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Abstract: Wireless broadband transmission channels usually have time-domain-sparse properties,
and the reconstruction of these channels using a greedy search-based orthogonal matching pursuit
(OMP) algorithm can effectively improve channel estimation performance while decreasing the length
of the reference signal. In this research, the improved OMP and SOMP algorithms for compressed-
sensing (CS)-based channel estimation are proposed for single-carrier frequency domain equalization
(SC-FDE) systems, which, in comparison with conventional algorithms, calculate the path gain after
obtaining the path delay and updating the observation matrices. The reliability of the communication
system is further enhanced because the channel path gain is calculated using longer observation
vectors, which lowers the Cramér–Rao lower bound (CRLB) and results in better channel estimation
performance. The developed method can also be applied to time-domain-synchronous OFDM
(TDS-OFDM) systems, and it is applicable to the improvement of other matching pursuit algorithms.

Keywords: compressed sensing; single-carrier frequency domain equalization; orthogonal matching
pursuit; simultaneous orthogonal matching pursuit; Cramér–Rao lower bound

1. Introduction

Channel estimation is among the key technologies in modern wireless communication
systems, and data-assisted channel estimation offers remarkable advantages, such as low
errors and low complexity, and it is extensively applied to modern wireless transmission
systems. Conventional channel estimation methods do not use priori information while
transmission channels have sparse properties but focus only on the maximum delay spread
of the channel, so they lead to the overuse of bandwidth and energy due to the large
overhead of the reference signal. Compressed-sensing (CS)-based methods take advantage
of the fact that the propagation multipath of wireless broadband channels usually has time-
domain sparsity characteristics [1] and adopt a parametric estimation method to complete
channel state detection. By estimating the path delay, path gain, and phase parameters
of each propagation path, the parametric estimation method is able to achieve superior
channel estimation performance with fewer reference signals, and thus, it improves the
effectiveness and reliability of the system. Currently, CS-based sparse channel estimation is
among research hotspots.

Sparse signal reconstruction is the core of CS theory [2,3]. References [4–6] provided
reviews of the CS technique and also a comprehensive overview of various applications
of sparse representation in wireless communications. Reference [4] focused on the sparse
recovery algorithms and discussed some comparisons among them, and it also presented
several applications of compressed sensing, such as images and videos, compressed trans-
mission data, systems communication, and detection and recognition systems. Reference [5]
identified the potential applications and research challenges of sparse representation in fifth-
generation (5G) and Internet-of-Things (IoT) networks. Reference [6] listed some future
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research directions for CS techniques in wireless applications. Reference [7] investigated the
application of a CS technique and an OMP algorithm to reconfigurable-intelligent-surface
(RIS)-assisted wireless communication systems.

There are two main types of methods for signal reconstruction algorithms for CS:
convex optimization methods and greedy algorithms. Because of the unacceptable compu-
tation time and complexity of convex optimization algorithms, greedy algorithms are more
commonly applied. A greedy algorithm is not an optimization algorithm, and unlike con-
vex optimization algorithms, it does not have an objective function and does not minimize
it, but it finds the positions and coefficients of the non-zero elements of the sparse signal
through several iterations to achieve sparse signal recovery [8]. As an important greedy
algorithm, the orthogonal matching pursuit (OMP) algorithm is more commonly applied
to CS-based channel estimation [9]. Reference [10] used the OMP algorithm to estimate
sparse channels with more accuracy than conventional algorithms. Reference [11] provided
a detailed description and summary of different CS-based channel estimation methods.

The OMP algorithm can cause reconstructed results to fall into a local optimum. In
order to improve estimation accuracy, reference [12] proposed the A*OMP pseudo-greedy
algorithm, which utilized the backtracking feature of the A* algorithm. Compared with the
OMP algorithm, it had higher accuracy and reconstruction probability. Reference [13] devel-
oped an improved A*OMP algorithm and verified its performance in orthogonal frequency
division multiplexing (OFDM) systems. The obtained results showed that the proposed
method effectively improved the accuracy of channel estimation. The improved algorithm
optimized path initialization; meanwhile, in order to avoid unknown errors caused by too
many iterations, the difference between the residuals of two adjacent iterations was applied
as a condition for the termination of iteration, which resulted in higher estimation accuracy.

Due to an increasing data rate and system bandwidth, the channel responses expe-
rienced with adjacent symbols were no longer independent from each other, but they
presented a time-dependent joint sparse structure [14]. To describe this feature, a joint
sparse model (JSM) [15] was proposed, and accordingly, the simultaneous orthogonal
matching pursuit (SOMP) [16,17], which was based on distributed compressed sensing
(DCS), has been widely studied. Reference [18] improved the SOMP algorithm by first
jointly estimating the same support set and the elements of the channel response for multi-
ple consecutive symbols and then estimating different parts of the support set, symbol by
symbol. The obtained results showed that the improved method was applicable to both the
JSM-1 and JSM-2 models.

