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Abstract: Despite longstanding traditional construction health and safety management (CHSM)
methods, the construction industry continues to face persistent challenges in this field. Neuroscience
tools offer potential advantages in addressing these safety and health issues by providing objective
data to indicate subjects’ cognition and behavior. The application of neuroscience tools in the CHSM
has received much attention in the construction research community, but comprehensive statistics on
the application of neuroscience tools to CHSM is lacking to provide insights for the later scholars.
Therefore, this study applied bibliometric analysis to examine the current state of neuroscience tools
use in CHSM. The development phases; the most productive journals, regions, and institutions;
influential scholars and articles; author collaboration; reference co-citation; and application domains
of the tools were identified. It revealed four application domains: monitoring the safety status of
construction workers, enhancing the construction hazard recognition ability, reducing work-related
musculoskeletal disorders of construction workers, and integrating neuroscience tools with artificial
intelligence techniques in enhancing occupational safety and health, where magnetoencephalog-
raphy (EMG), electroencephalography (EEG), eye-tracking, and electrodermal activity (EDA) are
four predominant neuroscience tools. It also shows a growing interest in integrating the neuroscience
tools with artificial intelligence techniques to address the safety and health issues. In addition,
future studies are suggested to facilitate the applications of these tools in construction workplaces by
narrowing the gaps between experimental settings and real situations, enhancing the quality of data
collected by neuroscience tools and performance of data processing algorithms, and overcoming user
resistance in tools adoption.

Keywords: construction health and safety management (CHSM); neuroscience; bibliometric analysis;
hazard recognition; fatigue monitoring

1. Introduction

The construction industry ranks among today’s most hazardous sectors [1]. Conse-
quently, health and safety on construction sites have emerged as a topic of primary concern
for the global construction industry [2]. According to a report by the International Labor
Organization, about one in six fatal work accidents occur in the construction industry [3].
Additionally, the incidence of non-fatal occupational injuries and illnesses in the construc-
tion sector is 30% higher than in other industries [4]. Despite the numerous safety and
health regulations in the construction industry, construction accidents and occupational
diseases remain high compared to other occupations [5]. This can be attributed to the
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inherently hazardous, dynamic, and often strenuous conditions under which construction
work is performed [6]. The repercussions of these hazards not only affect the individual
workers but also have broader implications for project timelines, costs, and overall industry
reputation [7]. Over the years, traditional safety training programs, on-site safety inspec-
tions, and the establishment of safety policies and standards have been implemented to
mitigate these risks; however, more innovations in prevention strategies and measures are
needed, as the industry is saturated with safety and health management [8].

Potential solutions for public safety and health issues on construction sites have pri-
marily focused on management strategies, education, regulations, and medical monitoring.
However, these methods often rely on subjective, self-reported questionnaires prone to
biases and memory distortions [9]. Ringen noted that data standardization allows for more
accurate monitoring of safety and health issues [10]. In this context, neuroscience tools
offer a real-time, objective data framework that can help overcome these limitations by
providing standardized monitoring grounded in empirical measurements. Neuroscience
tools can measure not only stimulus-induced physiological signals but also real-time brain
activity signals [11].

The use of neuroscience tools on construction workers in construction sites also has
great potential to improve workers’ safety and health. Construction sites are complex and
involve hazardous environments. Traditional safety and health management approaches
that rely on manual monitoring, such as safety inspections, require a large number of
safety staff [12]. Also, the manual inspection does not allow for continuous and real-
time monitoring, and it could only know the human behaviors. What is worse, manual
inspections may be subjective and prone to errors. The application of neuroscience tools
would allow for continuously and real-time monitoring of workers, and it also provides
objective data [13]. Moreover, these tools also provide psychological data to indicate
workers’ cognitive states, which provide warnings of their unsafe status in advance.

Neuroscience tools can be broadly categorized into “non-invasive brain measurement
techniques” and “peripheral physiological measurement techniques”. The brain measure-
ment techniques include Electroencephalography (EEG) for measuring changes in brain
potential activity, Functional Magnetic Resonance Imaging (fMRI) for measuring changes
in blood flow in the brain, Functional Near Infrared Spectroscopy (fNIRS) for measuring
blood oxygen levels in the brain, and Magnetoencephalography (MEG) for measuring the
magnetic field generated by neuron discharges in the brain. The peripheral physiological
measurement techniques include Electrocardiogram (ECG) for measuring the electrical
activity of the heart, Photoplethysmography (PPG) for measuring blood volume changes,
Electromyogram (EMG) for measuring muscle electrical activity, Electrodermal Activity
(EDA) for measuring changes in skin conductivity, and eye-tracking for measuring eye
position and movement. These tools provide unique insights into the intricacies of human
cognition and physiology by enabling the real-time monitoring of workers’ mental states.
For instance, EEG can track changes in brain waves to monitor and assess the cognitive
status of construction workers, such as attention and vigilance [14], fatigue [15], stress [16],
as well as the effects of the work environment on subjects’ emotion [17]; also, EDA mon-
itors sweat gland activity to identify increases in psychological stress [18]. Moreover,
eye-tracking allows continuous assessment of workers’ visual attention allocation and
hazard identification [19–22].

Several reviews on CHSM based on neuroscience tools have been conducted and
published [13,15,23–26]. Among existing reviews, the adoption of EEG has received the
most interest. Cheng et al. [13] conducted a critical review to examine the applications of
EEG in measuring and computing construction workers’ cognitive statuses; Saedi et al. [24]
conducted a systematic review for revealing the potential applications of mobile EEG
on construction sites and investigating the contribution of this technology to workers’
wellbeing and safety; Zhang et al. [23] summarized the existing studies that have involved
EEG and construction safety thorough a systematic review. Regarding a broader range of
neuroscience tools, a critical review from Ahn et al. [25] examined the application domains
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of wearable sensing technology in construction safety and health; some of the neuroscience
tools, including EEG, ECG, PPG, eye-tracking, and EMG, were covered in the wearable
sensing technology, but there was a lack of discussion on the neuroimaging tools fNIRS and
fMRI which have begun to be used in construction safety in recent years. Wang et al. [11]
applied a bibliometric analysis to analyze the current research of applying neuroscience
tools in the whole building life cycle. They pointed out that construction safety and
occupational health are two main application domains, but they failed to provide further
discussion of specific applications of these tools in the safety and health management. A
comprehensive grasp in CHSM domain incorporating the utilization of neuroscience tools
is lacking. This study hence proposed to have a comprehensive and holistic bibliometric
analysis of CHSM research that incorporates the utilization of neuroscience tools.

The bibliometric analysis was selected because its quantitative analysis can avoid
subjectivity and lacking reproducibility [27]. It can provide a more in-depth understanding
of the facets embodying diverse research emphases over the years, as well as the relation-
ships between them [28]. It is also capable of unraveling and mapping the complexity of
knowledge accumulation and evolution in established fields by handling large amounts of
unstructured data [29].

This analysis encompasses various dimensions, including performance analysis, sci-
ence mapping, and content analysis. This study covers the statistical analysis of publication
counts, geographical distribution, authorship patterns, and keyword trends during the
period from 2001 to 2023. The objectives of this study include: (1) to analyze influential
journals, keywords, scholars, and articles in the field of neuroscience tools use in CHSM;
(2) to analyze existing mainstream research topics in the field of neuroscience tools use in
CHSM; (3) to discuss the limitations or gaps and to propose a research framework to guide
future scholarship and research efforts.

2. Materials and Methods
2.1. Research Framework

The framework of the bibliometric analysis in this study is shown in Figure 1. First,
basic information of the related literature, including the publication year, publication
sources (journal, country, and institution), authors, number of citations, and keywords,
were extracted for further analysis.

Then, the two kinds of bibliometric techniques, performance analysis, and scientific
mapping, were applied [29]. The performance analysis is a type of descriptive analysis,
which specifies the characteristics of bibliometric studies [30]. It uses indicators such
as the number of publications, citations, and the H-index to measure the productivity
and impact of countries or regions, sources, and authors. It was used for analyzing the
publication years and sources in this study. The science mapping was used to visualize
the connections between elements like authors, publications, sources, and countries to
enable an enhanced understanding of research landscapes and dynamics within a research
field [31]. Specifically, it was applied for co-authorship network, which indicates the leading
collaboration communities; co-citation reference analysis, which reveals the links between
pivotal publications; and co-occurrence keywords analysis, which shows relationships
between important concepts or topics.

