five stages, as depicted in Figure 12: (1) Dataset
preparation stage, where videos of PTLs are recorded using a visual acquisition system and
motion sequence images are exported to create basic datasets; (2) Structure from motion
stage, involving the generation of a progressive motion sequence image dataset using
algorithms, computation of image correspondence, extraction and matching of power line
features, solving for camera poses, and obtaining a sparse point cloud model; (3) Neural
network training stage, where new perspectives are synthesized and camera poses and
sparse point clouds of PTLs are rendered using PL-NeRF; (4) 3D reconstruction model
acquisition stage, which includes setting threshold space according to model requirements,
removing redundant data, and exporting dense point cloud, meshes, and surfaces of PTLs;
(5) Rendering effect acquisition stage, focused on rendering and exporting the video of
PTLs from new perspectives.

The reconstruction of PTLs becomes increasingly challenging due to the unbounded
nature of the scenes, the long and narrow characteristics of the power line, and the over-
simplified texture feature. In this paper, a novel approach is proposed to address the above
challenges. An improved NeRF method is combined with progressive motion sequence
images to compensate for the gradual blurring or even disappearance of the target over
long distances. The proposed method successfully reconstructs PTLs, with the particular
details provided.
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Figure 12. Working overflow.

4.1. Estimation of Camera Poses

Accurate estimation of camera poses is crucial to improve the performance and accu-
racy of PTL reconstruction results. However, due to the unbounded nature of PTL scenes,
accurately locating the on-board camera in the scene is challenging. Therefore, this paper
adopts the Structure-from-Motion (SFM) technique [39] combined with our progressive mo-
tion sequence images to perform sparse reconstruction. This method enables the acquisition
of sparse point clouds of PTLs and the estimation of camera poses.

Specifically, as illustrated in Figure 13, the principle of SFM begins with using the
Scale-Invariant Feature Transform (SIFT) for feature extraction. Secondly, the random
sample consistency (RANSAC) is employed to eliminate mismatched points during feature
matching. Then, the basic matrix between adjacent sequence images is calculated by match-
ing point pairs, and the matching pairs are optimized. Subsequently, the initial camera
poses and motion trajectory are estimated. A selection process based on superior image
correspondence pairs facilitates triangulation to generate a sparse 3D point cloud. Finally,
relative pose estimation and global optimization techniques, such as Bundle Adjustment
(BA), are used to estimate poses from all images.

Chain Pairwise Matches into Tracks Bundle Adjustment

I ; Compute Correspondences (R Sparse Reconstruction i :
[ |

| 1 Extract and Match Features Select Image Pairs to Seed Reconstruction } :
[ I

I v v L

‘ I . . > . 1]

| | Estimate an F-matrix and Refine Matches Triangulate | |
|1 I

Ll v v L
|

|1 |

N !

Sparse Point Cloud and Camera Poses

|

|
Camera poses :
\/' |
> |

|

\ |
|

|

|

Sparse point cloud

e |

Figure 13. Principles of SFM technology.
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The datasets presented in this paper are all motion sequence images, and the complete
mathematical equation can be expressed as

S — {X(l),X(2), e ,X(f’)} 1

where any set of dataset samples X(?) is a two-dimensional sequence composed of two

sequences X%i) and Xéi) of length T, representing time and motion, respectively, which can
be expressed as

Xii) = xgll) xi’z) .- -xgiT), x €R 2)

X = D) x) v e E 3)

After SFM, for each input dataset, we uniformly segment the motion and dynamically
generate a new brightness field. Subsequently, we gradually introduce optimization for the
subsequent frames. Specifically, whenever the estimated camera pose trajectory leaves the
uncompressed space of the current brightness field, we initialize the new pose using the
last frame of that trajectory:

[R|t] p+1 — [th} 14 (4)

The motion trajectory is segmented every five frames, with a camera pose added at
the end of the segment. This introduces a local prior to ensure that the start pose of the
next segment is close to the end pose of the previous segment. In Figure 14, triangles
represent the camera pose at each moment in the motion sequence. Specifically, the last
frame of the previous segment is represented by a green pose, while the first frame of the
next segment is represented by the blue pose, thereby ensuring that the transition moments
remain consistent. By extending the path and allowing smooth transitions, the sequence
of progressive motion images increases the accuracy of pose estimation for power lines,
resulting in a more complete reconstruction of PTLs.