The sparse reconstruction algorithms mentioned above were mostly applied to CS-
based channel estimation for OFDM systems employing frequency domain pilots. Ref-
erences [19–21] discussed the application of CS-based sparse channel estimation in time-
domain-synchronous OFDM (TDS-OFDM) systems, which utilized a known training se-
quence (TS) in the time domain as a guard interval for data blocks. The frame structure of
the single-carrier frequency domain equalization (SC-FDE) system is very similar to that of
TDS-OFDM. Reference [22] investigated the application of the OMP algorithm to sparse
channel estimation in SC-FDE systems. The algorithm proposed in reference [20] required
a small amount of frequency domain pilots, and reference [22] proposed inserting the cyclic
prefix (CP) of the TS in the header of a frame. All these methods required additional pilots,
which sacrificed spectral efficiency while obtaining superior performance.

For SC-FDE systems, an improved scheme is proposed in this research, which was ap-
plied to both the OMP and SOMP algorithms, and the improved algorithms are abbreviated
as P-OMP and P-SOMP. The contribution of this research is to focus on the improvement
of the algorithmic structure to achieve superior channel estimation performance without
resorting to additional pilots or TS. Compared with conventional algorithms, the improved
algorithms calculate the path gain after obtaining the exact path delay and updating the
observation matrix. With a longer observation vector for estimating the path gain, the
improved algorithms reduce the Cramér–Rao lower bound (CRLB) and achieve better
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estimation performance; therefore, they effectively improve the reliability of the communi-
cation system.

Due to the similarity of the transmission frame structure, the proposed method is also
applicable to TDS-OFDM systems. In addition, the main processes of all the matching
pursuit algorithms are the same, and the proposed method is also applicable to other
matching pursuit algorithms. Therefore, the developed method is important for the reliable
transmission of wireless communication systems based on the transmission block structure
employing time-domain pilots.

Notation: (·)T , (·)H , (·)†, (·)−1 and ‖ · ‖p denote transpose, conjugate transpose, Moore–
Penrose matrix inversion, matrix inversion, and lp norm operations, respectively. In denotes
the identity matrix of dimension n.

2. Materials and Methods
2.1. Wireless Communication System Model Based on CS Channel Estimation

To eliminate the effects of channel multipath and Doppler on the transmitted signal
via channel equalization techniques, an accurate channel state has to be obtained. Block
transmission systems based on frequency domain equalization, such as OFDM and SC-FDE,
have been extensively applied due to their good compromise between system complexity
and performance.

2.1.1. OFDM System Based on CS Channel Estimation

Assuming that each OFDM symbol has N subcarriers, X(k) denotes the kth subcarrier
of the transmitted symbol. After channel transmission, the kth subcarrier received at the
receiver is:

Y(k) = X(k)H(k) + W(k) (1)

In Equation (1), W(k) denotes the noise frequency response of the kth carrier, H(k)
denotes the channel frequency response of the kth subcarrier, and the output of the N
subcarriers can be expressed as follows:

Y(1) = X(1)H(1) + W(1)
· · · · · ·

Y(N) = X(N)H(N) + W(N)
(2)

In matrix form, it is stated as follows:Y(1)
...

Y(N)

 =

X(1) · · · 0
...

. . .
...

0 · · · X(N)


 H(1)

...
H(N)

+

W(1)
...

W(N)

 (3)

that is,
Y = XH + W (4)

where X = diag[X(1), X(2) · · ·X(N)] is the diagonal matrix of N × N consisting of trans-
mitted signals, H is the frequency domain response of the channel at N × 1, W is the
Gaussian white noise vector in the frequency domain at N × 1, and Y is the received signal
vector at N × 1. The relationship between the frequency domain channel response H and
time domain channel impulse response (CIR) h is expressed as follows:

H = Fh (5)

where F is the Fourier transform matrix of N×N. Substituting Equation (5) into Equation (4)
yielded the following:

Y = XFh + W (6)



Sensors 2023, 23, 9509 4 of 17

CIR h is a vector of N × 1, in which elements with larger values are concentrated
within the first L samples, and the latter N–L elements have non-zero values but small
values. Additionally, h can be approximated as sparse to provide the feasibility of applying
a channel estimation method based on CS theory.

Assuming the number of subcarriers in each OFDM symbol used for transmitting
pilots as Np

(
Np < N

)
, the position number of the pilots is κ =

(
k1, · · · , kNp

)
(1 ≤ k1 ≤

· · · ≤ kNp ≤ N), and the remaining N − Np subcarriers are applied to transmit a data
signal. The set of pilot position numbers κ is called the pilot pattern, and the transmitted
and received pilots are expressed as follows [23]:

YNp = XNp FNp h + WNp (7)

where XNp = diag
[

X(k1), X(k2) · · ·X
(

kNp

)]
is the transmitter pilot matrix of Np × Np,

and FNp is the partial Fourier transform matrix of Np × N extracting rows numbered
(k1, k2 · · · kNP) from the standard Fourier transform matrix of N × N, which is stated
as follows:

FNp =
1√
N

 f k11 · · · f k1 N

...
. . .

...
f kNp 1 · · · f kNp N

 (8)

where f = e−j2π/N , WNp is the Gaussian white noise vector in the frequency domain of
Np × 1, and YNp is the received pilot vector of Np × 1. The matrix product is stated in
Equation (7) as follows:

ANp , XNp FNp =


X(k1) f k11 · · · X(k1) f k1 N

...
. . .

