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Abstract: Human Activity Recognition (HAR) systems have made significant progress in recognizing
and classifying human activities using sensor data from a variety of sensors. Nevertheless, they
have struggled to automatically discover novel activity classes within massive amounts of unlabeled
sensor data without external supervision. This restricts their ability to classify new activities of
unlabeled sensor data in real-world deployments where fully supervised settings are not applicable.
To address this limitation, this paper presents the Novel Class Discovery (NCD) problem, which
aims to classify new class activities of unlabeled sensor data by fully utilizing existing activities of
labeled data. To address this problem, we propose a new end-to-end framework called More Reliable
Neighborhood Contrastive Learning (MRNCL), which is a variant of the Neighborhood Contrastive
Learning (NCL) framework commonly used in visual domain. Compared to NCL, our proposed
MRNCL framework is more lightweight and introduces an effective similarity measure that can find
more reliable k-nearest neighbors of an unlabeled query sample in the embedding space. These
neighbors contribute to contrastive learning to facilitate the model. Extensive experiments on three
public sensor datasets demonstrate that the proposed model outperforms existing methods in the
NCD task in sensor-based HAR, as indicated by the fact that our model performs better in clustering
performance of new activity class instances.

Keywords: human activity recognition; novel class discovery; neighborhood; contrastive learning;
similarity; sensor

1. Introduction

With the continuous advancement of deep learning, sensor-based Human Activity
Recognition (HAR) has witnessed rapid growth in real-world applications [1,2], such as
smart home systems [3], cognitive assistance [4], and health monitoring [5] . These HAR sys-
tems typically begin by collecting time-series data generated by various sensors, including
accelerometers, gyroscopes, and magnetometers [6]. Subsequently, a large volume of data
is manually labeled and used to train a deep learning model, such as CNN [7], DeepCon-
vLSTM [8], and Multi-Head Convolutional Attention [9] and MultiCNN-FilterLSTM [10].
This approach enables the trained model to classify previously labeled activities. However,
the aforementioned implementation is limited to operating within a fully supervised setting
and does not translate to real-world deployment of HAR systems, in which the activity
categories are not defined a priori and massive amounts of sensor data cannot be labeled
due to time-intensive and cost-effective constraints [11]. In other words, the primary issue
is that HAR systems lack the ability to automatically discover novel activity classes among
unlabeled data without external supervision in real-world deployments.

In this paper, we investigate the problem of discovering novel activity classes, which
we refer to as Novel Class Discovery (NCD). The NCD goal is to learn a model to recognize
and classify novel activities. Instead of fully unsupervised settings, we utilize existing

Sensors 2023, 23, 9529. https://doi.org/10.3390/s23239529 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23239529
https://doi.org/10.3390/s23239529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5879-5980
https://orcid.org/0000-0002-2720-0470
https://doi.org/10.3390/s23239529
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23239529?type=check_update&version=1


Sensors 2023, 23, 9529 2 of 22

labeled data (collected from known class activities) to transfer prior knowledge to unlabeled
data that belong to novel class activities completely distinct from the known one. The NCD
interpretation is shown in Figure 1.
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Figure 1. Interpretation of novel class discovery (NCD). The NCD aims to cluster the unlabeled
instances into new classes by a model trained through a labeled dataset and an unlabeled dataset that
includes disjoint class sets.

The NCD problem arises from observations of real-world deployments of HAR. Con-
sider the following scenario: the recognition system continuously collects activity sensor
data to train the model. We can manually annotate some activities for model learning.
However, hundreds of new activities are introduced every week and providing manual
annotations for all activities is hopelessly expensive. The large amount of unlabeled data
contains new activities that are not pre-defined and are completely different from the
old annotated activity categories. The NCD task is to seek an algorithm that can classify
these new activities among massive unlabeled data. In particular, the NCD guides this
process by leveraging knowledge from old class activities. The mechanisms of employing
transferred knowledge shares a resemblance with the application of transfer learning to
HAR. In transfer learning [12,13], given that a labeled source and target dataset share some
commonalities, a model is initially trained on the labeled source dataset and subsequently
fine-tuned using the labeled information in the target dataset containing distinct activity
categories. The fundamental idea behind this approach is to leverage the knowledge of
feature representations acquired from the source dataset to enhance the feature learning
of the model for the related target dataset. Similar to transfer learning, the NCD case also
transfers feature knowledge from a labeled source dataset to a target dataset, whereas no
labels are available for the target dataset to fine-tuned model. In other words, our goal is to
adapt to the classification task in the target domain without the availability of labels.

In sensor-based HAR, many other areas, such as semi-supervised learning, class
incremental learning, and unsupervised clustering, have been working on recognizing
activity classes among massive unlabeled data. However, they are relevant but entirely
distinct from NCD. Although semi-supervised [14,15] methods employ a small quantity
of labeled data to accurately predict activity classes in unlabeled data, the two types of
data share the same class space, which is not essentially involved in the discovery of new
classes. Class incremental learning [16] continuously recognizes new activity classes along
with some tasks, whereas the learning of new classes at each task still requires annotation
information. The NCD problem is similar to unsupervised clustering [17–21] that partitions
unannotated data into several clusters that are different activity class groups. However, this
problem can leverage knowledge of old classes to improve the discovery of the new ones.
The NCD task is truly to classify new class activities in unlabeled data by leveraging the
labeled data that belong to known activities, and studying this task is actually meaningful
for HAR systems in real-world deployments.

In NCD task, discriminative inter-class features are beneficial for clustering unlabeled
data into new classes. However, as mentioned in [11,22,23], generating distinguishable
features to represent activities uniquely is challenging due to the inter-activity similarity [24]
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with an unsupervised manner. To address this problem, we propose an innovative end-to-
end framework, named More Reliable Neighborhood Contrastive Learning (MRNCL). This
framework adopts contrastive learning to learn discriminative features from unlabeled
data. In NCD scenarios, some labeled data are available, and the MRNCL fully utilizes
them to extract prior knowledge to assist in discovering new class activities in unlabeled
data. For a given unlabeled query, the MRNCL selects the k-nearest neighbors (KNNS) as
its pseudo-positives through similarity ranking in the embedding space. The remaining
instances not within the KNNs are considered as the query’s negatives. It is likely that these
pseudo-positives belong to the same semantic category as the query, unlike the negatives.
Subsequently, contrastive learning [25] is applied to bring the query closer to its pseudo-
positives while keeping it far away from negatives. Through this mechanism, the model
can learn inter-class discrimination and cluster activity instances into several new classes.
In fact, our MRNCL is an enhancement and adaptation of the Neighborhood Contrastive
Learning (NCL) framework, which is renowned for its application in the NCD task of the
visual domain. On the one hand, our MRNCL has reconstructed the NCL framework [26]
by removing some components, making our approach more lightweight. On the other
hand, in the NCL framework [26], cosine similarly [27] is utilized to select KNNs. It should
be noted that the selected KNNs raises a significant issue regarding whether they and
their query belong to the same class, which is a crucial factor in the framework’s ability to
learn inter-class features and cluster new class instances successfully. As a result, a novel
similarity measure is introduced into our MRNCL framework to ensure more reliable
neighbors that are most likely to belong to the same semantic category as the query. This
measure enhances the performance of our MRNCL relative to NCL in the NCD task of
HAR. The overall process of MRNCL and the advantages of this similarity measure over
NCL’s [26] are illustrated in Figure 2.
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Figure 2. Overall process of More Reliable Neighborhood Contrastive Learning (MRNCL) and
advantages of the proposed MRNCL over NCL. Compared with NCL, MRNCL provides more
reliable support for similarity ranking between a query sample and other instances in the feature
space, ultimately leveraging contrastive learning to make the query closer to its pseudo-positives
(neighbors) whereas being away from the negatives.