Finally, based on the performance analysis and science mapping, the development
phases, leading countries or regions, institutions and main journals, leading authors and
literature, research themes and hotspots, limitations, and future prospects of this research
field were obtained.
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2.2. Publications Search and Selection

In order to obtain a robust research process, this study strictly adheres to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [32,33].
The PRISMA framework, depicted in Figure 2, is organized into three pivotal stages: (i) Re-
trieval Process, (ii) Screening—comprising both First and Second Screening phases, and
(iii) Final Selection. This structured approach facilitates a nuanced exploration, ensuring
the review process remains comprehensive and discerning.

2.2.1. Databases Accessed

In the Retrieval Process, a systematic search strategy was implemented. Initially, the
Web of Science, Scopus, and PubMed online databases were chosen as the primary data
sources. Web of Science is known for its comprehensive coverage of journals across various
disciplines, making it suitable for the multidisciplinary nature of neuroscience in CHSM.
Meanwhile, Scopus is widely used among researchers in engineering and management [34].
PubMed is a comprehensive database that covers biomedical and life sciences literature,
including the latest cutting-edge achievements in neuroscience [35]. Integrating the above
three online databases provides the necessary support for a comprehensive search of
relevant literature at the intersection of CHSM and neuroscience.

2.2.2. Search Strategy

This study explored the use of neuroscience tools in CHSM between 2001 and 2023. A
combination of search queries inspired by prior reviews, outlined in Table 1, was employed to
ensure that the most relevant and comprehensive research was obtained. The use of advanced
search categories coupled with Boolean operators further refined the retrieval process.
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Table 1. Search query.

Database Search Query

Web of Science
(n = 53)

Scopus
(n = 185)

PubMed
(n = 21)

(“construction industry” OR “construction sector” OR “construction
organization” OR “building industry” OR “building project”) AND

(“construction safe *” OR “worker safe *” OR “labor safe *” OR “accident
perception” OR “collision perception” OR “risk recognition” OR “hazard
recognition” OR “danger recognition” OR “vigilance” OR “attention” OR
“alertness” OR “notice” OR “cognitive status” OR “cognitive state” OR

“mental status” OR “mental state” OR “brain status” OR “brain state” OR
“psychological status” OR “psychological state” OR “fatigue” OR “exhaustion”

OR “work load” OR “mental load” OR “cognitive load” OR “stress” OR
“tension” OR “emotion” OR “occupational health *” OR “physical strain” OR

“ergonomic risk” OR “muscle fatigue” OR “musculoskeletal disorder” OR
“spinal compression” OR “injury” OR “illness” OR “therapy” OR

“interference” OR “recovery”) AND (“Electroencephalogram” OR “EEG” OR
“eye tracking” OR “ET” OR “event related potential” OR “ERP” OR

“Electrocardiogram” OR “ECG” OR “Electromyography” OR
“electromyogram” OR “EMG” OR “Electrodermal activity” OR “EDA” OR

“Photoplethysmography” OR “PPG” OR “functional near-infrared
spectroscopy” OR “fNIRS” OR “functional magnetic resonance imaging” OR

“fMRI” OR “magnetoencephalography” OR “MEG”)
Note: * represents a wildcard in the search formula to help search for more keywords.

2.2.3. Include & Exclude Criteria

To ensure a rigorous and comprehensive exploration of literature regarding the appli-
cation of neuroscience tools in CHSM, we implemented a stringent inclusion and exclusion
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protocol, depicted in Figure 2. The screening procedure was methodically divided into
three stages to refine the extracted documents from our initial retrieval of 259 articles.

Stage 1: The first screening aimed at ensuring relevance. Only articles centered
on CHSM, and those with a clear focus on the application of neuroscience tools, were
remained. From this initial screening, 22 articles were considered irrelevant and discarded,
and 237 articles were allowed into the second screening.

Stage 2: The second screening was dedicated to ensuring the quality and specificity of
the chosen literature. Only empirical studies published as journal articles or conference
papers and published between 2001 and 2023 were selected for inclusion in this review.
Furthermore, to uphold research integrity, only peer-reviewed English publications were
considered. This step excluded 46 articles, reducing the pool to 191.

Stage 3: Beyond the primary search mechanism, additional methods were incorpo-
rated: manual examination of reference lists from the shortlisted articles, citation tracking
of seminal papers, and consultation with domain experts to validate the relevance and
significance of our chosen literature. To prevent redundancy, 26 duplicate articles were
removed. Ultimately, 165 articles were deemed fit for this study.

2.2.4. Science Mapping

After completing data preprocessing involving synonym merging and eliminating
irrelevant words, science maps were generated, including the co-authorship network of
authors and countries (regions), co-citation network of reference, and co-occurrence net-
work of keyword cluster, which could depict the integration and evolution of neuroscience
tools in CHSM research. These science maps were obtained by standardizing author names
and keywords to consolidate variants that refer to the same concepts first, then putting
data from Scopus, Web of Science, and PubMed into the bibliometric analysis software.
The software of bibliometric analysis applied in this study includes VOSViewer 1.6.19 and
Bibliometrix 4.1.3. VOSviewer, developed by Leiden University in the Netherlands, is a
professional tool for structuring and visualizing bibliometric networks. The layer-labeling
structure of VOSviewer effectively showcases interactions within dense network nodes,
making it ideal for examining intricate networks and handling vast data from extensive
citations and keyword co-occurrences [36]. Bibliometrix is an open-source online visual-
ization software based on RStudio [37]. In bibliometric analysis, Bibliometrix excels in
statistical evaluations, indexing computations, and network assessments. It encompasses
all essential tools for a comprehensive bibliometric analysis in line with scientific mapping
protocols, enhancing the sophistication and reproducibility of such analyses [38].

3. Results and Analysis
3.1. Development Phases during 2001 to 2023

The evolution of a research field can be traced through the ups and downs of its
publication history. As depicted in Figure 3, an examination of the literature from 2001 to
2023 revealed that the level of interest in this field is still increasing. Over these years, a
total of 165 publications have been published. The exploration of the development trend in
the application of neuroscience tools in CHSM revealed several phases.

Phase 1 (2001–2007): Nascent period. The initial phase of development spanned from
2001 to 2007. During this period, the field was in its infancy, with publication numbers
remaining relatively low. No year within this phase saw more than two publications,
signifying the research area’s early exploration and groundwork-laying stage.

Phase 2 (2008–2014): Rapid ascension. The research field experienced a remarkable
surge in publication output in this period. Commencing in 2008, there was a 33% increase
over the previous year, with four papers being introduced. Each year within this interval
successively outdid the previous one, and this momentum did not wane. The number of
publications reached a peak of 14 in 2014, representing a 467% increase compared to the
number published in 2007. This surge could be attributed to the widespread adoption of
EMG technology, which has established its utility in CHSM.
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Phase 3 (2015–2023): Contemporary trends. From 2015 to 2023, the publication pattern
stabilized, with the number of annual publications fluctuating between 8 and 15. There was
a decline in 2015 followed by sustained growth, likely linked to the introduction of new
technologies like EEG and eye-tracking in 2016. As the field matured, publications declined
slightly to 9 in 2021 but rebounded to 13 in 2022, showing the resilience and continued
interest in this research area. In 2023, 11 publications attested to steady development. Al-
though promising, this field remains in its developing phase, with numerous opportunities
arising from emerging evidence.

An additional aspect worth considering is the H-index, which indicates the impact
and scholarly influence of the research in certain years. Similar to the annual publication
data trend, this metric experienced significant oscillations over the years. A noteworthy
peak was reached in 2019, with a count of nine. However, the subsequent two years
have declined, suggesting varying levels of influence and recognition within the academic
community. It may be because the latest research has not yet reached sufficient citations
and needs more time to prove its value.