...
X(kNp) f kNp 1 · · · X(kNp) f kNp N

 (9)

Equation (7) is then expressed as follows:

YNp = ANp h + WNp (10)

Based on CS theory, the matrix ANp of Np×N can be considered an observation matrix,
which is essentially a partial Fourier transform matrix formed via a weighted transmitted
pilot matrix XNp . CS-based channel estimation can be assumed as the process of obtaining
the received pilot vector YNp after a compressive measurement of h with Np pilots and then
reconstructing h with YNp .

2.1.2. SC-FDE System Based on CS Channel Estimation

A training sequence (TS) can be applied as both a guard interval and a reference signal.
Figure 1 shows the frame structure of the TS-based SC-FDE system.
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Figure 1. SC-FDE frame structure based on the training sequence.

Generally, the training sequences of SC-FDE systems apply the same unique word
(UW), and the most common form of the UW is a CAZAC sequence with a constant
envelope characteristic. In order to avoid the interference of data blocks due to the mul-
tipath delay spread, reference [24] applied a dual UW (DUW) as a guard interval, which
effectively improved the channel estimation performance, but the channel overhead was
high because the length of each UW was equivalent to the maximum multipath delay. To
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decrease the channel overhead, reference [25] developed an iterative method whose total
UW length was equivalent to the maximum multipath delay, but it was not suitable for
fast time-varying channels due to their slow convergence, which made it impossible to
acquire the channel state quickly. Reference [19] explored CS-based TDS-OFDM transmis-
sion methods. The frame structure of the TDS-OFDM system was very similar to that of
SC-FDE, which utilized a known TS in the time domain as a guard interval for data blocks.
The research results showed that, when the SC-FDE system applied the CS-based channel
estimation method, it only needed to insert a single UW to obtain better performance than
conventional methods, which improved the reliability and effectiveness of the system at
the same time.

Figure 2a shows the block transmission structure of the TS-based SC-FDE system,
where the known sequence Ci = [ci,0, ci,1, . . . , ci,P−1]

T is a UW with length P. Therefore, for
any i and j, ci = cj. Also, Xi = [xi,0, xi,1, . . . , xi,N−1]

T is a payload data block with length N.
The discrete time channel impulse response with the maximum multipath spread length
L is assumed to be Hi = [hi,0, hi,1, . . . , hi,L]

T , which satisfies P ≥ L. M = P − L is denoted.
Figure 2b illustrates the received signal after channel transmission and time–frequency
synchronization.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 18 
 

 

2.1.2. SC-FDE System Based on CS Channel Estimation 
A training sequence (TS) can be applied as both a guard interval and a reference sig-

nal. Figure 1 shows the frame structure of the TS-based SC-FDE system. 

 
Figure 1. SC-FDE frame structure based on the training sequence. 

Generally, the training sequences of SC-FDE systems apply the same unique word 
(UW), and the most common form of the UW is a CAZAC sequence with a constant enve-
lope characteristic. In order to avoid the interference of data blocks due to the multipath 
delay spread, reference [24] applied a dual UW (DUW) as a guard interval, which effec-
tively improved the channel estimation performance, but the channel overhead was high 
because the length of each UW was equivalent to the maximum multipath delay. To de-
crease the channel overhead, reference [25] developed an iterative method whose total 
UW length was equivalent to the maximum multipath delay, but it was not suitable for 
fast time-varying channels due to their slow convergence, which made it impossible to 
acquire the channel state quickly. Reference [19] explored CS-based TDS-OFDM transmis-
sion methods. The frame structure of the TDS-OFDM system was very similar to that of 
SC-FDE, which utilized a known TS in the time domain as a guard interval for data blocks. 
The research results showed that, when the SC-FDE system applied the CS-based channel 
estimation method, it only needed to insert a single UW to obtain better performance than 
conventional methods, which improved the reliability and effectiveness of the system at 
the same time. 

Figure 2a shows the block transmission structure of the TS-based SC-FDE system, 
where the known sequence ,0 ,1 , 1, , ,

T
i i i i PC c c c − =    is a UW with length P. Therefore, for any 

i and j, i jc c= . Also, ,0 ,1 , 1, , ,
T

i i i i NX x x x − =    is a payload data block with length N. The 
discrete time channel impulse response with the maximum multipath spread length L is 

assumed to be ,0 ,1 ,, , ,
T

i i i i LH h h h =   , which satisfies P ≥ L. M = P − L is denoted. Figure 2b 

illustrates the received signal after channel transmission and time–frequency synchronization. 

 
(a) 

N PP N

Yi DiDi-1 Yi+1

ML
Di

Ri  
(b) 

Figure 2. Block transmission and multipath interference. (a) Block transmission of transmitter sig-
nals; (b) multipath interference. 

The received signal ,0 ,1 , 1, , ,
T

i i i i PD d d d − =     corresponding to a known sequence is 
stated as follows: 

= Ψ +
ii i i

D H N  (11)

where Ni is additive Gaussian white noise, and Ψ
i  is as follows: 

Figure 2. Block transmission and multipath interference. (a) Block transmission of transmitter signals;
(b) multipath interference.