In summary, our contribution is the proposal of an end-to-end framework that auto-
matically classifies novel activity classes within masses of unlabeled sensor data with the
assistance of old classes’ activities, addressing the NCD problem that limits the real-world
deployments of HAR systems. The framework has two key components. Firstly, contrastive
learning is adopted to learn discriminative inter-class features, enabling the model to clus-
ter novel activity instances accurately. Secondly, a novel similarity metric is employed
to identify reliable neighbors that are then merged into the contrastive learning process,
contributing to the learning of inter-class discrimination. Extensive experimental results on
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three public sensor datasets demonstrate the practical effectiveness of our proposed model,
which outperforms existing methods in the clustering performance of new activity class
instances, with significant improvements observed on various datasets.

The remainder of this paper is organized as follows. Section II discusses relevant works
related to this article. Section III describes the MRNCL framework and a new similarity
metric for more reliable neighborhoods in detail. Section IV presents and discusses the
results obtained from extensive ablation and comparison experiments, indicating the
performance of our proposed framework and new similarity metric. Section V discusses
the impact of inter-activity similarity on NCD task. In Section VI, the paper is summarized.

2. Related Work
2.1. Deep Learning for Sensor-Based HAR

In recent years, deep learning has achieved widespread adoption in sensor-based HAR
for the real-world implementations of HAR systems [1–5]. Deep learning models, especially
convolutional neural networks, recurrent neural networks, and multi self-attention net-
works, have been very successful in the field of HAR. These models have powerful feature
learning and pattern recognition capabilities to automatically extract useful features from
raw sensor data. A deep learning model, such as CNN [7], DeepConvLSTM [8], Multi-Head
Convolutional Attention [9], and MultiCNN-FilterLSTM [10], is typically trained using
a supervised approach on labeled sensor data to enable the recognition and classifica-
tion of diverse human activities. However, such a supervised model fails to address the
open-world challenge [22], as demonstrated by its struggles to recognize novel, unknown
activities that were not pre-labeled. This challenge poses a significant obstacle for the
practical application of HAR, as providing manual annotations for all novel activities to
supervised learning is prohibitively expensive [11]. In this paper, we propose an end-to-end
framework to address this challenge by introducing the contrastive learning technique
and using a similarity measure component. These two practices empower the deep learn-
ing model to automatically discover new class activities even in the absence of sufficient
data labels.

2.2. Novel Class Discovery

In sensor-based HAR, recognizing novel activities is a significant challenge in the real
world scenario [22]. This paper presents an attempt to address this related challenge, re-
ferred to as Novel Class Discovery (NCD). In the NCD setting, there exists a labeled dataset
that comprises several known class activities, and an unlabeled dataset that comprises novel
class activities that are entirely distinct from those in the labeled dataset. The NCD task
aims to cluster the data in the unlabeled dataset into the new activity classes by leveraging
the existing labeled dataset. Unlike transfer learning [12,13], the transferred knowledge
gained from labeled source data is instrumental in enabling the model to learn the feature
representation of unlabeled target data, for which no labels are available for model fine-
tuning. Unlike class incremental learning [16], NCD learns the new activity classes without
any annotated information. Unlike semi-supervised learning [14,15], new activity classes
in unlabeled data are completely disjointed with labeled data. Similar to unsupervised
clustering [17–21], the NCD aims to classify new activities by clustering unlabeled data
into several new classes. However, the NCD differs in its setting to leverage transferred
knowledge from labeled data to explore unlabeled datasets. The researches related the NCD
problem have made tremendous progress [26,28,29] in computer vision. The proposed MRNCL
framework consults the NCL [26] framework to address this problem in sensor-based HAR.
Moreover, a valid similarity metric is employed and improves our framework.

2.3. Unsupervised Clustering

To our knowledge, unsupervised clustering is most related to our work. It aims to
partition a set of unlabeled data into different activity classes without available labeled
data. In works [17,18], statistical properties of raw sensor data, including average and
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standard deviations, are considered as features and then these features are clustered by
the k-means algorithm [30]. However, high sensitivity to sensor noise [31] are attributed to
these methods. The works [19,20] mitigate the noise influence by employing a generative
autoencoder (i.e., deep learning model) to generate feature representations of raw data
before using k-means. However, they have not been able to address the feature space
locality limitation [23]. This limitation is reflected that some closely related activities is
located closely in the feature embedding space due to the weak feature extraction and
ultimately degrades the clustering results. In recent years, hierarchical clustering, such as
agglomerative clustering [32] has also emerged in clustering tasks [21], where they analyze
the hierarchical relationships between classes to obtain clustering effects. However, they
still do not overcome the aforementioned limitation. Instead, this paper proposes the use
of a deep learning model to perform end-to-end clustering. In our model, the contrastive
learning technique and a similarity measure are used to address weak feature extraction
challenges and aggregate class instances.

2.4. Contrastive Learning for HAR

Contrastive learning can learn discriminative feature representations between posi-
tives and negatives without any label information [25]. In sensor-based HAR, In sensor-
based human activity recognition (HAR), its effectiveness for learning discriminative
representations has been demonstrated [33–35]. In order to cluster new class instances
in the NCD task, discriminative inter-class feature extraction is urgently required. The
Neighborhood Contrastive Learning (NCL) [26] aims to assign the same-class instances
as positive pairs and various-class ones as negative pairs, allowing for the model to learn
discriminative inter-class features and effectively cluster unlabeled data. In NCL [26], for an
unlabeled query, its k-nearest neighborhoods selected by cosine similarity, which are most
likely to belong to the same activity class as the query, are considered as its pseudo positives
during contrastive learning. This paper proposes a new framework enhanced from the
NCL framework and uses an effective similarity to select neighborhoods. Compared to
the NCL [26], our MRNCL is lighter, more effective. It is noteworthy that in this paper
the contrastive learning technique is also applied to labeled data to assist in exploring
unlabeled data.