3.2. Publication Sources over the Years: Journals, Regions, and Institutions
3.2.1. Journal Analysis

This study presents a comprehensive view of source impact. As shown in Figure 4,
the total citations are represented by columns indicating quantity. The H-index is illus-
trated with a dotted line, signifying quality. Different column colors denote the average
publication year, serving as an indicator of recency. The top 10 sources in total citations
were Automation in Construction (533 total citations), Journal of Construction Engineering and
Management (439), BMC Public Health (287), Sustainable Development (272), Safety Science
(163), BMC Musculoskeletal Disorders (140), Applied Ergonomics (125), PLoS One (116), Journal
of Management in Engineering (95), and Resources Policy (89). When observing the broader
picture, Automation in Construction excelled in all metrics, with the highest total citations
(533) and H-index (11), which reveals its significant impact and activity in the field. To
clarify the main topics related to the field of interest within Automation in Construction, a
detailed analysis was undertaken. Specifically, titles, abstracts, and keywords of all relevant
articles published in the journal were reviewed. The most frequent 20 terms were extracted
to discern the main topics. The textual analysis revealed that one of the main topics in
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Automation in Construction is related to the fatigue, mental or cognitive safety, and health of
construction workers.
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Similarly, the Journal of Construction Engineering and Management has made substantial
contributions, particularly in hazard recognition and occupational health, with a strong
inclination towards leveraging computer vision technologies. As for Safety Science, it
emerged as an evolving source with its debut publication in 2016 and pronounced interest
in safety training and management, which points towards prospective trends in research.
Conversely, BMC Musculoskeletal Disorders, which started in 2007, has diminished in recent
activity. In addition, BMC Public Health boasts a higher H-index (9) in comparison to Journal
of Construction Engineering and Management (7), even though its total citations (287) are
dwarfed by the latter’s 439. This discrepancy suggests that a higher H-index does not
necessarily correspond with a higher citation count.

A domain-centric analysis revealed that construction engineering journals, notably
Automation in Construction, Journal of Construction Engineering and Management, and Journal of
Management in Engineering, outperformed non-construction journals across various metrics.
Specifically, construction engineering sources averaged a total citation (TC) of 392.67,
compared to 166.71 for non-construction engineering sources. In terms of the number
of publications (NP), construction engineering sources averaged 6.67, while their non-
construction counterparts averaged 5.14. Additionally, the average publication year for
construction engineering journals was more recent, standing at 2018, compared to 2014 for
non-construction engineering journals.

This superior performance of construction journals can be attributed to their special-
ized focus on worker health and safety and the direct relevance of their research findings.
As the industry evolved and integrated advanced neuroscience tools, construction scholars
began to leverage these tools, building on insights from earlier non-construction research.
Furthermore, the higher citation count for construction-centric journals underscores their
influence within the research community. Despite the slightly subdued performance of
non-construction journals, their contributions highlight the interdisciplinary nature of the
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research. As the field progresses, construction journals will likely remain central, with
interdisciplinary collaborations continuing to offer fresh methodologies and perspectives.

3.2.2. Country (Region) and Institution Analysis

Figure 5 depicts the distribution of publications and the collaborating network between
countries or regions worldwide. This distribution has been obtained statistically from the
institutional address or affiliation of the corresponding author. These countries (regions)
were then grouped into clusters based on a separate analysis of international collaborations
by country co-authorships network in VOSviewer. The top 20 frequent terms for each cluster
were analyzed to identify the primary research theme of each cluster. The green cluster,
representing “Occupational Health”, with a main representation from countries such as
Canada, Norway, Pakistan, and Japan, emphasizes the significance of ensuring occupational
health of workers in construction environments. Representative works in this cluster
include the studies of [39–43]. The blue cluster, signifying “Mental Health”, encompasses
countries or regions like China, Hong Kong, and Australia, focusing on mental health
nuances within CHSM. Representative works in this cluster include the studies of [19,44–47].
The orange cluster, centered on “Risk Factors”, led by countries and regions like the United
States, South Korea, Taiwan, and Turkey, illustrates the identification of risk factors in
construction processes and environments. Representative works in this cluster include the
studies of [48–51]. The yellow cluster, dedicated to “Safety Indicators”, primarily involves
Denmark and Sri Lanka. This theme emphasizes the diverse safety indicators essential for
evaluating and ensuring safety standards, with a prominent contribution being [52].
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The size of the bubble in Figure 5 provides insights into the volume of published doc-
uments, and the number and thickness of the connecting lines offer a view of the frequency
and intensity of collaboration. The United States had the highest number of publications,
with 53 documents and 1283 citations. It was followed by China (24 publications, 659 cita-
tions), Hong Kong (13 publications, 580 citations), the United Kingdom (13 publications,
113 citations), Australia (8 publications, 125 citations), Canada (7 publications, 105 citations),
South Korea (7 publications, 94 citations), Denmark (6 publications, 125 citations), France
(5 publications, 87 citations), Japan (5 publications, 23 citations), Sweden (4 publications,
70 citations), and Turkey (4 publications, 43 citations). It shows that the United States
maintains a dominant position in traditional metrics of scholarly collaborations; countries
(regions) like China, Hong Kong, and especially Australia demonstrate an edge in the
recency of academic engagements according to the average publish year. This suggests that
these regions have been particularly active in contemporary scholarly endeavors, reflecting
a strategic emphasis on current research topics and methodologies. The United States also
shows a clear lead in terms of partnership breadth, indicating its significant influence and
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activity in the world, reflected in the most significant number of color types through the
U.S. connection to other countries. China also demonstrates high regional cooperation
activity, especially the strongest level of collaboration strength with the Hong Kong Special
Administrative Region, which can be seen as the thickest link in all connections.

From the perspective of the institute shown in Table 2, the City University of Hong
Kong and Tsinghua University emerged as leading institutions, each boasting four publi-
cations. The City University of Hong Kong demonstrated significant academic influence,
with its works being cited 295 times. Other institutions included the EMGO+ Institute for
Health and Care Research, Purdue University, and the University of Florida, each with three
publications. Whereas Purdue University’s works garnered 43 citations, the University of
Florida’s research was cited 31 times.

Table 2. Total citations of institutions with more than two publications.

Institute Number of Publications Total Citations

City University of Hong Kong 4 295
Tsinghua University 4 55

EMGO+ Institute for Health and Care Research 3 128
Purdue University 3 43

University of Florida 3 31
Coronel Institute of Occupational Health 2 105

Huazhong University of Science and
Technology 2 116

National Institute of Occupational Health 2 54
North Carolina State University 2 88

The Hong Kong Polytechnic University 2 91
University of Michigan 2 107

University of Nebraska-Lincoln 2 166
University of Waterloo 2 32

3.3. Influential Scholars and Author Collaboration
3.3.1. Influential Scholars

Table 3 highlights the scholarly contributions of the top 15 authors. Considering the
publication count, total citations, H-index, and average publication year, it indicates that
Van Der Molen, Henk F and Boschman, Julitta S. stand out as trailblazing researchers in the
arena of occupational safety and health for construction workers using various physiologi-
cal tools. Their seminal works in the early 2010s set the foundation for subsequent research
in this domain [53,54]. Li Heng stands out as a luminary in the topic of “Construction
Informatics”, “Construction Engineering and Management”, and “Construction Health
and Safety”. He has the highest citation count of 273, which proves that his scholarship has
a broad impact. Moreover, his five publications signal a constant and meaningful engage-
ment with the field. Chen, Jiayu and Esmaeili, and Behzad both keep an H-index of 5. The
former has made outstanding contributions mainly in “Human-centric Mental Sensing”,
while the latter specializes in discussing “Construction Safety”, “Risk Management” and
“Decision Making”. On the contrary, while possessing a high citation count of 272, Berardi
Umberto attributes most of this recognition to singular influential work in “Sustainability
and Building Science”, which becomes evident with his H-index of 1. Choi Byungjoo, and
Jebelli Houtan both displayed a recent surge in research contributions centered around
2020. Choi’s research gravitates toward “Smart Construction and Construction Safety”,
while Jebelli focuses on “Construction Robotics” and “Wearable Technologies”. Other
authors have also covered a wide range of research topics, including “Deep Learning”,
“Signal Processing”, “Artificial Intelligence in Building Management”, “Cognitive Neural
Engineering”, “Brain-Computer Interfaces”, “Occupational Health”, and “Musculoskeletal
Disorders of Construction workers”.
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Table 3. Most influential author analysis.