The received signal Di = [di,0, di,1, . . . , di,P−1]
T corresponding to a known sequence is

stated as follows:
Di = ΨiHi + Ni (11)

where Ni is additive Gaussian white noise, and Ψi is as follows:

Ψi =



ci,0 xi,N−1 xi,N−2 · · · xi,N−L
ci,1 ci,0 xi,N−1 · · · xi,N−L+1
ci,2 ci,1 ci,0 · · · xi,N−L+2

...
...

...
. . .

...
ci,L ci,L−1 ci,L−2 · · · ci,0

...
...

...
. . .

...
ci,P−1 ci,P−2 ci,P−3 · · · ci,P−L−1


P×(L+1)

(12)

It is evident in matrix Ψi that the last M samples of the received signal Di are not
interfered with unknown data Xi, which is known as the inter-block-interference (IBI)-free
region of TS and is recorded as Ri = [di,L, di,L+1, . . . , di,P−1]

T . Also, Vi is the vector that
contains the last M samples of Ni; then:

Ri = Φi Hi + Vi (13)
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where Φi is a Toeplitz array, stated as follows:

Φi =


ci,L ci,L−1 ci,L−2 · · · ci,0

ci,L+1 ci,L ci,L−1 · · · ci,1
...

...
...

. . .
...

ci,P−1 ci,P−2 ci,P−3 · · · ci,P−L−1


M×(L+1)

(14)

For the SC-FDE of DUW, M = L + 1, the matrix Φi is the column full rank. Then,
Equation (13) is applied for conventional methods, such as the least square (LS) and
minimum mean square error (MMSE) algorithms, to estimate channel state Hi. For wireless
broadband channels, the non-zero elements of Hi are mainly concentrated in a few positions,
which are approximated as follows:

Hi(n) =
K−1

∑
k=0

αi,kδ(n− τi,k) n ∈ [0, L] (15)

The path delays are assumed to be integers in this research. The kth path gain is αi,K,
and the delay is τi,K. As shown in Equation (15), the element value of Hi is αi,K at τi,K, the
value of the other elements is zero, and there are K non-zero elements. The path delay set is
recorded as Ωi = [τi,0, τi,1, · · · , τi,K−1], and the path gain is set as Ai = [αi,0, αi,1, · · · , αi,K−1].
Without a loss of generality, 0 ≤ τi,0 ≤ τi,1 ≤ · · · ≤ τi,k−1 ≤ L− 1 can be supposed. In
general, we have that K is much less than L, denoted by K << L; that is, the channel has a
significant sparse characteristic. Therefore, channel estimation can be performed using CS
methods. In CS algorithms, Ri is considered the observation vector, Φi is the observation
matrix, M is the number of observations, and K is the sparsity of Hi. It has been proven
that Φi satisfies the RIP condition required in CS theory [26].

The idea of CS is to turn the problem of solving L unknowns Hi into the problem of
estimating the 2K unknowns Ωi and Ai, the key of which is the correct estimation of Ωi.
When M < L + 1, the problem of solving Hi in Equation (13) turns into an underdetermined
equation solution problem. Since Hi is a sparse variable, according to CS theory, the solution
of this underdetermined equation can be obtained through the optimization problem below
to obtain the estimation of channel parameter Hi:

Ĥi = arg min
Hi

‖Hi‖0 s.t. ‖Ri −Φi Hi‖2
≤ ε (16)

where ε is a noise-related non-negative constant. In recent years, the development of CS
theory has provided corresponding algorithms for solving the above problem, which have
mainly included relaxed convex optimization algorithms, basis pursuit (BP) algorithms,
matching pursuit (MP) algorithms based on a greedy search, etc.

2.2. Improvement of the OMP Algorithm
2.2.1. CRLB for Parameterized Channel Estimation

According to signal detection and estimation theory, for parameter estimation prob-
lems, the CRLB establishes a lower bound for the variance of any unbiased estimator; i.e., it
is impossible to obtain an unbiased estimator with an estimated mean square error (MSE)
smaller than the CRLB. Therefore, the difference between the MSE of the estimate and
the CRLB is usually taken as an important indicator for evaluating the performance of an
estimation method in both frequency offset and channel estimation [27].

When the set Ω of the channel path delay and sparsity K of the channel are obtained,
the signal transmission model is as follows:

R = ΦΩ HK + V (17)
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where R is the received TS of the IBI-free region with length M, and ΦΩ is the observation
matrix of M× K, which is a sub-matrix of Φ whose column indices are elements in Ω. Also,
Gaussian white noise V = [v1, v2, · · · vM] obeys the distribution of N

(
0, σ2 IM

)
, and HK is

the column vector of K× 1, giving only the channel sparse location coefficients.
Assuming HK, the conditional probability density function (PDF) of R is denoted as

follows [20]:

pR|HK
(R; HK) =

1

(2πσ2)
M/2 exp

{
− 1

2σ2 ‖R−ΦΩHK‖2

}
(18)

Using vector estimation theory [27], the CRLB of unbiased estimation ĤK = Φ†
ΩR can

be introduced as expressed in Equation (19):