2.5. Similarity Measure Application

The similarity metric is a crucial component in various pattern recognition prob-
lems, such as classification [36,37] and clustering [19,20,30,32]. It mainly aims to assist a
query in finding its highly similar samples, commonly known as positives. In this paper,
the NCL [26] framework utilizes cosine similarity [27] to help a query search for the top-k
most similar neighbors in the embedding space. These neighbors are expected to belong to
the same activity class as the query and subsequently contribute to contrastive learning.
However, cosine similarity is unreliable as it only considers directional similarity [38]. Fur-
thermore, the open space risk [39] should be taken into consideration in pattern matching,
which suggests that any examples from unknown classes located away from a positive
example may be falsely labeled as its “positive”. As stated in the paper [40], the work [36]
utilizes multiple similarity measures to process feature representations, reducing the open
risk and achieving considerable results. Building on the paper [36], our framework in-
troduces a novel similarity metric by incorporating diverse metrics to perform KNNS,
outperforming the original NCL method [26].

3. Methods

Problem Formulation. For the NCD task, there is a labeled dataset Dl that includes
the class set Cl and an unlabeled dataset Du, including the class set Cu. Although the two
datasets have some degrees of similarity, their corresponding class sets are entirely disjoint.
The NCD aims to cluster the Du data into Cu based on the knowledge from Dl .
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Overall Framework. The overall framework of our approach involves a shared feature
extractor Ω, which maps input sensor data x to a feature vector z ∈ RH . Beneath this feature
extractor Ω, there are two classifiers: a labeled linear classifier φl and an unlabeled linear
classifier φu, with Cl and Cu output neurons, respectively. During the model training and
learning process, we sample a batch of data from Dl and Du and generate two correlated
views of the same batch via data augmentation. Then the augmented data are transmitted
to Ω. For the labeled samples in Dl , the extracted feature representations zl are fed into
φl , which is optimized by the cross-entropy (CE) loss through the ground-truth labels.
For the unlabeled samples in Du, the feature representations zu are generated by the
same feature extractor Ω and fed into the classifier φu. The classifier φu then utilizes the
binary cross-entropy (BCE) loss to learn to infer the cluster assignments for the unlabeled
sensor data. Simultaneously, for the representations zl and zu, we redefine them through
supervised contrastive learning (SCL) loss and neighborhood contrastive learning (NCL)
loss, respectively. By jointly optimizing the CE loss, BCE loss, SCL loss, and NCL loss, our
model can effectively learn from both labeled and unlabeled data, resulting in improved
clustering performance of unlabeled data. The whole framework is shown in Figure 3.
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Figure 3. More reliable neighborhood contrastive learning framework for novel class discovery. The
feature extractor gains the corresponding representations from the sampled training data, including
labeled and unlabeled data. For the labeled data, the CE and SCL losses are calculated through the
GT labels. For the unlabeled data, the BCE loss is calculated to optimize the unlabeled classifier and
the NCL loss is engaged to learn new-class representations. GT: ground-truth, CE: cross-entropy,
BCE: binary cross-entropy, SCL: supervised contrastive learning, NCL: neighborhood contrastive
learning, Simi(·): our similarity measure.

3.1. Baseline Framework

In the labeled dataset Dl = {(xl
1, yl

1), · · · , (xl
N , yl

N)}, each sample xl
i is explicitly

associated with a known class label yl
i . This label information can be fully leveraged to

facilitate the supervised learning of sample features. To achieve this, we optimize the
network architecture, which includes the feature extractor Ω and the labeled classifier φl ,
using a cross-entropy loss function:

lce = − 1
Cl

Cl

∑
i=1

yl
i logφl(Ω(xl

i)) (1)

In contrast, the unlabeled dataset Du = {xu
1 , · · · , xu

N} does not come with explicit class
labels. Instead, we generate pseudo-labels for pairs of samples (xu

i , xu
j ) in the unlabeled

dataset. After feature extraction using Ω, we obtain the feature representations (zu
i , zu

j )

for each pair of samples. Their similarity level is weighted by the cosine similarity [27]
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δ(zu
i , zu

j ) = zu
i

Tzu
j /‖zu

i ‖‖zu
j ‖. When δ(zu

i , zu
j ) exceeds a predefined threshold λ, the pairwise

pseudo-label is assigned as follows:

ŷi,j = 1[δ(zu
i , zu

j ) ≥ λ] (2)

where λ represents the minimum similarity required to assign two samples to the same
latent class. Then the pairwise pseudo-label is compared to the inner product pi,j =

φu(zu
i )

Tφu(zu
j ) obtained from the outputs of unlabeled classifier φu. The network is opti-

mized by the binary cross-entropy loss:

lbce = ŷi,jlog(pi,j) + (1− ŷi,j)log(1− pi,j) (3)

In order to make the network generate similar predictions for the sample xi and its
correlated view x̂i, NCL [26] employs mean squared error to calculate consistency loss (CS)
for both the labeled and unlabeled samples:

lmse =
1
Cl

Cl

∑
i=1

(φl(zl
i)− φl(ẑl

i)) +
1

Cu

Cu

∑
j=1

(φu(zu
j )− φu(ẑu

j )) (4)

However, experiments indicate that this methodology is not useful for our model in
the NCD task in HAR, so our baseline loss is:

lbase = lce + lbce (5)

Our baseline loss removes the CS component compared to NCL [26], which is the
first reduction.

3.2. Supervised and Neighborhood Contrastive Learning

For all the unlabeled samples in a batch, we create two correlated views (xu, x̂u) using
data augmentation techniques. In traditional contrastive learning, as exemplified in [41],
the two views as a positive pair are processed by feature extraction and transformed into zu

and ẑu, respectively. Additionally, a memory bank Mu is implemented to store the feature
representations of multiple recent batches for training. The elements stored in Mu are
represented as negative samples z̄u. And then the contrastive loss for the positive pair is
expressed as follows:

l(zu ,ẑu) = −log
eδ(zu ,ẑu)/τ

eδ(zu ,ẑu)/τ + Σ|M
u |

m=1eδ(zu ,z̄u
m)/τ

(6)

where δ(·, ·) denotes the cosine similarity, and τ is the temperature parameter that controls
the scale of distribution.