Author TC NP H-Index Ave. Pub. Year Affiliation Research Subject

Li, Heng 273 5 4 2020
The Hong Kong

Polytechnic University,
Hong Kong SAR, China

Construction Informatics, Construction
Engineering and Management, Construction

Health and Safety

Berardi, Umberto 272 1 1 2012 Toronto Metropolitan
University, Canada

Sustainability, Energy Efficiency, Acoustics,
Urban Resiliency, Building Science

Chen, Jiayu 263 4 5 2017
City University of Hong
Kong, Hong Kong SAR,

China

Human-centric Mental Sensing,
Human-Robot Collaboration, Building

Digital Twin, Smart Urban Grid
and Simulation

Esmaeili, Behzad 258 4 5 2018 Purdue University,
United States

Construction Safety, Risk Management,
Decision Making

Hasanzadeh,
Sogand 257 4 4 2019 Purdue University,

United States
Smart Safety, Wearable TechAR/VR/MR,

Human-AI Teaming, Human Factor

Wang, Di 143 2 2 2018 University of Michigan,
United States

Deep Learning, Signal Processing, Mutual
Information

Choi, Byungjoo 137 3 3 2020 Ajou University,
South Korea

Construction Engineering and Management,
Construction Automation, ICT in
Construction, Smart Construction,

Construction Safety

Jebelli, Houtan 121 3 4 2020 Pennsylvania State
University, United States

Construction Robotics, Construction
Automation, Human Robot Collaboration,

Wearable Technologies,
Engineering Education

Van Der Molen,
Henk F 118 3 3 2013 VU University Medical

Center, Netherlands

Construction Worker, Musculoskeletal
Disorders, Work-related Risk Factors,

Preventive Measures, Physical and
Mental Health

Dzeng, Ren-Jye 112 2 1 2016 National Chiao Tung
University, Taiwan, China

Construction Management, Artificial
Intelligence, Mobile App, Sensor, Eye tracker

Lin, Chin-Teng 111 1 1 2016 National Chiao Tung
University, Taiwan, China

Computational Intelligence, Machine
Learning, Fuzzy Neural Networks,

Cognitive Neuro-Engineering,
Brain-Computer Interface

Song, Xinyi 111 1 2 2016 Georgia Institute of
Technology, United States

Building Energy Efficiency, Occupational
Health, Facility Management, Construction

Safety, Construction Dispute

Boschman,
Julitta S. 110 2 2 2012 University of Amsterdam,

Netherlands

Musculoskeletal Disorders, Occupational
Health, Work-related Health Surveillance,

Processing Assessment

Albert, Alex 92 3 3 2019 North Carolina State
University, United States

Construction Safety, Injury Prevention, Risk
Management, Hazard Recognition,

Safety Interventions

Yu, Yantao 91 1 1 2019
The Hong Kong

Polytechnic University,
Hong Kong SAR, China

Construction Informatics, Wearable Device,
Behavior Recognition

3.3.2. Author Collaboration

Figure 6 shows the results of an analysis of the authors collaborative network within
CHSM. A total of 12 clusters representing distinct research communities were discerned
from the collaboration data. Of these, the six core clusters with the highest total citations
were selected for further analysis. The first is Cluster 1, mainly composed of Chen Jiayu,
Dai Fei, and Li Heng et al. This cluster had the highest academic impact, amassing a re-
markable 1291 citations. The highly cited publications included studies of [14,45,55]. These
studies focused on the mental and physical fatigue of construction workers, emphasizing
the utilization of EEG in monitoring construction workers’ mental states. Cluster 4 and
Cluster 8 are two thematically similar clusters, both focusing on risk perception, situation
awareness, and hazard identification for construction workers based on eye-tracking [20,21].
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The former consists of Dzeng, Ren-Jye, Fang, and Yi-Cho et al., and the latter is mainly
formed by Hasanzadeh Sogand, Esmaeili Behzad, and Dodd Michael D. Clusters 3, 10,
and 11 highlight research on interventions to improve the physical and mental health of
construction workers. Cluster 3, illuminated by Proper Karin I, Van Der Beek Allard J, and
Groeneveld Iris F, focuses on the importance of lifestyle modifications to address cardiovas-
cular disease risks, with emphasis on both short and long-term impacts [56]. Cluster 10,
represented by Sluiter Judith K, Van Der Molen Henk F, and Boschman Julitta S., examines
musculoskeletal disorders among construction workers specifically [54]. Cluster 11 relates
to participatory ergonomics interventions for preventing musculoskeletal disorders, with
key works by Brandt Mikkel, Ajslev Jeppe Z.N., and Andersen Lars L. [42,43]. Together,
these three clusters demonstrate a research emphasis on exploring various health inter-
ventions, including lifestyle changes, ergonomic adjustments, and targeted training, to
improve the physical and mental health of construction workers. The collaboration data
have revealed key research communities in construction research. This analysis not only
identifies the major players and their contributions but also offers a roadmap for future
research directions in the field.
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3.4. Highly Cited Articles and Reference Co-Citation Analysis
3.4.1. Top 10 Most-Cited Papers

Table 4 represents the top 10 most-cited papers in CHSM, published from 2012 to
2019, which exhibit a substantial impact on the academic and practical community. The
most cited paper, “Using eye-tracker to compare search patterns between experienced
and novice workers for site hazard identification” by Dzeng et al. [20], published in Safety
Science in 2016, has the highest number of citations, 111. This article examines the impact
of experience on hazard identification in digital construction sites using eye-tracking,
highlighting the difference between speed and accuracy. At the same time, Chen et al. [45]
obtained significant attention with 100 citations. The article of Wang et al. [14] published in
Automation in Construction obtained 98 citations. Following references are [54] (total cited
by 97), [21] (total cited by 95), [55] (total cited by 91), [22] (total cited by 87), [57] (total cited
by 70), [58] (total cited by 66), [59] (total cited by 63). Interestingly, six of the ten most cited
articles used eye-tracking, which has been well received by researchers. All the articles
published in highly reputed journals with high impact factors influence researchers to
encourage publishing articles on this topic in these highly reputed journals and develop
future research areas.
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Table 4. Most cited documents.

Author Title Source Year TC Research Focus

Dzeng R. J.; Lin C. T.;
Fang Y. C. [20]

Using eye-tracker to compare search patterns between
experienced and novice workers for site

hazard identification
Safety Science 2016 111

Examining the impact of experience on hazard
identification in digital construction sites using

eye-tracking, highlighting the difference between
speed and accuracy.

Chen J.; Song X.; Lin Z. [45]
Revealing the “invisible Gorilla” in construction:
Estimating construction safety through mental

workload assessment
Automation in Construction 2016 100

Examining the role of inattentional blindness on
hazard identification in construction sites using

eye-tracking and EEG analysis.

Wang D.; Chen J.; Zhao D.; Dai F.;
Zheng C.; Wu X. [14]

Monitoring workers’ attention and vigilance in
construction activities through a wireless and wearable

electroencephalography system
Automation in Construction 2017 98 Exploring the effectiveness of a wearable EEG system

in evaluating the attention of construction workers.

Boschman J.S.; Van Der Molen H.F.;
Sluiter J.K.;

Frings-Dresen M.H. [54]

Musculoskeletal disorders among construction workers:
A one-year follow-up study

BMC Musculoskeletal
Disorders 2012 97

Using questionnaires to assess the prevalence,
work-relatedness, and work problems of

musculoskeletal disorders among different
construction occupations to examine the value of

choosing preventive measures.

Hasanzadeh S.; Esmaeili B.;
Dodd M.D. [21]

Measuring the impacts of safety knowledge on
construction workers’ attentional allocation and hazard

detection using remote eye-tracking technology

Journal of Management
in Engineering 2017 95

Employing eye-tracking to examine the effects of
safety knowledge on hazard detection among

construction workers.

Yu Y.; Li H.; Yang X.; Kong L.; Luo
X.; Wong A.Y.L. [55]

An automatic and non-invasive physical fatigue
assessment method for construction workers Automation in Construction 2019 91

Introducing a computer vision technique to assess
construction workers’ physical fatigue through 3D

motion capture and biomechanical analysis.

Hasanzadeh S.; Esmaeili B.;
Dodd M.D. [22]

Examining the relationship between construction
workers’ visual attention and situation awareness under

fall and tripping hazard conditions: Using mobile
eye tracking

Journal of Construction
Engineering and Management 2018 87

Studying the relationship between construction
workers’ attention and situational awareness using

eye-tracking.