XXX

X

e Camera Tractory Camera Pose <KL First Camera Pose and Last Camera Pose

Figure 14. Progressive motion sequence.

The above techniques are used to construct datasets consisting of progressive motion
sequence images for estimating camera poses, thereby supporting the reconstruction of
PTLs using PL-NeRF. Finally, it was confirmed that the use of an optimal rotation angle
scheme for data collection can obtain good sparse point clouds of PTLs and improve
the accuracy of camera poses. The findings illustrated in Figure 15 were instrumental in
optimizing the data collection process, enhancing the data utilization, and improving the
overall efficiency of reconstruction.
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Figure 15. Sparse point clouds of PTLs and camera poses: (a) Set I; (b) Set II; (c) Set III; (d) Set IV;
(e) Set V; (f) Set VI.

4.2. Neural Radiance Fields
4.2.1. Preliminary Knowledge

NeRF employs deep learning models to acquire the radiance field representation
of scenes, which integrates volume rendering with implicit neural scene representation
through multilayer perceptrons (MLPs). It comprises two main components: scene repre-
sentation and rendering. In scene representation, a deep learning model is used to learn the
radiance field of a 3D scene, including the intensity and color of the light emitted from each
point in the scene. Specifically, the perceptrons represent the color and radiance intensity
at specific locations within the scenery. For new scene points, their colors and radiance
intensities are obtained through interpolation methods. Meanwhile, rendering involves
using the acquired radiance field representation to generate a 3D reconstruction model.
The overall workflow of NeRF, as shown in Figure 16, involves employing a ray-tracing
algorithm to obtain the intersection point between the light emitted by the camera and
the scene. It then uses the radiance field representation to calculate the color and light
intensity at these points. Finally, by combining the color and intensity values from multiple
sampling points, NeRF generates a 3D reconstruction model from the camera’s perspective.

| : oi

" Ray Generator _,‘ Networking ‘
Calculate the E | _]I\_JE“'“'"]‘ Volume RGB
g 7 . \ | Training p \ =
4 number of rays ) — Sampling divection w g RGB Rendering
ST T —> Color Accumulate ——

Sampling points (x,,2) \ ci

Figure 16. The pipeline of NeRF.

The principle of the MLP for NeRF 3D reconstruction is shown in Figure 17. A fully
connected network was used to approximate represent this continuous 5D scene:

Fo: (x,d) — (c,0) (5)
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Figure 17. The principle of the multilayer perceptron in NeRF.

Firstly, the overall input of Fg is the 5D coordinates (x, v, z, 0;, ¢), where x = (x,y, z) is
the 3D coordinate in the 3D scene and d = (0;, ¢) is the camera perspective direction. The
final output is the 4D vector (R, G, B, ), which is the color value ¢ = (R, G, B) and opacity
o. The whole principle can be divided into two parts. In the first part, the input consists
of (x,y,z), which is passed through eight fully connected layers with a ReLU activation
function, where each layer has 256 channels for learning, and the output consists of the
opacity ¢ and a 256-dimensional feature vector. In the second part, the input consists of the
256-dimensional feature vector obtained from the output of the first part, together with the
camera view direction d = (6;, ). These inputs are passed through a fully connected layer
with a ReLU activation function and 128 channels for learning. The final output is an RGB
color value c. The opacity ¢ represents the probability of the ray ending at the point x after
reaching it. The camera ray at the point can be represented as

r(t) =o+td (6)

Among these, 0 is the 3D coordinate point and ¢ is the actual physical length. The
expected color at the point can be obtained as follows:

ctr) = [ Tt o, dar )

where t, represents the nearest boundary and ¢ represents the farthest boundary. T(f)
represents the cumulative transmittance of light rays along rays f, to ¢, which can be
obtained via the following equation:

T(t) = exp(— /t: U(r(s))ds> 8)

However, the MLP is limited to querying fixed discrete positions, which often restricts
the resolution when rendering discrete voxel grids using deterministic sampling. Therefore,
a stratified sampling approach is used to divide the (tn, t f> into N equal-sized bins, and
then randomly selects one sample from each bin uniformly, allowing the MLP to evaluate
continuous positions during the optimization and render continuous scenes. These samples
are used to estimate C(r):

C(r) = ) Ti(1 —exp(—0id;)) ¢ )