In (6), the augmented-positive ẑu of zu from a given sample is pulled closer whereas
negatives z̄u

m in Mu are pushed away from zu. This approach ensures that the model learns
discrimination for each individual instance. To learn inter-class discrimination, the k-
nearest neighbor representations that are most likely to belong to the coherent semantic
class of zu are selected from Mu using a similar measure as shown in the middle of Figure 3,
forming a pseudo-positive set:

ρk = arg topk
z̄u

i

({Simi(zu, z̄u
i )|∀i ∈ {1, · · · , |Mu|}}) (7)

where Simi(·) is our proposed similar measure, the details of which are provided in
Section 3.4. Then the contributions of the examples in ρk and negatives in Mu can be
described with the following neighborhood contrastive loss:

lncl = −
1
k ∑

z̄u
i ∈ρk

log
eδ(zu ,z̄u

i )/τ

eδ(zu ,ẑu)/τ + Σ|M
u |

m=1eδ(zu ,z̄u
m)/τ

(8)
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The neighborhood contrastive loss in NCL [26] also contains contributions of augment-
positives. It is the linear combination of (6) and (8). However, after experimental obser-
vations, (6) decreases the accuracy of clustering unknown samples. Thus, our MRNCL
removes augment-positives (AP) in neighborhood contrastive loss compared with the
NCL [26], which is a two-time reduction.

To acquire robust transferred feature knowledge from labeled data, we also apply
the contrastive learning technique to the labeled dataset Dl . Since the ground-truth labels
are available, we can efficiently retrieve the aggregations of positives for a sample xl

i with
corresponding feature zl

i as follows:

ρ = {z̄l
j ∈ Ml : yl

i = yl
j} ∪ ẑl

i (9)

where Ml represents the representation queue of the labeled dataset, and ẑl
i represents the

representation of the correlated view. Then, the supervised contrastive loss on labeled data
can be defined as follows [42]:

lscl = −
1
|ρ| ∑

z̊l
j∈ρ

log
eδ(zl

i ,z̊
l
j)/τ

eδ(zl
i ,ẑ

l
i)/τ + Σ|M

l |
m=1eδ(zl

i ,z̄
l
m)/τ

(10)

3.3. Overall Loss

Compared to NCL [26], our overall loss formulation excludes the consistency loss and
the contrastive loss for positive pairs, rendering our model more lightweight. Together
with the baseline model, we introduce supervised contrastive learning on labeled data and
neighborhood contrastive learning on unlabeled data. The overall loss for our model is:

lall = lbase + lscl + lncl (11)

The overall loss is calculated as shown in Algorithm 1.

3.4. Similarity Measure for Neighborhoods

Ideally, we would like all the pseudo-positives in ρk to correspond to the same class
as zu enabling our network to learn inter-class discriminative features in a manner similar
to supervised contrastive learning. When selecting KNNS as pseudo-positives, we obtain
the similarity computation value between zu and z̄u

i in Mu through a similarity metric.
The computation value is high, indicating that the z̄u

i may belong to the same class as
zu. Then, z̄u

i corresponding to the top K computation values are selected as KNNS of
zu (see (7)). The NCL [26] employs cosine similarity to generate ρk, but it is worthwhile
to investigate alternative approaches due to its limitations in capturing only directional
similarity and the presence of the open space risk [39]. Building on the research of [36], we
propose a novel similarity metric to select neighborhoods as pseudo-positives, ensuring
that the neighboring instances most likely belong to the same class as zu. The following
perspectives measure the similarity between zu and z̄u

i in Mu.
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Algorithm 1: Calculation of overall loss.
Data: labeled dataset Dl including Cl , unlabeled dataset Du

Result: lall

1 Initialize: K, Ω, φl , φu, λ, Ml , Mu, lall;
2 B = GetBatch(Dl ,Du);
/* the data are divided into multiple batches, each of which is in set B. Each

batch consists of labeled and unlabeled samples. */
3 for b ∈ B do // process each batch
4 Initialize: lce, lscl,lncl;
5 forall (xl

i , yl
i) ∈ b do // process labeled samples

6 xl
i , x̂l

i = Aug(xl
i); // data augmentation

7 zl
i , ẑl

i = Ω(xl
i , x̂l

i ); // feature extraction
8 ρ = {ẑl

i}; // the ρ is obtained according to (9)
9 foreach z̄l

j ∈ Ml do
10 if yl

i = yl
j then

11 ρ = ρ ∪ z̄l
j;

12 end
13 end

14 lscl = lscl +− 1
|ρ| ∑z̊l

j∈ρ log e
δ(zl

i ,z̊l
j )/τ

eδ(zl
i ,ẑl

i )/τ
+Σ|M

l |
m=1eδ(zl

i ,z̄l
m )/τ

;

// calculate supervised contrastive loss according to (10)

15 lce = lce +− 1
Cl ∑Cl

i=1 yl
i logφl(zl

i);
// calculate cross-entropy loss according to (1)

16 end
17 forall (xu

i , xu
j ) ∈ b do // process unlabeled samples

18 zu
i , zu

j = Ω(xu
i , xu

j );

19 if δ(zu
i , zu

j ) ≥ λ then ŷi,j = 1 ;

// the pairwise pseudo-label is assigned according to (2)
20 else ŷi,j = 0;
21 pi,j = φu(zu

i )
Tφu(zu

j );

22 lbce = lbce + ŷi,j log(pi,j) + (1− ŷi,j)log(1− pi,j);
// the binary cross-entropy loss is calculated according to (3)

23 end
24 forall xu ∈ b do
25 xu, x̂u = Aug(xu);
26 zu, ẑu = Ω(xu, x̂u);
27 resultset = [];

// store the results of similarity calculation value
28 foreach z̄u

i ∈ Mu do
29 value = Simi(zu, z̄u

i );
// Our proposed similarity method Simi(·, ·) calculates the similarity value

30 resultset.append((z̄u
i , value))

31 end
32 resultset = Sort(resultset, key = lambda x : x[1]);

// sort by similarity calculation value from highest to lowest
33 ρk = {item[0] for item in resultset[: K]};

// take the top K z̄u
i according to (7)

34 lncl = lncl +− 1
k ∑z̄u

i ∈ρk
log eδ(zu ,z̄u

i )/τ

eδ(zu ,ẑu )/τ+Σ|M
u |

m=1 eδ(zu ,z̄u
m )/τ

; // according to (8)

35 end
36 zl → Ml ; // update Ml with representations of labeled samples
37 zu → Mu; // update Mu with representations of unlabeled samples
38 lbase = lce + lbce; // according to (5)
39 lall = lbase + lscl + lncl; // according to (11)
40 end
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Gower distance [43] is a measurement method that calculates the average of partial
differences between instances. It is used to measure the similarity between instances and
the Gower distance between zu and z̄u

i is calculated as follows:

dgow(zu, z̄u
i ) =

1
n
‖ zu

‖zu‖ −
z̄u

i
‖z̄u

i ‖
‖1 (12)

where n represents the dimension of zu (the same as z̄u
i ). According to (12), the following

similarity metric can be defined:

Simigow(zu, z̄u
i ) = 1− dgow(zu, z̄u

i ) (13)

The Lorentzian distance [44] is a method of measuring the similarity between two
sequences. The paper [45], attributed to Lorentzian, introduces a new distance formulation
to determine the similarity between instances. The formula for Lorentzian distance is given
as follows:

dLor(zu, z̄u
i ) = ‖ ln(1 + abs(zu − z̄u

i ))‖1 (14)

where abs(·) represents the absolute difference. The addition of 1 ensures the non-negativity
property and avoids the occurrence of a logarithm of zero. Based on this distance calculation,
the similarity metric SimiLor(·) can be defined as follows:

SimiLor(zu, z̄u
i ) = 1− dLor(zu, z̄u

i ) (15)

Jaccard [46] and Dice coefficients [47] are usually employed to evaluate the similarity
between the two sets:

Dice =
2|A ⋂

B|
|A|+ |B| (16)

Jaccard =
|A ⋂

B|
|A|+ |B| − |A ⋂

B| (17)

where A and B denote the two sets, respectively. Like the research [36], we define the fol-
lowing formula to apply these two schemes to the similarity computation of two instances:

SimiDice(zu, z̄u
i ) =

2zuT z̄u
i

‖zu‖+ ‖z̄u
i ‖

(18)

Simijac(zu, z̄u
i ) =

zuT z̄u
i

‖zu‖+ ‖z̄u
i ‖ − ‖zuT z̄u

i ‖
(19)

The above multiple similarity measures are combined to obtain our final similarity met-
ric:

Simi(zu, z̄u
i ) =Simigow(zu, z̄u

i ) + SimiLor(zu, z̄u
i ) +SimiDice(zu, z̄u

i ) + Simijac(zu, z̄u
i ) (20)

Experiments demonstrate that our proposed similarity measure help our framework
select more reliable KNNS, thereby improving the clustering accuracy. All over the paper,
we refer to a more efficient similarity metric for choosing pseudo-positives in lncl collectively
as more reliable neighborhood contrastive learning.

4. Experiments
4.1. Experiment Materials
4.1.1. Dataset

Three publicly available datasets, frequently used in sensor-based HAR researches, are
utilized for the experiments on NCD task: WISDM [48], UCI-HAR [49], and USC-HAD [50].

The WISDM dataset [48] comprises data that was gathered using an accelerometer
sensor attached to the subjects. The sensor, with three sensor data channels, was set to
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collect data at a constant frequency of 20 Hz while the 35 subjects engaged in six distinct
activities, including downstairs, jogging, sitting, standing, upstairs, and walking. In this
study, we employ a sliding window approach to sample the data, utilizing a window length
of 90 samples.

The UCI-HAR dataset [49] comprises data records derived from nine sensor channels
of the accelerometer and gyroscope sensors. These sensors were sampled at a frequency of
50 Hz. The dataset was collected from 30 subjects, who engaged in six distinct activities,
including downstairs, laying, walking, standing, upstairs and sitting. In this study, we
sample the data using a sliding window with a length of 128 and a 50% overlap between
adjacent windows.

The USC-HAD dataset [50] contains data from 14 people performing 12 activities,
including walking-forward, upstairs, walking-left, elevator-down, sitting, elevator-up,
walking-right, running, standing, downstairs, jumping, and sleeping. The data were
collected from the accelerometer and gyroscope sensors, including six sensor data channels,
with a constant rate of 100 Hz. In this study, we sample the data using a sliding window of
200 samples.

In these three processed datasets, all activity instances are labeled, and the activity
categories are known. To evaluate the performance of our method on the NCD task, we
divide each dataset into a labeled dataset containing known class instance and an unlabeled
dataset containing new class instance based on NCD scenarios. For WISDM and UCI-HAR,
which, respectively, include six activity categories, the instances belonging to three of the six
activity categories are used as the labeled set and the data belonging to the other three are
used as the unlabeled set (i.e., the labels are not available). For USC-HAD including twelve
activity categories, the labeled and unlabeled sets each contain six activity categories. The
goal of NCD aims to cluster the instances of the unlabeled set into corresponding activity
categories with the help of the labeled set. The three datasets are partitioned, as listed in
Table 1.

Table 1. Dataset statistics for MRNCL.

Dataset
Labeled Set Unlabeled Set

Instance Class Activity Instance Class Activity

WISDM ≈5 K 3 downstairs, jogging, sitting ≈5.2 K 3 standing, upstairs, walking
UCI-HAR ≈6.3 K 3 downstairs, laying, walking ≈7.4 K 3 standing, upstairs, sitting

USC-HAD ≈12 K 6 walking-forward, upstairs, walking-left ≈12 K 6 walking-right, running, standing
elevator-down, sitting, elevator-up downstairs, jumping, sleeping

4.1.2. Backbone Network

In this paper, our backbone network comprises the DeepConvLstm model [8], serving as a
feature extractor, and two dense layers that function as labeled and unlabeled linear classifiers,
respectively. The DeepConvLstm model is a classical framework in the field of sensor-based
HAR, which encompasses an input layer, four convolutional layers, and two LSTM layers.
This framework possesses the ability to automatically learn feature representations and model
temporal dependencies between activities. For further details, we refer the reader to the original
paper describing the DeepConvLstm model [8].

4.1.3. Implementation Details

For each of three datasets, the training set proportions are all set to 80% and the
remaining 20% proportions are as the test set. During the training of the backbone network
for NCD task, we use the SGD optimizer update the whole model. The initial learning rate
is set to 0.01/0.001 for {WISDM, UCI-HAR}/USC-HAD. For USC-HAD, the learning rate
is divided by 10 after 100 epochs. The model is trained with 100/120 epochs in total for
{WISDM, UCI-HAR}/USC-HAD. During model training, samples are randomly sampled
from both the labeled and unlabeled data, and the batch size is set to 128 for all three
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datasets. The resampling [34] is employed as the data augmentation method to obtain the
two correlated views of instance due to its powerful ability in contrastive learning.

For the binary loss function, λ is set to 0.95. For the NCL loss and SCL loss, they are
introduced at the 2th epoch and the temperature parameter τ in them is set to 0.05. We set
the queue memory size |Ml | = |Mu| = 200/500 for {WISDM, UCI-HAR}/USC-HAD and
the number of pseudo-positives as K = |Mu|/Cu/2. Such parameter settings make our
model converge during training and perform well across datasets.