Jeelani I.; Albert A.; Han K.;
Azevedo R. [57]

Are visual search patterns predictive of hazard
recognition performance? Empirical investigation using

eye-tracking technology

Journal of Construction
Engineering and Management 2018 70

Using eye-tracking to analyze the link between
construction workers’ visual patterns and hazard

recognition performances and the impact of tailored
training on enhancing these patterns

and performance.

Jebelli H.; Choi B.; Lee S.H. [58] Application of wearable biosensors to construction sites.
I: Assessing workers’ stress

Journal of Construction
Engineering and Management 2019 66

Creating a framework using wearable sensors and
machine learning to continuously predict construction

workers’ stress from physiological signals.

Umer W.; Li H.; Szeto G.P.Y.;
Wong A.Y.L. [59]

Identification of biomechanical risk factors for the
development of lower-back disorders during manual

rebar tying

Journal of Construction
Engineering and Management 2017 63

Analyzing lumbar biomechanics in various postures
during rebar tying, highlighting stooping’s role in
increased lower back disorders in rebar workers.
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3.4.2. Reference Co-Citation Analysis

Co-citation refers to the concurrent citation of two documents by a third distinct paper.
The frequency with which two documents are co-cited indicates the thematic relationship
between their content [60]. Such co-citation patterns can reveal “classic” or foundational
publications in a research field. Importantly, these patterns are dynamic and may evolve
over time, reflecting shifts in the field’s focus or paradigms. This temporal variability in
co-citation not only provides valuable insights into the development of the field but also
aids in identifying paradigmatic changes [37].

The reference co-citation network of neuroscience tools used in CHSM is shown in
Figure 7. The size of the bubbles represents the number of standardized citations received
by the article, and the thickness of the lines represents the strength of the co-citation
relationship. Links and proximity between two articles identify the co-citation relationship
between them. The color of the bubbles indicates the cluster associated with the article.
Each bubble is labeled with the first author of the article and the year of publication. A total
of four clusters were generated from the VOSviewer co-citation analysis. Cluster 1 (red)
primarily concentrates on site safety and risk identification, especially the physical safety of
workers. Key topics include hazard recognition and identification [61], the use of wearable
tracking devices [62,63], and eye-tracking technologies [19]. Cluster 1 also emphasizes
fatigue management [64,65] and task analysis [66,67]. These works often employ various
models and monitoring techniques to evaluate workers’ safety in real-world construction
sites. Cluster 2 (green) focuses on exploring the psychological dimensions of workers’ safety
in the construction industry and safety education and training. The papers delve into mental
workload [68], cognitive function [69], and brain activity, often utilizing EEG analysis [70].
Taxonomy and educational objectives related to safety are also featured prominently [71,72].
Cluster 3 (blue) revolves around the effects of physiological stress recognition, responses,
and environmental factors [73] on workers in the construction industry. Cluster 3 also
explores the influence of occupational factors such as high altitudes [74] and physical
workload [75]. Cluster 4 (yellow) primarily engages with data analysis methodologies,
particularly those related to EEG dynamics. Key tools include open-source toolboxes like
EEGLAB [76], and key methods include independent component analysis in single-trial
EEG studies.

3.5. Application Domains of Neuroscience Tools in CHSM

Keywords analysis was applied to extract the application domains of neuroscience
tools within the CHSM. The results of keyword co-occurrence network are shown in
Figure 8A. Four clusters were identified which are distinguished by color, and the node size
corresponds to the frequency of keyword appearance. In addition, the degree of centrality
metric was applied to each keyword across the network to identify core keywords. Core
keywords were extracted for each of the four clusters, with the results shown in Table 5
(the number following each keyword indicates its degree of centrality within the network).
Keywords with higher centrality are more interconnected and cover diverse research topics,
signifying core issues and directions [29].

Table 5. Cluster terms.

Cluster Keywords

1

occupational safety (0.28) EEG (0.22) wearable biosensor (0.09) physiological signals (0.06) activity recognition
(0.03) aerobic fatigue threshold (0.03) aging (0.03) attention (0.03) construction labor shortage (0.03) fatigue

monitoring (0.03) muscle activity (0.03) oxygen prediction (0.03) scaffold building (0.03) inattentional blindness
(0.03) occupational stress (0.03) supervised learning (0.03) brain signal processing (0.02) construction worker

physical demand (0.02) construction workers’ stress prediction (0.02) performance (0.02) alarm sound (0.02) alert
fatigue (0.02) cognitive ability (0.02) construction activity classification (0.02) data quality (0.02)
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Table 5. Cont.

Cluster Keywords

2

eye-tracking (0.18) hazard recognition (0.16) risk management (0.14) mental health (0.10) virtual reality (0.06)
safety training (0.04) working memory (0.04) occupational accident (0.04) aviation (0.04) cognitive load (0.04)

labor and personnel issues (0.04) maritime (0.04) training (0.04) visual attention (0.04) decision dynamics (0.03)
mixed reality (0.03) age (0.03) disabilities (0.03) experience (0.03) individual characteristics (0.03) inspection (0.03)

sleep disorders (0.03)

3

occupational health (0.13) musculoskeletal disorders (0.13) construction worker (0.11) EMG (0.10) low back pain
(0.07) ergonomic (0.06) shoulder pain (0.06) back pain (0.04) endurance (0.04) fatigue (0.04) modelling (0.04)
recovery (0.04) participatory ergonomics (0.04) action research (0.04) economics (0.04) fatigue reactions (0.04)
heavy industries (0.04) musculoskeletal pain (0.04) organizational ergonomics (0.04) postural stability (0.04)

construction noise (0.03) environmental pollution (0.03) dietary behaviour (0.03) energy balance related
behaviour (0.03)

4

construction industry (0.31) machine learning (0.08) time pressure (0.05) prevention (0.04) deep learning (0.04)
computer vision (0.04) mental fatigue (0.03) panel data (0.03) construction equipment operator (0.03)

noise-induced hearing loss (0.02) occupational hearing conservation (0.02) screening (0.02) self-administered
(0.02) speech reception threshold (0.02) speech-in-noise (0.02) accident (0.02) disability (0.02) handicap (0.02)

involvement (0.02) lean (0.02) matrix (0.02) workforce (0.02) correlation and influence (0.02) disaggregation (0.02)
emotional exhaustion (0.02)
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To conclude, it indicates that there are four application domains which can be concluded
as: monitoring workers’ safety status, enhancing workers’ hazard identification ability,
reducing work-related muscle skeleton disorders of construction workers, and integrating
with artificial intelligence (AI) to address the safety and health issues. Furthermore, the
evolution of research trends over the period was analyzed by examining the keyword trends
(Figure 8B, showing the top 40 keywords based on average citations) and the dynamic shifts
in research focus (Figure 8C, showing the percentage of research of the four application
domains). Specific details of the four application domains are clarified below.

3.5.1. Monitoring Workers’ Safety Status

A typical application is to monitor workers based on physiological measurement
techniques, as shown in the blue cluster (Cluster 1) of Figure 8A. It focused on applying
EEG and other wearable biosensors to measure workers’ cognitive status which is associated
to their safety, such as attention and fatigue, which ultimately could enable personalized
real-time safety interventions tailored to individual worker states. For instance, many
studies [77–79] have focused on identifying stress in construction workers by capturing
the brain activity of construction workers using EEG signals. Ke et al. [80] examined the
effects of various noise conditions on task performance and cognitive performance via a
portable EEG device to draw attention to the cognitive characteristics of distraction and
the quantitative detection method. Hasanzadeh et al. [81] measured real-time situational
awareness of construction workers in different scenarios in a real construction site using a
mobile eye-tracking device. They found that the workers’ situational awareness and visual
attention allocation vary significantly depending on the workload of the scene, the state
of the region of interest, and the worker’s experience level. Chen et al. [45] discussed the
problem of “inattentional blindness” in construction using the analogy of the “invisible
Gorilla” experiment, which shows that people can miss obvious and unexpected events
when they are focused on a specific task.

In addition, monitoring workers’ safety status illustrates the industry’s aspiration for
taking proactive interventions to enhance construction safety. This application domain has
also been demonstrated to be the research focus areas of construction safety, which can
be indicated by the high occurrence resilience of terms related to “EEG”, “attention”, and
“fatigue monitoring and identification “in recent years in Figure 8B. As shown in Figure 8C,
it is worth noting that although the topics associated with Cluster 1 have dominated the
discourse historically, there is a discernible decline in recent years that suggests evolving
research interests or the maturation of these technologies.