CRLB = E
{
‖ĤK − HK‖

2
2

}
(19)

According to Equation (17), the estimated value of HK is obtained to satisfy

ĤK = ΦΩ
†R = ΦΩ

†(ΦΩ HK + V)
= ΦΩ

†ΦΩ HK + ΦΩ
†V = HK + ΦΩ

†V
(20)

that is,
ĤK − HK = ΦΩ

†V (21)

thus,

CRLB =
{
‖ĤK − HK‖

2
2

}
= E

{
‖ΦΩ

†V‖2
2

}
= E

{
‖
(

ΦΩ
HΦΩ

)−1
ΦΩ

HV‖
2

2

}
(22)

Considering G = ΦΩ
HΦΩ, when all elements in ΦΩ are identically distributed random

numbers with modulus 1, the diagonal elements of Gram matrix G are the constant M, and
the remaining elements are normally distributed random numbers with a mean of 0 and
variance of 1/M. Expanding the matrix operations further yields

CRLB = E
{
‖G−1ΦΩ

HV‖2
2

}
= K

(
1
M

)2
σ2M =

K
M

σ2 (23)

From Equation (23), it can be seen that an increasing M decreases the CRLB; i.e.,
increasing the number of observations improves the probability that the OMP algorithm
correctly recovers the original sparse signal. The relationship between M and the CRLB
verified that increasing the number of observations effectively improves the performance
of channel estimation. When channel multipath delay is calculated using the CS-based
reconstruction algorithms, an accurate channel length can be obtained, which is usually
shorter than the default maximum length; therefore, a larger number M of observations
can be obtained, and a new observation matrix can be generated.

2.2.2. Improvement of the OMP Algorithm

Knowing that the observation matrix of M× N is Φ, that the observation vector is y,
and that the sparsity is K, the steps to solve the sparse signal ŝ using the OMP algorithm
are as follows:

1. Initialization parameters: residual r0 = y, index set Λ0 = ∅, the set of selected column
vectors in the observation matrix A0 = ∅, and a number of iterations of t = 0.
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2. t = t + 1, a column αj of the observation matrix Φ, is searched for the elements that
best match the residual according to the principle of maximum correlation, and the
index set λt is updated, which satisfies the following:

λt = arg max
j=1,2,3......N

∣∣〈rt−1, αj
〉∣∣ (24)

where αj denotes the jth column of observation matrix.
3. The index set Λt = Λt−1 ∪ {λt} is updated, and At = At−1 ∪ αλt ; where t denotes

the current number of iterations and the number of elements in the current index set.
4. The least square solution is found:

ŝt = arg min
s
‖y− Atst‖ = (AH

t At)
−1

AH
t y (25)

5. New approximations and residuals are calculated: rt = y− At ŝt.
6. If t < K, the process returns to step 2; otherwise, iteration is stopped and returns to

step 7.
7. The non-zero element position set of ŝ obtained from the reconstruction is Λt, and the

value of the non-zero element is the solution of the last iteration ŝt.

The OMP algorithm guarantees the optimality of each iteration, with the number of
iterations equal to the sparsity value. The main ideas of the SOMP and OMP algorithms are
the same, and their difference lies only in step 2. When searching for the column index of
the observation matrix that most matches the residual, corresponding to a number of joint
sparse signals, the inner products of the residual and the column are summed, and then
the column corresponding to the maximum value is selected. The other steps are exactly
the same. All solutions of sparse signals are obtained via the LS rule.

It should be noted that, when the OMP algorithm is applied to reconstruct the original
signal, the observation matrix Φ is known. According to Equation (14), Φi is the matrix of
M× (L + 1), where L is channel length, which is related to the maximum delay spread of
the channel. However, in practical applications, L is unknown and can only be obtained by
estimating the realistic maximum delay of the channel, which is usually greater than the
actual channel length. Reference [22] proposed a PIA-OMP algorithm based on a priori
information, which improved OMP reconstruction accuracy and, thus, channel estimation
performance. By inserting the cyclic prefix of the first TS as a guard Interval in the header
of a transmitted frame, this method obtains a priori information such as the channel length
and sparsity, but it sacrifices some spectral efficiency. In addition, it assumes a constant
CIR within a frame, which has limitations for application in fast-fading channels.

In this research, we propose an improved scheme that can be applied to both the OMP
and SOMP algorithms. It can significantly improve the performance of the reconstruction
algorithm without sacrificing spectral efficiency. Based on the maximum possible delay,
the channel length is preset to be L, and a more precise channel length is calculated
when the path delay set is obtained through several iterations. The set is estimated to be
Ω̂i = {τ̂0, τ̂1, · · · τ̂K−1}; then, the channel length is L̂ = τ̂K−1 and L̂ ≤ L. Therefore, the
length of the IBI-free region M is enhanced, and thus, the observation matrix is updated
as follows:

Φ′i =


ci,L̂ ci,L̂−1 ci,L̂−2 · · · ci,0

ci,L̂+1 ci,L̂ ci,L̂−1 · · · ci,1
...

...
...