4.1.4. Evaluation Metric

Clustering accuracy is employed to compare the acquired labels with the true labels,
which can measure the performance of our model on the NCD task:

ACC =
1
N

N

∑
i=1

1{yu
i = map(ŷu

i )} (21)

where yu
i and ŷu

i denote the true and the cluster prediction labels corresponding to xu
i ,

respectively. The map(·) indicates the reassignment of the best class label, which can be
accomplished by the Hungarian algorithm [51]. In this paper, we primarily utilize the
clustering accuracy as our evaluation metric.

To comprehensively assess our method, we employ an additional evaluation metric,
the pairwise F-score, in the comparative experiments against other methods. The pairwise
F-score measures the clustering quality based on the F-score of all possible pairwise com-
binations of samples within each cluster. In clustering, the pairwise F-score is calculated
for each cluster and then averaged across all clusters to obtain a final score. The pairwise
F-score is the harmonic mean of precision and recall, referred to as FP and FR, respectively.
The formula for pairwise F-score is as follows:

F =
2(FP ∗ FR)

FP + FR
(22)

where FP is calculated as the number of true positive pairs (i.e., pairs of samples that belong
to the same activity and are correctly clustered together) divided by the total number of
pairs that are predicted to be positive (i.e., all pairs of samples within the cluster). The FR
is calculated as the number of true positive pairs divided by the total number of actual
positive pairs (i.e., all pairs of samples in the dataset that belong to the same activity). The
formula for FP and FR is as follows:

FP =
TP

TP + FP

FR =
TP

TP + FN

(23)

where TP refers to the number of pairs of samples that belong to the same activity and
are correctly clustered together. The FP refers to the number of pairs of samples that do
not belong to the same activity but are incorrectly clustered together. The FN refers to the
number of pairs of samples that belong to the same activity but are not clustered together. A
high FP value means that most of the pairs within the cluster are true positive pairs. A high
FR value means that most of the true positive pairs in the dataset are included in the cluster.
In general, a good clustering result should have both high FP and FR in pairwise F-score.

4.2. Ablation Reviews

To evaluate the contributions of each component in MRNCL, we examine different
perspectives and present the clustering accuracy (%) on the unlabeled test set in Table 2:
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Table 2. Ablation study of the proposed MRNCL. Baseline: our baseline framework; Basel. w/o CE:
the cross-entropy (CE) loss is removed from the baseline; Basel. w/o BCE: the binary cross-entropy
(BCE) loss is removed from the baseline; MRNCL: our proposed MRNCL; MRNCL w/o PP: no
neighborhoods are used as pseudo-positives for the contrastive loss; MRNCL w/o LA: no supervised
contrastive learning on labeled data.

Method WISDM UCI-HAR USC-HAD

Basel. w/o CE 70.17 35.91 49.05
Basel. w/o BCE 71.85 55.21 57.37

Baseline 80.97 84.53 74.52

+MRNCL w/o PP 81.77 (↑ 0.8) 83.86 (↓ 0.67) 73.28 (↓ 1.24)
+MRNCL w/o LA 83.71 (↑ 2.74) 81.57 (↓ 2.96) 60.31 (↓ 14.21)

+MRNCL 83.78 (↑ 2.81) 86.25 (↑ 1.72) 76.06 (↑ 1.54)

The following considerations can be drawn: In the baseline framework, both CE and
BCE play a vital role, and removing each one results in a decrease in the baseline outcomes.
On the basis of the baseline, the proposed MRNCL significantly improves the ACC. For
example, MRNCL gains +2.81% on WISDM, +1.72% on UCI-HAR, and +1.54% on USC-
HAD. Without pseudo-positives, our MRNCL is ineffective on WISDM and even inferior to
the baseline on UCI-HAR and USC-HAD. That is because positive feature representations in
the memory are treated as negatives and pushed away from the query. The absence of BCE
and supervised contrastive learning on labeled data significantly degrades the performance
of baseline and MRNCL, respectively. This case illustrates that the prior knowledge learned
from the labeled data is beneficial for the NCD task. The above conclusions verify the
validity of the MRNCL components.

4.3. Reasons for Two Reductions

Compared to NCL [26], the proposed MRNCL discards CS and AP of unlabeled
samples. To investigate the impact of these two components, we append them to the
model separately for testing. Results of clustering accuracy (%) on the unlabeled test set as
presented in Table 3.

Table 3. Influence of the consistency loss and augment-positives. MRNCL w CS: append consistency
loss to our framework, MRNCL w AP: append augment-positives.

Method WISDM UCI-HAR USC-HAD

MRNCL 83.78 86.25 76.06

MRNCL w CS 82.31 (↓ 1.47) 85.29 (↓ 0.96) 65.95 (↓ 10.11)
MRNCL w AP 71.78 (↓ 12) 88.16 (↑ 1.91) 71.79 (↓ 4.27)

As seen in Table 3, appending CS results in a decrease in accuracy on three datasets.
CS primarily focuses on enforcing feature consistency between xu

i and its correlated view
x̂u

i , which only encourages robustness to single-instance variations. However, since we
desire the model to learn inter-class variations, CS is not appended to our framework.
For appending AP, it is worth noting that there is a catastrophic drop on WISDM and
USC-HAD but an improvement on UCI-HAR. This difference may be attributed to the
adaptability of the dataset to the data augmentation [34]. The well-adapted UCI-HAR can
leverage the augmented-positives to alleviate the influence of the negative samples in the
selected KNNS. However, it is challenging to find an augmentation approach that performs
well across all sensor datasets in the HAR field [35]. Furthermore, the paper [52] found
that augment-positives in contrastive loss (see (6)) classify each activity instance into a
single class in the latent space, thereby decreasing the same-class instance aggregations.
Therefore, to ensure the generalization of our model, we remove both the consistency loss
and augmented-positives.
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4.4. Comparison with State-of-the-Art Methods

To the best of our knowledge, the NCD task in sensor-based HAR is closely related to
unsupervised clustering. Therefore, the proposed MRNCL is compared with commonly
used clustering algorithms, such as k-means [30] and Agglomerative Clustering (AC) [32],
with three different linkage types (i.e., Average, Complete and Ward). For the approach
building on k-means and AC, a model is first trained using labeled data through supervised
learning. Subsequently, features are extracted with such a trained model for the unlabeled
data that had never been exploited by the model before. Finally, the k-means and AC is
applied to these extracted features to acquire the clustering outcomes. Compared with NCL,
the proposed MRNCL discards CS and AP, and uses our new similarity measure Simi(·).
The modified NCL framework (ModifiedNCL), which removes CS and AP, is chosen for
a fair comparison. To show that our framework outperforms the reference framework,
we also compare our MRNCL with NCL [26]. The above methods are evaluated on the
unlabeled test set by clustering accuracy (%), pairwise F-score (%), precision (%), and recall
(%). Comparison results are shown in Table 4.