M=

1
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where §; = t;;1 — t; represents the physical distance between adjacent samples.
i-1
T, =exp| — Z(Tjéj (10)
j=1

The above equations are the core content of NeRF, but there are some issues with
rendering models, such as blurring, lack of detail, and too many invalid sample points.
Therefore, the original NeRF method added the PE and the hierarchical sampling strategy
to improve the problems:

(1) Position Encoding

Deep learning models exhibit strong nonlinear expressions when dealing with spatial
information, but, without proper encoding methods, spatial information can be easily lost.
Specifically, sine and cosine functions have periodicity, and, in deep learning, it is often eas-
ier to learn low-frequency functions than high-frequency ones. As a result, deep networks
tend to focus on learning low-frequency functions in space while losing high-frequency
information. To address this issue, NeRF employs PE as a specialized mapping technique,
in which low-frequency information is transformed into high-frequency information using
high-frequency functions that are then fitted by the deep network. In other words, coordi-
nate representations are initially transformed into a higher-dimensional space before being
used as input for the MLP, increasing the dimensionality of the data and, thus, improving
the accuracy and performance of the model.

Fg = F{, o1 is redefined in this paper, where 7 represents the mapping from R to a
high-dimensional space R?! and F}, is a regular MLP. The encoding function employed is
achieved by multi-period sine and cosine functions:

)= () @) es(2m)

where y(-) is applied separately to the three coordinate values in x and the camera viewing
direction d. In NeRF, L = 10 is set for x and L = 4 is set for d, which allows MLP to
approximate high-frequency functions more effectively;

(2) Hierarchical Sampling Strategy

The rendering strategy of NeRF involves densely evaluating the neural radiance field
network at N query points along each camera ray. Due to the different contributions of
diverse regions to the final color output, uniformly sampling each ray can lead to numerous
invalid points, including duplicate sampling of free space and occluded areas that do
not contribute to the rendered image, thereby reducing sampling efficiency. Therefore, a
layered sampling strategy is proposed, which involves intensive sampling in areas with
significant contributions and limited or no sampling in areas with minimal contributions.
The strategy involves the simultaneous optimization of two networks, namely, a ‘coarse’
network and a ‘fine” network, rather than relying on just one network to represent the
scene. In the case of the ‘coarse’ network, we uniformly sample N, points along each ray
and calculate the color weighting values corresponding to each sampling point according
to the following equation:

N¢
Ce(r) = ) @G (12)
i=1
where,
@; = T;(1 — exp(—0i0;)) (13)

To generate a PDF that produces segmented constants along the ray and normalize
them,
@ = —x (14)
Lt @
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Subsequently, the inverse transform sampling technique is employed to select high
probability density points from this distribution function as the second set of sampling
points for reweighted sampling. Finally, the first set of N. samples is combined with the
second set of Ny samples to evaluate the “fine” network, which calculates the final rendered
color of the ray using Equation (8).

Due to the requirement of a large amount of rendered image data in supervised
learning, NeRF faces a high demand for image data. When dealing with large-scale
scenes such as PTLs, the discontinuity in the PTL model results in jagged edges and slow
rendering speed. Therefore, this study proposes PL-NeRF combined with progressive
motion sequence images of PTLs to achieve faster reconstruction of high-quality PTLs.

4.2.2. PL-NeRF

This study integrates several published neural radiance field methods, mainly influ-
enced by Mip-Nerf [34] and Instant-ngp [37], along with other reference methods such
as NeRF- [40], NeRF W [50], and Ref NeRF [51]. Our objective is to simplify the training,
optimization, and rendering processes of NeRF. To effectively reconstruct PTLs, we have
developed a method called PL-NeRF, which is combined with our progressive motion
sequence images.

Due to the thin and low-texture features of power lines, using NeRF results in discon-
tinuity, jagged edges, and slow rendering speed during the power line reconstruction. To
address these issues and reconstruct a continuous PTL model, this paper proposes two
improvements based on the original NeRF: (1) PE method; (2) compression method for
scene reconstruction space.

The original NeRF method employs the PE technique, which projects an infinitesimally
small amount of light onto each pixel and constructs position-encoded features from a
given point in space. However, this approach results in a large sample size and significant
data aliasing issues, leading to ghosting and discontinuity problems in the power line
reconstruction model. To address these challenges, this study combines IPE and HE
techniques to separately encode directional and positional information. This approach
effectively reduces the number of samples along the beam, generating anti-aliasing features.