. . .
...

ci,P−1 ci,P−2 ci,P−3 · · · ci,P−L−1


M′×(L̂+1)

(26)
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where M′ = P− L̂, and M′ > M. The number of rows of Φ′i is increased, and the number of
columns is decreased compared to the initialized observation matrix given in Equation (14).
Substituting Equation (26) into Equation (13) yields the following:

Ri
′ = Φ′i H

′
i + V′i (27)

where Ri
′ is the IBI-free region signal with length M′, which is the observation vector in the

OMP algorithm and is recorded as R′i = [di,L̂, di,L̂+1, . . . , di,P−1]
T ,H′i = [hi,0, hi,1, . . . , hi,L̂]

T ,
and V′ i is the vector that contains the last M′ samples of the additive Gaussian white noise
signal Ni. According to Equation (23), and due to the increase of M, the CRLB is decreased,
and according to Equation (27), the recalculation of the channel path gain based on the
LS criterion provides a certain performance gain. Based on the new vector Ri

′ and the
observation matrix Φ′ i, as well as the estimated path delay set Ω̂i, the overdetermined
equation R′ i = Φ′ i

∣∣
Ω̂i

H′ i is solved, where Φ′ i
∣∣
Ω̂i

is the column set of Φ′ i with the column

index in the set Ω̂i, which can be obtained according to the least squares criterion:

Ĥi =
(

Φ′ i
∣∣
Ω̂i

H Φ′ i
∣∣
Ω̂i

)−1
Φ′ i
∣∣
Ω̂i

H R′ i (28)

In summary, Figure 3 shows the process of the proposed scheme for the OMP and
SOMP algorithms. The modules of the conventional OMP and SOMP algorithms are outside
the dashed box, and the improvement parts are inside it. Compared with conventional
algorithms, better estimation performance is obtained by employing the proposed scheme.
Since both methods fully utilize the IBI-free region signal as an observation vector, the
proposed method in this research is able to achieve the same performance gains as the
method in reference [22], but it does not require additional pilots. Furthermore, since
matching pursuit algorithms are all based on obtaining accurate path delay estimates
before calculating the path gain, the proposed method is also applicable to other matching
pursuit algorithms.
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Algorithm 1 summarizes the steps of the proposed improved OMP algorithm. The
initial observation matrix Φ is Φi in Equation (14) with a size of M× (L + 1), the observation
vector y is Ri in Equation (13), the sparse signal s is Hi, the sparsity level is K, and the
updated observation matrix is Φ′i in Equation (26).
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Algorithm 1: Proposed improved OMP algorithm.

1. Initialization parameters : residual r0 = y, index set Λ0 = ∅, the set of selected
column vectors in the observation matrix A0 = ∅, and number of iterations t = 0.
2. t = t + 1, a column αj of the observation matrix Φ, is searched for the elements
that best match the residual according to the principle of maximum correlation,
and the index set λt is updated, which satisfies the following:

λt = arg max
j=1,2,3......N

∣∣∣〈rt−1, αj

〉∣∣∣
3. The index set Λt = Λt−1 ∪ {λt} and the set of selected column vectors At = At−1 ∪ αλt are
updated, where t denotes the current number of iterations and the number of elements in the
current index set.
4. The least square solution is found:

ŝt = arg min
s
‖y− Atst‖ = (AH

t At)
−1 AH

t y

5. New approximations and residuals are calculated : rt = y− At ŝt.
6. If t < K, the process returns to step 2; otherwise, iteration is stopped and returns to step 7.
7. The non− zero element position set of ŝ obtained from the reconstruction is ΛK =
{λ0, λ1, · · · λK−1}, denotes L̂ = max(ΛK), and the observation matrix Φ = Φ′ i and observation
vector y = R′ i are updated.
8. The set of column vectors of Φ is denoted as Φ|ΛK

; with columns indexed using elements in
ΛK , the least square solution is found:

ŝ =
(

Φ|ΛK
H Φ|ΛK

)−1
Φ|ΛK

Hy

It should be noted that, when applying CS-based channel estimation to OFDM systems,
a mathematical model is established, as stated in Equation (10). When applying a greedy
pursuit algorithm to reconstruct the time domain CIR, the observation vector length is
equal to the number of frequency pilots, so all reference signals are utilized, and there is no
possibility of further increasing the observation number. Therefore, the improved method
is not applicable to OFDM systems using frequency domain pilots as reference signals. In
particular, since the TDS-OFDM system uses the time domain TS as reference signals for
synchronization and channel estimation, it is similar in structure to the SC-FDE system,
and thus the improved scheme is also applicable to the TDS-OFDM system based on CS
channel estimation.

3. Results and Discussion

This research sets up an SC-FDE system simulation platform to simulate the proposed
improved algorithm. Multipath channel models are selected from tapped delay models,
and the channel parameters of four paths and six paths are set according to the ionospheric
channel characteristics of shortwave communication and the typical urban area channel
model of wireless communication COST207 [28], as summarized in Table 1, where channel
sparsity is the number of multipaths. Assuming that the system is ideally synchronized,
the main parameters of the transmitter are shown in Table 2.

Table 1. Channel model parameters.