Table 4. Comparison with state-of-the-art methods on three datasets for novel class discovery.

Method WISDM UCI-HAR USC-HAD
ACC F FP FR ACC F FP FR ACC F FP FR

k-means 69.97 61.94 54.91 71.03 43.45 49.14 87.26 34.20 72.07 65.02 64.70 65.34
AC-Average 68.70 61.12 54.19 70.09 42.44 49.11 88.58 33.97 66.90 61.27 80.99 49.28

AC-Complete 66.82 59.65 52.67 68.77 42.79 49.13 88.11 34.06 63.05 60.11 72.80 51.19
AC-Ward 68.23 60.94 55.50 67.57 42.22 49.14 88.89 33.95 65.91 60.93 66.68 56.10

ModifiedNCL 80.16 76.02 71.08 81.70 83.48 72.75 70.35 75.31 73.16 72.49 65.50 81.14
NCL 74.26 69.78 68.52 71.09 84.91 75.18 73.11 77.38 74.94 67.75 67.40 68.10

MRNCL(ours) 83.78 80.82 71.70 92.60 86.25 76.85 75.66 78.08 76.06 68.46 67.61 69.34

The following observations can be drawn. Firstly, on the WISDN and USC-HAD
datasets, the clustering accuracy, pairwise F-score, precision, and recall values are higher
than those of k-means [30]. On UCI-HAR, our model has a higher recall but a lower
precision than k-means [30]. In order to gain insights into this phenomenon, we visualize
the clustering performance of k-means [30] and our method on UCI-HAR. We obtain
the feature embeddings of all data form the unlabeled test set on UCI-HAR, which are
visualized by t-SNE [53] with dimensionality reduction. Feature visualization and the
clustering results by using k-means and our method are shown in Figure 4.

As can be observed from Figure 4a, it is evident that cluster1 and cluster3 each
correspond to a specific activity(i.e., sitting and upstairs, respectively), which leads k-means
method to a low false positive rate (i.e., fewer pairs of samples that do not belong to the
same activity are incorrectly clustered together). Consequently, the precision rate achieved
is relatively high (87.26%). However, a significant number of sitting and upstairs samples
are incorrectly clustered in cluster2, which leads to a high false negative rate (i.e., more
pairs of samples that belong to the same activity are not clustered together) so that the recall
rate only achieves only 34.20%. In contrast, Figure 4b demonstrates that our method yields
distinguishable feature representations. This is evident from the observation that different
activities are represented in a more compact area. The result of this is that almost all of the
upstairs samples are clustered in cluster1, and a majority of sitting samples are clustered
in cluster3, which leads our method to enhance the recall rate by +43.88% compared to
k-means. Furthermore, our clustering accuracy and F-score are significantly higher than
k-means [30] on UCI-HAR. Taking into account the performance of our method across all
three datasets, it is evident that MRNCL is preferred to k-means [30] for NCD in HAR.
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Figure 4. Feature visualization and clustering results on UCI-HAR. The 128-dimensional feature
representations (output of the DeepConvLSTM) for unlabeled data are mapped into a 2D embedding
space by the t-SNE [53]. We compare our method with k-means [30]. Different colors represent
different cluster groups, and different point shapes represent the feature representations of different
activity samples. (a) k-means. (b) Our MRNCL.

Secondly, as shown in Table 4, the performance of the three types of linkages in
Agglomerative Clustering (AC) is not superior to the k-means method on the three datasets.
We can observe that on both UCI-HAR and USC-HAD datasets, the AC algorithm with
three linkages achieves significantly higher FP but lower FR compared to ours.

Similar to the k-means method discussed in the first point, this clustering method
is also limited by the feature representations obtained from models trained on labeled
data. In other words, the models only capture transferred knowledge of the old classes
in the labeled data without performing discriminative feature learning between the new
classes for the unlabeled data. This ultimately leads to the fact that the AC algorithm
with three different linkages on the three datasets is significantly lower than our MRNCL
in terms of ACC and F. This once again demonstrates that our model’s ability to learn
inter-class features of new activity classes leads to more accurate and superior performance
in classifying new activities.

Thirdly, as shown in Table 4, our method outperforms ModifiedNCL on WISDN and
UCI-HAR datasets, as we achieve higher ACC, F, FP, FR. On USC-HAD, we visualize the
feature representations and clustering results of unlabeled samples obtained by these two
methods on USC-HAD, as shown in Figure 5.

As shown in Figure 5a,b, it can be observed that neither our method nor ModifiedNCL
was able to generate distinguishable feature representations for running and jumping
samples. Therefore, the clustering results for these two activity samples are poor under
both methods. Due to the inter-activity similarity mentioned in [22,24], similar running
and jumping samples cannot be separately classified into their corresponding single clus-
ter, which decreases the recall rate of our method. Inter-activity similarity represents a
significant challenge for our work, and its impact on the results is discussed in Section 5.
In Figure 5a,b, the feature representations of downstairs, standing, and sleeping samples
are all clustered well, as the maximum number of feature representations is represented in
a compact area by ModifiedNCL and our method. However, for walking-right samples,
ModifiedNCL represents their feature representations in a manner similar to downstairs
and running samples, resulting in their incorrect clustering together, as shown in the black
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dashed box of Figure 5a. In contrast, as shown in the black dashed box of Figure 5b,
the feature representations belonging to walking-right samples are easily distinguishable
from those of other activities Therefore, they are grouped into a more compact area and
well clustered together, leading to a +2.9% increase in ACC and a +2.11% increase in FP
for our method compared to ModifiedNCL. The above performance on three datasets
demonstrates that our similarity metric facilitates the model in learning inter-class features
between new classes, ultimately improving the clustering results.
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Figure 5. Feature visualization and clustering results on USC-HAD. We compare our method with
ModifiedNCL. We also label the two methods on the clustered walking-right activity with black
dashed boxes. Different colors represent different cluster groups, and different point shapes represent
the feature representations of different activity samples. (a) ModifiedNCL. (b) Our MRNCL.

Fourthly, in contrast to NCL [26], our lighter MRNCL still boosts ACC by +9.52% on
WISDM, +1.34% on UCI-HAR, and +1.12% on USC-HAD as shown in Table 4. Additionally,
our method outperforms the NCL framework in terms of F, FP, FR. Therefore, our MRNCL
is superior to the NCL framework.

Overall, the performance of our framework on the three datasets demonstrates the
strong capability of our method to effectively classify unlabeled data into distinct new
activity categories on the new class discovery task in sensor-based HAR.

4.5. More Reliable Neighborhoods

The main advantage of our MRNCL over NCL [26] lines in our similarity measure,
which helps to select more reliable neighborhoods as pseudo-positives for contrastive loss.