Regarding spatial compression, the original NeRF uses NDC, which defines only the
nearest and farthest sample points along the optical axis. In the case of unbounded real
PTL scenes, these boundaries are not well-defined, complicating the process of determining
a stopping point for sample processing. To address this in unbounded scenes, there are
typically two solutions: increasing the distance for far sampling or transforming the space
into a fixed volume. In this study, considering the specific structural conditions of PTLs,
the space compression method is adopted to twist the space into a fixed volume, mainly
inspired by Mip-Nerf 360 [44]. However, unlike Mip-Nerf 360, which uses the norm to
compress into a sphere, we apply the norm to compress into a cube shape. This adapta-
tion allows for better alignment with hash encoding and is more suitable for structured
working conditions.

The PL-NeREF field is shown in Figure 18. The first step is to generate ray bundles
based on the number of pixels in the input image. For each pixel, a cone beam is emitted by
the camera and then divided into frustums perpendicular to its axis. In the second step,
HE and IPE are used to encode position and direction information, respectively. Finally, in
the third step, the encoded information is fed into the respective MLP network. During the
HE, the scene space is first normalized using the norm illustrated in Figure 19, where each
small vertex has quantified coordinates, and the Hash Table is initialized. Subsequently,
a Hash Function is constructed to establish an index for each small vertex coordinate
in the Hash Table. For a given input, we determine its associated small vertices and
employ the Hash Function to locate their corresponding indices in the Hash Table, from
which the values are retrieved and utilized for cubic interpolation calculations. Once these
interpolations are obtained, they are linked together and passed into an MLP network.
The IPE stage involves finding the truncated frustum region and integrating the PE of
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the viewing cone region. Then, we approximate the integration using a multivariate
Gaussian approach and compute the Gaussian representation of the truncated frustum
to obtain a multivariate Gaussian representation of encoding. Finally, we truncate the
frustum’s encoding to calculate the expected encoding, which is transmitted to another
MLP network. This process results in a representation that more accurately reflects the
average position and depth variations within the area. Consequently, it improves our
model’s global understanding and representation of local scene details.

Je=hill=x) 1=y
HA(=x)(1-,

=

Figure 18. PL-NeREF field.
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Figure 19. Contraction: Using an L*® norm.

After implementing the above improvements, this method effectively reconstructs
continuous PTLs, thus improving the reconstruction quality and efficiency of PTLs. In addi-
tion, Figure 20 demonstrates the introduction of the proposal network sampler, appearance
embedding technology, and volume renderer in this paper. Among them, the proposal
network sampler merges the sampling positions into the area in the scene where the first
surface intersects, which contributes the most to the final rendering and further improves
the reconstruction quality of the PTLs. The appearance embedding technology employs an
image-by-image approach to embed the appearance information into the neural radiance
field, taking into account the exposure differences of the training camera, which enables a
better representation of texture and color details in the PTLs. Finally, the volume renderer
for volume rendering also incorporates techniques from Ref-NeRF [51] to calculate and
predict the normal, convert neural radiance fields into visualized 3D scenes and generate
high quality RGB rendered images.
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Figure 20. The pipeline of PL-NeRF.

In summary, PL-NeRF utilizes techniques such as truncated cone sampling, un-
bounded space contract compression, hash encoding, proposal network sampler, appear-
ance embedding, and volume rendering combined with the progressive motion sequence
images of PTLs in this study to achieve 3D reconstruction of PTLs.

5. Experiments

The experiments detailing the algorithm in this chapter employ a dataset of PTLs, as
previously established in Section 3.2.3, using three highly correlated 3D reconstruction
methods (F>-NeRF, Instant-ngp, and Volinga), along with the proposed PL-NeRF method.
Furthermore, a comparative analysis of these methods was conducted, based on their
reconstruction results, to confirm the feasibility and effectiveness of the proposed approach.

5.1. Experimental Settings

Based on the sparse point cloud and camera poses obtained in Section 4.1, the ren-
dering training of the PTLs is started. The main hardware and software parameters of the
testing computer used in this study are outlined below:

(1) Computing host: CPU—Intel (R) Core (TM) i9 12,900 K, RAM64 G, GPU—NVIDIA
GeForce RTX 3090 24 G;

(2) Environment: Ubuntu 18.04, PyTorch 1.12.1, CUDA 11.3, Python 3.8.