Channel Sparsity (K) 4 6

Channel length (L) 40 50

Path delay (τk) Random Random

Path gain (αk ) [0, −3, −6, −9] [−3, 0, −2, −6, −8, −10]

Doppler shift ( fd ) 1 Hz 100 Hz
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Table 2. Transmitter parameters.

Channel Sparsity (K) 4 6

Sample rate ( fs ) (Hz) 8× 103 10× 106

Modulation QPSK QPSK

Channel coding Convolutional encoding Convolutional encoding

Code rate 0.5 0.5

Training sequence Chu/PN Chu/PN

IBI-free region length (M) 24 24

Training sequence length
(P = M + L) 64 74

Data block length (N) 256 256

Channel length and sparsity are selected according to the following considerations.
Based on the properties of ionospheric channels [29], the maximum multipath delay spread
is τmax = 5 ms. Considering that the system sampling rate is fs = 8 KSps, the tap number
of the tapped delay channel model, and also the initialized value of the channel length, is
L = fs × τmax = 40. ITU-R suggests test channels for the simulation of the performance of
the shortwave digital communication system, and ITU-R F.1487 defines ten test channels at
different latitudes and under different environmental conditions. These test channels are
all Watterson models with a two-path tapped delay [29]. Six channel models are suggested
according to the DRM digital broadcasting standard [30], in which the typical shortwave
channel model is a four-path channel, and sparsity of K = 4 is chosen to better verify the
reconstruction performance of the CS algorithm. Similarly, according to the typical urban
area of the COST207 model, the maximum multipath delay spread is τmax = 5 µs, and the
system sampling rate is taken as fs = 10 MSps, from which the initialized value of channel
length is L = fs × τmax = 50. The typical urban area channel model given via COST207
usually has six significant paths; therefore, the sparsity is chosen to be K = 6. The iterations
of the OMP and SOMP algorithms are equal to the sparsity level, and our simulations
assume that the channel sparsity is known.

In order to illustrate the superiority of the proposed scheme, the improved OMP and
SOMP algorithms (with jointness J = 16) were simulated and compared with the MMSE
method [24] and conventional OMP [9] and SOMP [16] algorithms in terms of both spectral
efficiency and channel estimation performance, respectively. When the MMSE method is
applied, TS is a dual UW, which is a Chu sequence with a constant envelope property [31].
The first is used to resist multipath interference due to unknown data, and the second is
applied as the reference signal for channel estimation. When the CS-based methods are
used, UW is a pseudo-random (PN) sequence. The UW length needs to be longer than
the channel maximum delay spread, and it is set to P = 64 and P = 74 for two channel
conditions, respectively.

In our simulation, fifteen symbol blocks were used for each simulation run, and each
symbol block consisted of a TS of P samples and a data block of N samples. The average
values of the MSE and bit error rate (BER) were calculated using 5000 simulation runs.
The curves of the MSE versus the number of observations for conventional and improved
algorithms are illustrated in Figures 4 and 5 for four-path and six-path channel conditions,
respectively, with a fixed signal-to-noise ratio (SNR). The SNR was chosen to be 15 dB.
P-OMP and P-SOMP in the legend represent the improved algorithms proposed in this
research. In the figure, the red and blue dashed lines are the CRLB using conventional
and improved methods, respectively. Obviously, the channel estimator using improved
algorithms reduces the CRLB and obtains a smaller MSE, which effectively improves the
estimation performance.
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As shown in Figure 4, the OMP algorithm achieves a mean square error of MSE = 10−2

when M = 22 for the four-path channel model. However, the P-OMP algorithm achieves
a mean square error of MSE = 10−2 when M = 19. Similarly, the numbers of observa-
tions required for the SOMP and P-SOMP algorithms to achieve a mean square error of
MSE = 10−2 are M = 17 and M = 15, respectively. In other words, the improved methods
achieve the same performance as the conventional methods using fewer observations; how-
ever, at a constant observation number, the improved methods can significantly decrease
the MSE and improve the performance of the channel estimator.

It is also evident that the MSEs of the SOMP methods applied to recover the joint
sparse signal are closer to the CRLB than the OMP methods; that is, SOMP is able to utilize
the temporal correlation of the channel state information (CSI) in consecutive frames, and
it can use a shorter observation vector to achieve the same reconstruction probability as
the OMP algorithm. When the observation vectors are the same as those of the OMP
algorithms, the SOMP methods effectively reduce the MSEs and obtain more superior
reconstruction performance for a sparse signal.