This enables our model to learn inter-class features for clustering new class samples
and improving clustering results. To demonstrate the reliability of our proposed similarity
metric in selecting neighborhoods, we calculate the percentage (%) of true positives (i.e.,
they and their query are the same activity class) in the selected KNNS for each epoch during
training steps, and then take the average of all calculated values across both three datasets.

Our approach is compared to the following three approaches.

1. Cosine during ModifiedNCL: the ModifiedNCL framework, employing the cosine
similarity to select neighborhoods. Compared with NCL [26], this framework removes
CS and AP.

2. Cosine during NCL: the original NCL framework [26], employing the cosine similarity
for neighborhoods.
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3. Simi during MRNCL: our framework, which employs a new similarity measure,
Simi(·).
The results are displayed in Figure 6.
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Figure 6. The proportion of true-positives for contrastive loss in elected KNNS during training on three
datasets: (a) WISDN, (b) UCI-HAR, and (c) USC-HAD. Avg: The average of all epoch calculated values.

The following conclusions can be drawn from Figure 6. Firstly, when comparing our
MRNCL with ModifiedNCL, the similarity metric is the only difference between the two
frameworks. Our Simi(·) selects significantly more true positives than the cosine similarity
as the training epochs increase on all three datasets. This is evidenced by the fact that our
method has an average increase of +2.9% on WISDM, +5.27% on UCI-HAR, and +6.99% on
USC-HAD. More true positives reinforces our model’s ability to learn inter-class features of
new classes, thereby improving the clustering results, as shown in Table 4. Additionally,
as shown in Figure 6a,c, the cosine similarity in ModifiedNCL leads to significant instability
in the selection of true positives during training. Therefore, our similarity measure is
significantly superior to the cosine similarity for finding more reliable neighborhoods.
Secondly, NCL [26], which employs the CS and AP forces, outperforms ModifiedNCL
when using the cosine similarity for true positives on UCI-HAR and USC-HAD. However,
as displayed in Figure 6a, NCL [26] becomes unreliable after 60 epochs of training on
the WISDM dataset, reducing the ACC by 5.9%, F by 6.24% as shown in Table 4. Finally,
compared with NCL [26], our framework still performs Avg +3.17% on WISDM and +0.18%
on UCI-HAR even without CS and AP. This further demonstrates the superiority of our
similarity metric. On USC-HAD, although the Avg of true positives is higher than ours, the
clustering performance is inferior to ours, as shown in Table 4, This indicates the reliability
of our lighter framework.

To demonstrate the robustness of the model during training, we also present the
correlation between the number of epochs and loss for the three models on the three
datasets in Figure 7.

In Figure 7, we observe a significant increase in the training loss value at the beginning
of the epoch for all three datasets across all three frameworks. This increase is attributed to
the introduction of the NCL loss and SCL loss at the 2th epoch, as discussed in Section 4.1.3.
As can be seen from Figure 7a,c, the ModifiedNCL experiences fluctuations in the loss
value between 80 and 100 epochs during training on WISDN and USC-HAD. This insta-
bility is attributed to the cosine similarity’s inconsistent ability to select true-positives as
neighborhoods (presented in Figure 6a,c), which impacts the model’s stability. In contrast,
the loss value decreases gently and converges at the end of training for our MRNCL, high-
lighting its exceptional robustness and reiterating the superiority of our similarity metric.
Figure 7b demonstrates that both MRNCL and NCL exhibit consistent and gradual loss
convergence, with a slight increase in the middle, indicating their effectiveness in learning
and optimizing the given task. Across all three datasets, our MRNCL and NCL exhibits
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a smooth performance during training. However, our MRNCL has neither CS nor AP
components, indicating its lightweight nature compared to NCL.
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Figure 7. Training loss vs. epochs plots for the three models on the three datasets: (a) WISDN,
(b) UCI-HAR, and (c) USC-HAD.

5. Discussion

In this study, we have presented a theoretical and experimental exploration of the NCD
process in sensor-based HAR. Across three publicly datasets, our framework exhibited
superior performance in the task of NCD. However, the similarity between different
activities can significantly impact the classification of new class activities in unlabeled
data. To investigate the influence of inter-activity similarity on NCD task, we conduct a
comparative study on the USC-HAD dataset. Throughout the experiment, the activity
categories in the labeled dataset remain unchanged, as presented in Table 1. For the
unlabeled dataset, we initially include three easily distinguishable activities: walking-right,
standing, and sleeping. Subsequently, downstairs, running, and sleeping activities are
sequentially added to the unlabeled dataset. The clustering visualization results of different
unknown activities are illustrated in Figure 8.

As shown in Figure 8a, walking-right, standing, and sleeping activities exhibit signif-
icant dissimilarity, making it relatively easy to classify them. This results in a clustering
accuracy of 91.06% and a pairwise F-score of 84.35%. In Figure 8b, the downstairs and
walking-right activities are highly similar, leading to misclassification and drop in accuracy
to 85.37% and F-score of 74.89%. Compared to Figure 8b, Figure 8c adds the running
activity category but the clustering accuracy and pairwise F-score improve to 88.97% and
84.47%, respectively. In Figure 8c, the running activity is clearly separated from the other
activities while walking-right remains confused with downstairs activity. From Figure 8b,c,
it indicates that the number of new activity categories does not significantly impact the
clustering performance of the new class activities. In Figure 8d, running and jumping activ-
ities are difficult to classify due to their high inter-class similarity. Therefore, it is crucial to
consider the influence of inter-activity similarity [24] on both recognition accuracy and the
ability to discover new activities in our framework for the NCD task.
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Figure 8. The clustering visualization results of different unknown activities in the unlabeled dataset
on USC-HAD. Different colors represent different cluster groups, and different point shapes repre-
sent the feature representations of different activity samples. (a) Initially three activity categories;
(b) initially three activity categories, downstairs; (c) initially three activity categories, downstairs and
running; and (d) initially three activity categories, downstairs, running, and jumping.

6. Conclusions

This paper presents the attempt to study the new class discovery problem in sensor-
based Human Activity Recognition. A holistic framework called More Reliable Neighbor-
hood Contrastive Learning (MRNCL) is proposed to address this problem. This framework
references a visual domain framework but is more lightweight and effective than the
reference framework. In the proposed framework, we employ a new similarity measure
to select more reliable neighborhoods for unlabeled queries in the embedding space and
adopt contrastive learning to take the knowledge from these neighborhoods to improve
the clustering accuracy. Experiments on three datasets demonstrate that our method is
effective in sensor-based HAR for new class discovery task. We hope that our work will
kindle further research in this crucial direction.
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