The construction of the original datasets is described in Section 3.2.3. The pose
calculation steps involve screening out images with blur, failed feature matching, and
inability to calculate poses. Subsequently, the remaining images are selected as the final
experimental dataset according to the following distribution: 80% for training, 10% for
validation, and 10% for testing purposes. Table 6 presents the distribution of images in
each experimental dataset.

Table 6. The distribution of rest images.

Datasets Parameters Rest Training Validation Test
Set I 720 576 72 72
Set II 606 484 61 61
Set III 186 148 19 19
Set IV 168 134 17 17
SetV 340 272 34 34
Set VI 332 266 33 33

5.2. Evaluation Metrics

This paper uses four evaluation metrics, namely, Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), and
Frames Per Second (FPS). PSNR, SSIM, and LPIPS are employed to evaluate the fidelity
of the reconstruction model, while FPS is used to evaluate the rendering speed in 3D
reconstruction.

5.2.1. PSNR

PSNR refers to the average difference between the maximum signal and background
noise in an image at the peak signal level, which is measured in decibels (dB). A higher
value of PSNR indicates a greater similarity between the reconstructed model and the
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original image, thus reflecting a higher image quality. The PSNR can be computed
as follows:

n 2
PSNR = 10log, <(2M_S;)()> (15)

where 7 is the number of bits per sampled value and MSE is the mean square error of the
original image after 3D reconstruction.

5.2.2. SSIM

SSIM is an indicator used to measure the similarity between the reconstructed model
and the original image. Compared with PSNR, it is more suitable for evaluating image
quality in accordance with human visual characteristics. Given two images x and y, the
calculation formula for SSIM is

(2pxpty + 1) (200 + c2)
(1 + py® + 01) (0 + 0% + ¢2)

SSIM(x,y) = (16)

where p and p, are the average values of x and y, respectively, seen as estimates of
the brightness; 0x? and ¢, are the variance of x and y, respectively, used as an esti-
mate of contrast; and oy, is the covariance of x and y as a measure of structural similar-
ity. c1, ¢, and c3 are constants used to avoid denominators of 0, usually obtained from
the following equations:

o1 = (kaL)? (17)
¢ = (kpL)? (18)
€3 = %62 (19)

Among them, L is the dynamic range of pixel values, and other values are usually
taken as k; = 0.01, ko = 0.03. The range of SSIM values is —1 to 1, and, in practical
applications, the similarity value is typically normalized to a range of 0 to 1, with higher
values indicating greater structural similarity between the two images. When the SSIM
value is equal to 1, the two images are identical.

5.2.3. LPIPS

The metric LPIPS, referred to as perceptual loss, is a deep learning-based image quality
evaluation metric that is more closely aligned with human perception than traditional
methods such as L2/PSNR, SSIM, and FSIM. It estimates the difference between two
images by calculating the distance metric between features. Given the original image block
x and the modeled image block xg, the calculation formula for LPIPS is as follows:

i(x20) = ¥ g 2 (oo =) 20)

where d is the distance between x and xj. The model extracts features from layer ! and
normalizes units in the channel dimension, recording the result as ¢/, §, € RH>*Wi<C,
It scales the active channel using vector w; € RS and calculates the distance I, then
takes the average value in space and sums it on the channel. The similarity between the
two images increases as the value of LPIPS decreases, and, conversely, the dissimilarity
becomes greater as LPIPS increases.

5.2.4. FPS

FPS is the number of frames that the system can process per second; it is used to
measure the smoothness and real-time performance of model rendering and can also be
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used to evaluate system performance. It is calculated from the ratio of rendering time and

rendered frames: .
FPS = — 21

- @)
where T is to the time required to render one frame of an image, usually in milliseconds
(ms). The reciprocal of the rendering time divided by the number of frames gives the
number of frames per second. A higher value of FPS indicates that the system can process
images or render scenes more quickly, making the scene feel more realistic and providing a
smoother interactive experience. By monitoring changes in FPS, the impact of parameter
settings on performance can be determined, and adjustments and optimizations can be
made to achieve a better balance.