3.5.2. Enhancing Workers’ Hazard Identification Ability

The research in Cluster 2 (green) in Figure 8A aims to enhance construction workers’
hazard identification ability. The cluster foreshadows the potential of emerging technologies
like VR and biosensors to enable the development of highly personalized and adaptive
safety training systems for targeted enhancement of hazard identification. Eye-tracking has
been a primary tool in this domain. Eye-tracking is often used to analysis the characteristics
and influence factors of workers’ visual attention [22]. Hasanzadeh et al. [21] used remote
eye-tracking technology to explore the effects of safety knowledge (including training, work
experience, and injury experience) on construction workers’ attention allocation and hazard
detection. Li et al. [70] utilized eye-tracking and virtual reality to examine visual attention
and hazard recognition performance. They found that mental fatigue induced by prolonged
monotonous operations can impair hazard detection and increase the risk of accidents.

In addition, developing safety training approach integration with virtual technology
has also been a research focus. Active safety training for construction workers is imperative
to improving their risk alertness, attention levels, and risk perception [82]. Safety training
leveraged virtual and mixed-reality technologies to provide immersive and engaging
experiences. Fujita et al. [83] described a training tool for video risk identification using an
eye-tracking device, and by comparing the attention allocation of veterans and novices, it
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was found that the veterans’ risk identification is based on meta- and domain knowledge.
Buekrue et al. [84] developed an immersive VR safety training system in the construction
industry with motion tracking, eye-tracking, realistic tools, and destructible elements to
generate objective trainee data for personalized feedback and improved safety awareness. A
virtual avatar training platform was developed by Shayesteh et al. [18], using physiological
signals and deep learning to evaluate cognitive load and safety performance during human-
robot collaboration tasks for improved construction safety training. Regarding the research
trend of this application domain, the results of percentage distribution over the years
(Figure 8C) shows that it has maintained a certain percentage. It indicates the ongoing
importance of this topic for research in the construction field.

3.5.3. Reducing Work-Related Muscle Skeleton Disorders of Construction Workers

Cluster 3 (red) in Figure 8A focuses on mitigating occupational health risks and pro-
moting the overall wellbeing of construction workers. This area of research has dominated
all these years (Figure 8C), showing the importance given to this health issue. The neu-
roscience tools were applied to recognize risk factors that may cause workers’ muscle
skeleton disorders and evaluate the risk levels. Activities such as prolonged standing,
bending, lifting heavy objects, and adopting awkward postures [85–87] were identified
as significant contributors to prevalent health issues among workers. These behaviors
were directly linked to key concerns such as musculoskeletal disorders, low back pain,
and fatigue. In the quest to understand and address these health challenges, Electromyo-
graphy (EMG) has emerged as an invaluable tool, shedding light on muscle endurance,
physical fatigue, and the risks associated with musculoskeletal disorders. Merkus et al. [39]
integrated accelerometers, surface Electromyography (sEMG), and Electrocardiography
(ECG) to probe the physical demands and strain experienced by older construction work-
ers. Seo et al. [88] utilized EMG to evaluate chronic muscle fatigue—one of the principal
contributors to musculoskeletal disorders—in areas like the arms, lower back, and neck.
Mudiyanselage et al. [89] introduced an automated ergonomic risk assessment method for
manual tasks, leveraging sEMG wearable sensors and machine learning. However, the
reliability of EMG data can be compromised by factors such as human errors, subject non-
compliance, inherent signal variability, physiological states, and environmental conditions.
Addressing this, some researchers have proposed fusing multiple incomplete datasets for
data compensation [90]. It is worthy to recognize that the vulnerability to work-related
musculoskeletal disorders in construction workers is not merely a consequence of physical
exertion; psychological and social factors also contribute substantially to this tendency [91].
Therefore, the necessity of advanced ergonomic research and interventions, which integrate
technological, psychological, and social factors, is evident.

3.5.4. Integrating with Artificial Intelligence (AI) to Address the Safety and Health Issues

The last Cluster 4 (yellow) emphasizes integrating the neuroscience tools with arti-
ficial intelligence (AI) technology, especially “deep learning”, “machine learning”, and
“computer vision”, to enhance safety within the construction sector. AI offers innovative
solutions for predicting and addressing safety concerns. For instance, the integration of
AI technologies and wearable sensors has been instrumental in continuously monitor-
ing workers’ mental states, underscoring the equal importance of mental and physical
well-being. Mehmood et al. [44] successfully utilized a fusion of data sources, including
electroencephalography and video signals, to classify mental fatigue with notable accu-
racy. Yu et al. [55] ventured beyond traditional methods, employing computer vision
for comprehensive fatigue assessments across varied construction scenarios. Similarly,
Lee et al. [51] harnessed machine learning and wearable sensors to assess the perceived
risk levels of construction workers with an impressive 81.2% accuracy rate. Furthermore,
Antwi-Afari et al. [92] employed deep learning, combined with wearable insole data, to
proactively identify and categorize awkward working postures, aiming to combat muscu-
loskeletal disorders in construction workers.
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There are still many challenges remaining in AI technologies, particularly deep learn-
ing, machine learning, and computer vision, in offering promising enhancements in con-
struction safety in Cluster 4. The reliability of AI predictions can be compromised by
incomplete or biased training data. Additionally, the complex nature of construction sites,
characterized by ever-changing conditions and diverse worker behaviors, necessitates
continuous learning and adaptation by these AI systems. However, the results in Figure 8B
show that there is a growing interest in computational tools, particularly “machine learning”
and “deep learning”, signaling the increasing role of data-driven approaches in enhancing
construction safety. Moreover, Figure 8C also indicates the burgeoning interest in this re-
search topic. This rise denotes the potential of harnessing advanced algorithms for real-time
monitoring and predictive analytics, leveraging the vast troves of data these technologies
can capture to achieve an intelligent CHSM.

3.6. Application Topics of the Primary Neuroscience Tools in CHSM

A thorough examination of neuroscience tools was conducted, emphasizing their role
in CHSM. This chapter delves deeper into the distribution of these tools via keyword co-
occurrence networks of each tool. Firstly, the neuroscience tools usage over time was ex-
amined, with the results shown in Figure 9. Among the tools, EMG consistently emerges
as a wide range of applications, with its frequent applications extending from 2001 to 2016,
illustrating its vital role in construction safety research. In contrast, fMRI and fNIRS, though
integral, exhibit intermittent usage patterns, suggesting their specific applications or poten-
tial emerging relevance in certain periods. Another observation is the marked uptick in the
adoption of eye-tracking technology from 2015, reaching a zenith in 2020. This surge could
be attributed to technological advances and popularity, or an amplified research focus on
domains where eye-tracking provides pivotal insights. Regarding EEG applications, its con-
sistent use, especially from 2016 to 2021, demonstrates the effectiveness and stability of this
technology in capturing neurophysiological data. In terms of EDA, after a phase of subdued
interest, it has been re-emphasized in 2020 and 2021, indicating either its renewed significance
or innovative applications in contemporary research. To conclude, EEG, eye-tracking, and
EMG are the primary neuroscience tools used in related issues of CHSM. Therefore, the
application of these four tools in the research area is further explained.
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3.6.1. EMG

Figure 10 presents a co-word network of EMG applications in construction safety. The
application of EMG in CHSM focuses on the physical strains, particularly those arising from
prolonged or repetitive tasks, like “lifting” or maintaining certain “postures”. By capturing
the electrical activity of muscles, EMG offers a direct window into muscle exertion and
potential fatigue, which becomes particularly crucial when assessing the risks associated
with “musculoskeletal disorders”. Dutta et al. [93] highlighted the significant effects of
roof slope and kneeling posture on the peak activation of knee muscles using EMG data.
The findings suggest that increased roof slope during shingle installation elevates the
risk of knee musculoskeletal disorders among roofers due to amplified muscle loading.
Eilertsen et al. [94] developed an unpowered lift assist device for drywall installation, with
EMG analysis revealing a significant reduction in muscle activation.



Sensors 2023, 23, 9522 20 of 30

Sensors 2023, 23, x FOR PEER REVIEW 21 of 31 
 

 

in related issues of CHSM. Therefore, the application of these four tools in the research 
area is further explained. 

 
Figure 9. Neuroscience tools usage by year. 