5.3. Experimental Results

The dataset is trained through a process in which the model first enters a fast conver-
gence stage, then gradually converges until it reaches a stable state. The image gradually
becomes clearer, and the rendering effect of power line details gradually improves. The
real-time rendering effect of dataset III during the training process is shown in Figure 21.
The rendering performance of each algorithm in datasets I to VI is shown in Figure 22,
and the final rendering result is shown in Figure 23. The last row of Table 7 lists the four
evaluation indicators obtained from all training results using this algorithm.

Figure 21. Rendering process.

Table 7. Comparison between four algorithms.

Set 1 Set 11 Set 111 Set IV SetV Set VI

PSNR 21.76 20.88 18.57 21.65 24.24 22.13

) SSIM 0.625 0.709 0.626 0.618 0.747 0.734
F°-NeRF LPIPS 0.447 0515 0.451 0.319 0.226 0.119
FPS 1.153 1.824 1173 0.843 0918 1.855

PSNR 2133 19.06 16.34 15.26 23.18 20.39

Instantn SSIM 0552 0.539 0.396 0.435 0.783 0.773
8P  Lpips 0.628 0.636 0.707 0.809 0.279 0.191

FPS 0.205 0.203 0.196 0.196 0.374 1.547

PSNR 2425 2294 20.46 21.96 2220 19.17

Volinea SSIM 0.724 0.69 0.625 0.700 0.786 0533
8 LPIPS 0.322 0.428 0.290 0.256 0.253 0.179

FPS 2.342 2.275 2.427 2.432 2.489 1.755

PSNR 28.59 29.00 26.340 26.411 26.26 27.58

PL-NeRF SSIM 0.837 0.871 0.846 0.864 0.814 0.883
-Ne LPIPS 0.057 0.087 0.070 0.077 0.086 0.047
FPS 0.408 0.403 0.434 0.433 0.435 0.443

The relationship between the values of the four evaluation metrics and their performance has been detailed in
Section 5.2, and the best performances are highlighted in bold and underlined.
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Figure 22. Comparison of the effects of four algorithms.
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(e) ()
Figure 23. Rendered results: (a) Set I; (b) Set II; (c) Set III; (d) Set IV; (e) Set V; (f) Set VI.

6. Discussion
6.1. Effect of Select Methods

In Section 5.1, a comparison is made between three relevant reconstruction methods
and the proposed methods based on our datasets. These include F2-NeRF, which is a
neural radiance field method for reconstructing scenes from arbitrary motion trajectories,
Instant-ngp, which is an interactive real-time reconstruction technique that allows for
dynamic modifications, and Volinga, which is a fast reconstruction technique specifically
designed for virtual datasets. The results of the neural radiance field method used for 3D
reconstruction from progressive motion sequence images of PTLs are shown in Table 7.
The relationship between the values of the four evaluation metrics and their performance
has been detailed in Section 5.2, and the best performances are highlighted in bold and
underlined. Among the obtained reconstruction metrics, the PL-NeRF method outperforms
other methods, with the exception of FPS. The PL-NeRF method prioritizes the improved
performance of reconstructed models over rendering smoothness and real-time capabilities.
As for Volinga, it focuses more on speed than quality. Figure 22 demonstrates that the
visual effect achieved with PL-NeRF is the most realistic. Overall, the PL-NeRF method
provides the best reconstruction effect for 3D reconstruction of PTLs compared to the other
algorithms mentioned.

Furthermore, compared to traditional 3D reconstruction techniques, radiance field-
based neural methods show significant advancements in both scene accuracy and speed
of 3D reconstruction. This study proposes PL-NeRF, an improved NeRF method, for the
reconstruction of PTLs in unbounded scenes. Combined with the established progressive
motion sequence images, some favorable results are finally obtained.

Table 8 compares traditional methods and deep learning approaches, focusing on their
visual effects, modelling efficiency, and technical value. The proposed method outperforms,
both in efficiency and model details, for PTL reconstruction, while reducing the associated
cost in PTL scenes. This paper offers a practical approach to 3D reconstruction of PTLs,
providing a useful guide for digital automatic inspection during the planning, design,
construction, and maintenance of transmission corridors.



Sensors 2023, 23, 9537

23 of 26

Table 8. Comparison between traditional methods and deep learning methods.