3.6.1. EMG 
Figure 10 presents a co-word network of EMG applications in construction safety. 

The application of EMG in CHSM focuses on the physical strains, particularly those aris-
ing from prolonged or repetitive tasks, like “lifting” or maintaining certain “postures”. By 
capturing the electrical activity of muscles, EMG offers a direct window into muscle exer-
tion and potential fatigue, which becomes particularly crucial when assessing the risks 
associated with “musculoskeletal disorders”. Dutta et al. [93] highlighted the significant 
effects of roof slope and kneeling posture on the peak activation of knee muscles using 
EMG data. The findings suggest that increased roof slope during shingle installation ele-
vates the risk of knee musculoskeletal disorders among roofers due to amplified muscle 
loading. Eilertsen et al. [94] developed an unpowered lift assist device for drywall instal-
lation, with EMG analysis revealing a significant reduction in muscle activation.  

Moreover, EMG is used to investigate “ergonomics” by optimizing work processes 
and environments, monitoring fatigue, and minimizing physical strain. Brandt et al. [43] 
employed sEMG alongside other technical measurements to identify instances of exces-
sive physical workload in construction work. Whereas the participatory ergonomics in-
tervention did not reduce these excessive workload events, it notably decreased general 
fatigue and enhanced workers’ influence over tasks. Bangaru et al. [95] proposed a com-
prehensive system for continuous monitoring of construction workers’ fatigue levels. Us-
ing EMG to measure forearm muscle activity and motion data, this system surpasses tra-
ditional heart rate metrics in assessing fatigue. Age-related differences in physical strain 
among construction and healthcare workers were also discussed using EMG. It revealed 
that older workers, despite facing similar or higher occupational demands, exhibited dis-
tinct muscle activity patterns [39]. Additionally, the integration of EMG with “machine 
learning” techniques is evolving, where automated analysis could predict potential fa-
tigue levels based on non-invasive monitoring methods like computer vision [55]. 

 
Figure 10. Keywords co-occurrence network of EMG in CHSM. Figure 10. Keywords co-occurrence network of EMG in CHSM.

Moreover, EMG is used to investigate “ergonomics” by optimizing work processes
and environments, monitoring fatigue, and minimizing physical strain. Brandt et al. [43]
employed sEMG alongside other technical measurements to identify instances of excessive
physical workload in construction work. Whereas the participatory ergonomics interven-
tion did not reduce these excessive workload events, it notably decreased general fatigue
and enhanced workers’ influence over tasks. Bangaru et al. [95] proposed a comprehensive
system for continuous monitoring of construction workers’ fatigue levels. Using EMG
to measure forearm muscle activity and motion data, this system surpasses traditional
heart rate metrics in assessing fatigue. Age-related differences in physical strain among
construction and healthcare workers were also discussed using EMG. It revealed that
older workers, despite facing similar or higher occupational demands, exhibited distinct
muscle activity patterns [39]. Additionally, the integration of EMG with “machine learning”
techniques is evolving, where automated analysis could predict potential fatigue levels
based on non-invasive monitoring methods like computer vision [55].

3.6.2. EEG

Figure 11 shows the co-word network of EEG in CHSM. Many studies have focused
on the application of EEG in “occupational safety”, where it aids in identifying cognitive
patterns that might indicate risks or inefficiencies in work processes. One particular aspect
of interest has been “hazard recognition” in the construction environment. EEG has been
instrumental in examining brain connectivity, revealing a top-down attention mechanism
originating from the dorsal attention network [96]. From the psychology perspective,
novice workers, armed with heightened sensitivity, often outperform their experienced
counterparts due to more efficient working memory and attentional control [97]. Such neu-
ral responses, captured by EEG, are pivotal in understanding workers’ innate capabilities
to identify hazards.

Furthermore, EEG studies have also ventured into understanding “mental health” in
CHSM. For example, heightened risk awareness in migrant construction workers, espe-
cially concerning environmental stressors like air and noise pollution, often correlated with
improved health outcomes, though these patterns displayed variations based on factors
like age and gender [98]. In another research, EEG pinpointed specific construction noises,
such as those from saws and jackhammers, as significant triggers for negative emotional re-
sponses, underscoring the need to revisit noise regulations to prioritize human welfare [17].
Exploring the realm of stress, EEG, in conjunction with algorithms such as multi-class SVM
and FCNN, adeptly identified varying stress levels among workers. Achieving an accuracy
of 79.26%, this innovative approach holds promise for early stress detection and offers a
potential pathway toward fostering a more supportive construction environment [16].
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3.6.3. Eye-Tracking

Figure 12 demonstrates a co-word network of eye-tracking technology for construc-
tion applications. Eye-tracking has the capability to provide insights into visual attention
and cognitive processes of workers in various scenarios. A predominant theme in CHSM
research employing eye-tracking is “hazard recognition”. This tool uncovers how con-
struction workers visually perceive, process, and respond to potential hazards, providing
insights into their visual search patterns, focal points, and gaze durations. For instance,
it was discovered that certain visual patterns, such as longer search durations and more
expansive attention distribution, consistently correlated with superior hazard identification
performance. Moreover, the integration of a personalized training intervention led to
further refinement of these visual patterns, enhancing hazard recognition outcomes [57].
Another exploration into the technology illustrated the efficacy of systematic visual search
strategies in the construction setting. By comparing the scan patterns of participants adept
at hazard recognition with those less proficient, it is evident that focused, logical, and
methodical visual searches were the symbol of effective hazard recognition [99]. In terms
of “occupational safety and training”, Dzeng et al. [20] created a virtual environment to
differentiate the visual search patterns of seasoned and novice workers during hazard iden-
tification. Experience was found to accelerate hazard assessment, yet it did not inherently
improve the accuracy. However, the strategic and consistent search patterns of experienced
workers indicate the promise of eye-tracking in personal safety training plans, ensuring
enhanced hazard awareness for novices. Utilizing AI-based eye-tracking, the effectiveness
of Telegram chatbot safety training in enhancing construction hazard awareness was as-
sessed. The findings highlighted chatbot training’s role in boosting hazard recognition,
suggesting the potential of affordable chatbot training as a key safety education tool [100].
Meanwhile, mobile eye-tracking revealed construction workers’ focus on various hazard
sources, especially in areas with past fatal incidents. These observations illuminated the
effectiveness of their prior safety training and emphasized the critical role of eye-tracking
in shaping future safety measures [101].
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3.6.4. EDA

Figure 13 demonstrates the application of electrodermal activity in the construction
field covariant word networks. A primary application of EDA in CHSM is toward under-
standing “occupational safety” in the part of stress response, alertness, and mental fatigue.
By capturing the autonomic nervous system’s reactions through skin conductance, EDA
provides invaluable insights into workers’ stress levels and emotional states. For instance,
Chae and Kang [102] proposed an experimental design to gauge alert fatigue arising from
different alarm sounds. This venture aimed to pinpoint the alarm sound that most effec-
tively mitigated desensitization, especially in contexts like construction equipment blind
spot scenarios. Meanwhile, when combined with EEG, EDA illustrated the pronounced
stress responses in employees subjected to rework in engineering drawing tasks, highlight-
ing the need for proactive stress management within the industry [66]. Mehmood et al. [44]
combined EDA, EEG, and video signals in a multimodal fusion and demonstrated prowess
in classifying mental fatigue during construction equipment operations. This approach
garnered an impressive 96.2% accuracy with the decision tree model.
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4. Discussion

This research identifies four key application areas for neuroscience tools in CHSM:
monitoring safety status, improving hazard recognition ability, reducing work-related mus-
culoskeletal disorders, and integrating with artificial intelligence to address the safety and
health issues. Applications of these neuroscience tools introduced novel perspectives and
methodologies to enhance the occupational safety and health of the construction industry,
but there are inherent limitations persist in their practical applications in construction
workplaces. This section discusses the constraints associated with the application of neuro-
science tools in construction workplaces and highlights prospective research focus based
on the main findings of the current research status.
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4.1. Narrowing the Gaps between Experimental Settings and Real Situations

Most of the existing studies have used experimental studies, but the ecological validity
of the experimental design needs to be improved in order to enhance the real-world applica-
bility and generalizability of research outcomes. The experimental scenarios, being overly
simplistic and not fully representative of the intricacies of construction sites, limited sample
size, and different groups of subjects from the actual among existing studies, may make
it to be less convincing to generalize the research findings in the real world. The reasons
for these shortcomings mainly lie in that researchers would face many insurmountable
challenges if completely replicating the real situation. Specifically, due to the complexity
of the construction site, it is difficult to control experimental variables and to invite a large
number of subjects to complete a long period of experimentation in the field [22]. For
example, regarding the research on hazard identification ability, it would be impossible to
ensure that the dynamically changing construction workplaces remain unchanged during
the experimental period, and the subjects may be exposed to a hazardous environment. As a
result, many existing researches have been conducted in the laboratory, e.g., asking subjects
to identify hazards in a virtual construction site [103] or to detect hazards through view-
ing two-dimensional pictures on a computer screen [21,57]; however, these experimental
settings still have gaps with the hazard recognition behaviors in the real world.

In addition to the limitations due to the experimental scenarios, the neuroscience tools
also cause limitations to the experimental design. The results show that EEG has been
widely applied for workers’ safety monitoring, but it would be quite difficult to implement
these studies in job sites because the quality of EEG data is severely impacted by the
movement of the human body and the interference from the environment. Thus, many
studies have applied psychological paradigms to require subjects to perform on-screen
experimental tasks [80,104,105]. Such experimental settings allow for high-quality EEG
data but fail to reflect the actual dynamics of the situation.

In response to narrowing the gaps between experimental settings and the real situa-
tions, some studies have proposed the application of VR technology as a potential method,
which could avoid exposing subjects to dangerous environments and provide subjects with
a realistic experience [103,106]. However, it would be difficult for researchers to reproduce
a completely realistic situation based on the current VR technology, where substantial in-
vestments in VR content development are required to geometrically model each observable
element in the scenes.

Furthermore, some existing studies also have limitations in their experimental subjects.
Since experiments may require long periods of time and complex procedures, some studies
have invited undergraduate students to replace construction workers (e.g., [104]), and it is
hard to consider the individual differences among workers by inviting a large number of
workers with various backgrounds (e.g., age, experience, and gender), which may result in
bias and incompleteness of the findings. To conclude, future experimental designs need to
consider the experimental scenario design and subject selection to improve the credibility
and generalizability of the findings.

4.2. Enhancing the Quality of Data Collected by Neuroscience Tools and Performance of Data
Processing Algorithms

Although neuroscience tools have been comprehensively explored to address key
safety and health issues in the construction industry, the reliability of the research outcomes
would also depend on the quality of the collected physiological data. Collecting data using
these tools in construction sites is challenging because of the construction environment
and the frequent movement of workers. Signals collected in the field are expected to be
affected by a number of external signal artifacts, e.g., device power line interference, motion
artifacts, and electrode motion artifacts [107]. In addition, the data are also affected by
intrinsic signal artifacts, e.g., respiration, pulse, muscle, motion, and eye artifacts. These
artifacts are common in any physiological sensing data (e.g., PPG, ECG, EDA) [107].
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To address these issues, past studies have directed their efforts toward the processing
of EEG data. For example, Jebelli et al. [108] developed a framework for processing intrinsic
signal artifacts (e.g., blinks, vertical eye movements, and muscle movements) and extrinsic
signal artifacts (e.g., sensor displacements, body motions, electrode line noise, etc.) collected
from wearable EEG headsets. Wang et al. [109] proposed a new hybrid kinematic-EEG data
type and adopted wavelet packet decomposition to compute the vigilance measurement
indices with redefined EEG sub-bands, which could reduce the artifacts caused by muscle
movements. The researchers have focused more on EEG data, possibly because these data
have found to have great potential for indicating workers’ safety status [23]. However,
there are great limitations in applying EEG in construction sites due to the stringent nature
of EEG data collection. Some studies in recent years have hence attempted to explore
peripheral physiological signals, such as ECG [110] and EDA [62], which are easier to
collect in job sites to replace EEG to reflect cognitive status. With the wide application of
other tools, future research is recommended to examine the quality of signals collected by
other kinds of neuroscience tools under diverse conditions at construction sites to eliminate
and reduce the defects in the acquired signals.

Moreover, applications of the neuroscience tools in job sites also depend on the data
mining algorithms. The results show that monitoring the status of workers is a major
application point, and the research is now leaning toward incorporating AI techniques to
solve the problem. This is because a huge amount of data will be produced if deploying
neuroscience tools on construction workers, and AI techniques, such as machine learning
algorithms and deep learning algorithms, are advantageous tools for predicting workers’
state of safety and health from these large amounts of data. Due to the complex nature
of construction sites with ever-changing conditions and diverse worker behaviors, these
AI systems must constantly learn and adapt [111,112]. Future studies are suggested to
investigate appropriate algorithms for the safety and health predictions.

4.3. Overcoming User Resistance in Tool Adoption

Although existing research has shown the potential for the application of neuroscience
tools to improve construction safety and health, it is difficult to fully benefit from these
applications if construction workers refuse to adopt it. Choi et al. [113] investigated the
factors influencing the intention of construction workers to adopt wristbands that monitor
their heart rate during the workday. The results showed that perceived usefulness, per-
ceived privacy risk, and social influence were common factors that influenced employees’
intention to accept the tool. There are still gaps in the knowledge from existing studies
about which features of the tools (e.g., functionality and design) and the context of use influ-
ence the direct determinants of acceptance. Moreover, workers may even resist monitoring
their mental states through the application of these wearable neuroscience tools. Interven-
tions aimed at influencing or altering the cognitive or behavioral attributes of workers
are ethically sensitive, with the potential for unintended effects and the infringement of
individual freedoms. Therefore, the integration of neuroscience tools into health and safety
management (CHSM) must be accompanied by a rigorous response to the intertwined
ethical, moral, and legal challenges.

5. Conclusions

The integration of neuroscience tools into CHSM has manifested as a pivotal advance-
ment in recent scientific development. This study undertook a comprehensive bibliometric
analysis, encompassing an array of publications related to the application of neuroscience
tools within the construction safety and health field. Initial descriptive analysis illustrates
the foundational characteristics of the publications, elucidating prominent contributors
in terms of countries, institutions, and authors. From a nascent stage with minimal pub-
lications in the early 2000s, the research related to CHSM based on neuroscience tools
has witnessed a meteoric advance in the late 2000s, followed by a phase of stabilization
in recent years, reflecting the maturation and sustained interest in the domain. Notably,
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journals such as Automation in Construction, Journal of Construction Engineering Management,
and Journal of Management Engineering in the construction field are emerging as leading
outlets for research dissemination in this niche.

Co-occurrence analysis in keywords discerned four central topics within the publica-
tions: monitoring the safety status of construction workers, enhancing the construction
hazard recognition ability, reducing work-related musculoskeletal disorders of construc-
tion workers, and integrating neuroscience tools with artificial intelligence techniques in
enhancing occupational safety and health. Among these neuroscience tools, Magnetoen-
cephalography (EMG), Electroencephalography (EEG), eye-tracking, and Electrodermal
Activity (EDA) were identified as the four predominant neuroscience tools.

In conclusion, integrating neuroscience tools into construction health and safety man-
agement has transformed the research landscape over the past decades. This integration
advanced through converging neuroscience with emerging computational techniques, en-
abling data-driven worker safety decisions. With technological innovations continuously
propelling neuroscience tools forward and increased the prioritization of worker health
and safety, research in this domain is poised for sustained growth and impact.

There are still some gaps in applying these tools in construction workplaces. Future
studies are suggested to narrow the gaps between experimental settings and real situations,
enhance the quality of data collected by neuroscience tools and performance of data
processing algorithms, and overcome user resistance in tools adoption to facilitate the
applications of these tools in construction workplaces.

Whereas this review has endeavored to offer a comprehensive examination of the
existing publications in CHSM based on neuroscience tools, several limitations need to
be acknowledged. The selection of specific keyword combinations based on a review of
existing literature may have missed studies that used different terms. Moreover, the focus
on English-language literature potentially introduces a regional bias, sidelining significant
findings published in other languages. Additionally, while descriptive analysis, co-citation,
and co-occurrence analysis offer valuable insights, they might not fully encapsulate emerg-
ing trends or intricate dynamics in the literature. Future research should consider a broader
keyword spectrum, integrate multi-language studies, and employ advanced bibliometric
methods to address these gaps. These refinements can provide more profound and global
insights, ensuring a more holistic understanding of the field.
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