Traditional Methods Deep Learning Methods

SFM Lidar Ours
Visual effect Average Good Best
Speed Slow Slow Fast
Morphology Valid Valid Excellent
Textures Invalid Invalid Valid
Noise Few Many Less
Lighting requirement High Low Low
Trajectory deviation Robust Sensitive Robust
Price Cheap Expensive Cheap

6.2. Motivation and Contributions

Previous studies on 3D reconstruction of power lines have predominantly relied on
LiDAR techniques, which incur significant equipment costs and are often hindered by
obstructions, limiting their widespread adoption. Our study proposes to overcome these
challenges by adopting a progressive motion sequence images approach, which reduces
equipment costs and lessens the impact of environmental factors.

Given that the background of PTLs often fails within an unbounded scene, capturing
intricate details of distant objects becomes challenging, often resulting in blurred recon-
structions. To address this, we have introduced a position-encoding method within the
PL-NeRF framework. This method effectively translates low-frequency information into
high-frequency details using high-frequency functions. Incorporating this approach into a
deep network framework allows for a more comprehensive representation of PTLs” intricate
details. We have also implemented segmented and network samplers, which efficiently
sample both distant and nearby objects. These samplers merge their positions within the
most influential areas of the scene for final rendering, thereby enhancing the quality of
the reconstruction.

Moreover, considering the inherent characteristics of the power line, which is thin and
lacks texture, feature point matching becomes a challenge. To solve this, this study uses a
developed visual acquisition system to collect multi-view images of PTLs at close distances,
creating progressive motion sequence datasets. This approach effectively addresses the
issue of incomplete reconstruction models due to failed pose estimation over long distances.

6.3. Limitations and Future Work

The proposed method has certain limitations, including the possibility of improving
evaluation metrics, non-real-time completion of 3D reconstruction of PTLs during inspec-
tion, and the need to improve the accuracy of explicit reconstruction models. Additionally,
PL-NeRF is based on a relatively complete continuous dataset, that is, it assumes that there
are no obstacles on the ground wire that require the FPLIR to fly over them. These areas
require further investigation and continuous refinement in future studies.

Firstly, the improvement of evaluation metrics mainly involves the consideration of
hyperparameter tuning (e.g., learning rate, optimizer selection), preprocessing techniques
(e.g., denoising, background removal), and the refinement of neural network structure
designs. Secondly, with regard to real-time 3D reconstruction of PTLs, the performance
requirements for hardware devices are relatively high, along with the consideration of
sensor configurations and algorithms suitable for achieving real-time 3D reconstruction.
Finally, to further improve the accuracy of the explicit model of PTLs, it is necessary to
consider how to build a new network model to construct the explicit model after the
implicit model training is completed. It is possible to improve the results by merging multi-
sensor information fusion with LiDAR equipment or by fitting the catenary structure of the
power line.
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7. Conclusions

To address the image-based 3D reconstruction difficulties in PTLs, this paper proposes
PL-NeRE, an improved NeRF method for 3D reconstruction that combines the novel pro-
gressive motion sequence images of PTLs. The main results of this paper are summarized
as follows:

(1) The motion sequence images acquired in the optimal range of rotation angles
were equally divided in each motion segment. This approach dynamically generates a
novel neural radiance field, which ensures that the initial pose of each subsequent segment
converges towards the final pose of the preceding segment. Consequently, this establishes
progressive motion sequence images for PTLs, enabling the successful estimation of long-
term trajectory poses using this dataset;

(2) The spatial compression and encoding methods for scene reconstruction were
refined from the original NeRF approach to better suit the narrow and elongated spatial
structure of overhead transmission corridors as well as the continuity requirements of
power lines. Specifically, an L* norm scene contraction method, in conjunction with IPE
and HE methods in encoding, was employed to improve both the quality and efficiency of
the power line reconstruction;

(3) A comparative experiment was conducted to assess the reconstruction effect of
the proposed method with three highly correlated radiance field-based neural methods.
With the exception of the FPS metric, the PL-NeRF method exhibited commendable per-
formance in the final 3D reconstruction results, with fidelity metrics reaching PSNR = 29,
SSIM = 0.871, and LPIPS = 0.087. These results, except for the FPS metric, confirm the
practicality and effectiveness of the proposed PL-NeRF method.

In our future research, we will continue to optimize the neural network architecture
to improve both the speed and fidelity of model reconstruction. In addition, we intend to
explore the use of a catenary structure to fit the power line model, with the aim of achieving
a more accurate PTL representation.
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