Figures 6–9 illustrate the curves of the MSE and BER of different estimation meth-
ods with respect to the SNR, according to the two channel conditions. As shown in
Figures 6 and 8, the MSEs of the CS-based methods are lower than those of an MMSE
method, except that the conventional OMP algorithm is not as good as MMSE at using a
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dual UW at a low SNR. Compared with the conventional OMP and SOMP algorithms, the
improved algorithms pull down the CRLB and, thus, achieve lower MSEs. For the four-path
channel, as illustrated in Figure 6, at MSE = 10−2, P-OMP achieves a SNR gain of about
1.0 dB compared to OMP and P-SOMP achieves a SNR gain of about 1.1 dB compared to
SOMP. As shown in Figure 7, using the conventional OMP and SOMP algorithms, SNR
gains of about 0.7 dB and 1.8 dB are achieved at BER = 10−5 compared to the MMSE,
respectively. When adopting the improved algorithms, an extra 0.3 dB and 0.2 dB in SNR
gains can be obtained compared to the conventional algorithms, respectively. For the
six-path channel, Figure 8 illustrates that, at MSE = 10−2, P-OMP achieves a SNR gain
of about 0.9 dB compared to OMP, and P-SOMP achieves a SNR gain of nearly 1.1 dB
compared to SOMP. In Figure 9, it is seen that the BER performance using the conventional
OMP algorithm is essentially the same as that using MMSE. However, compared with
MMSE, conventional SOMP achieves a SNR gain of about 3.4 dB at BER = 10−5. Compared
to conventional methods, additional SNR gains of about 0.8 dB and 0.3 dB, respectively, are
obtained via the improved methods.
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In terms of algorithm complexity, MMSE estimation requires a matrix-inverse op-
eration with a time complexity of O(P3), and the complexity is higher for larger matrix
orders. The application of iterative methods such as most rapid descent and conjugate
gradient methods are able to avoid the matrix inverse, and channel estimation is realized
by solving system equations. It was found that those methods converge faster, with O(P2)
computations per iteration. For CS-based schemes, the main part of both conventional and
improved algorithms lies in the iteration of a greedy algorithm. The iteration numbers of
both algorithms are the same; they are equal to the channel sparsity K. The time complexi-
ties of the conventional OMP and SOMP algorithms are both O(KML), and compared with
conventional methods, the improved methods only add the step of solving for the exact
path gain according to the maximum likelihood rule (MLR), as stated in Equation (28). The
increased time complexity is O(M′K2 + K3) [19]; i.e., the computational time is exponentially
increased with the increase in sparsity. For wireless channels with significant sparsity, we
have K << L, and the computations achieved via the improved algorithms are acceptable.
The observation vector length M′ for calculating the path gain has a smaller effect on the
complexity. The time complexities of different estimation schemes are summarized in
Table 3, where the complexity of MMSE is based on the computation of a standard matrix
inversion method.
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Table 3. Time complexities of different channel estimation schemes.

Channel Estimation Method Time Complexity

MMSE O(P3)

OMP/SOMP O(KML)

P-OMP/P-SOMP O(KML) + O(M′K2 + K3)

Table 4 summarizes the length and overhead of the reference signals for different
estimation methods. Compared with MMSE, which uses dual UWs as reference signals,
CS-based methods can reconstruct channel state information with a high probability using
a single UW as a reference signal while decreasing the reference signal overhead and greatly
improving the spectrum efficiency, so they are very conducive to the effective transmission
of wireless communication systems.

Table 4. Reference signals and overhead for different channel estimation schemes.

Channel Estimation Method MMSE OMP/P-OMP SOMP/P-SOMP
(J = 16)

Data block length (N) 256 256 256

Reference signal DUW UW UW

Reference signal length (P) 128
K = 4 K = 6 K = 4 K = 6

64 74 64 74

P/N 50% 25% 28.9% 25% 28.9%

In summary, when using CS-based methods, compared with the dual UW-based
MMSE method, the BER performance of the channel estimator is effectively improved with
a substantial reduction of the reference signal; i.e., the effectiveness and reliability of the
communication system are simultaneously enhanced. Compared with the conventional
OMP and SOMP algorithms, the proposed scheme pulls down the CRLB and further
improves the performance of channel estimation. Therefore, adopting CS-based estimation
methods and applying an improved algorithm are of great practical significance for the
reliable transmission of numerous wireless channels with sparse characteristics.

4. Conclusions

The OMP algorithm is an important greedy algorithm that is more extensively applied
to CS-based channel estimation. This research model’s wireless channel estimation problem,
as a sparse signal reconstruction problem, analyzes the factors affecting OMP algorithm
performance, proposes an improved scheme applicable to SC-FDE systems, which is
applied to the OMP and SOMP algorithms, and finally develops system simulations and
experiments for the two channel models. The simulation results show that, compared
with the conventional MMSE estimation method, CS-based methods significantly save on
the reference signal overhead and improve channel estimation performance. Therefore,
they improve the effectiveness and reliability of the communication system at the same
time. Also, compared with the conventional OMP and SOMP algorithms, the improved
algorithms use longer observation vectors to calculate the path gain after obtaining the
accurate path delay, which lowers the CRLB, and they are able to further enhance the
performance of the MSE and BER in channel estimation, so they further improve the
reliability of the communication system effectively.

The limitation of the proposed scheme is that it assumes the known channel sparsity,
which is unavailable in most fast-varying systems. In practice, a rough estimate of the
sparsity can be obtained based on the LS criterion. In addition, the improved algorithms
increase the complexity of the reconstruction algorithm, and the computation time increases
exponentially with the increase in sparsity, but the additional computations are acceptable
for the estimation of wireless channels with significant sparsity.
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The improved scheme is not applicable to OFDM systems employing frequency do-
main pilots, but it can be applied to TDS-OFDM systems and is applicable to the improve-
ment of other matching pursuit algorithms. As summarized, the proposed scheme is of
great significance for the reliable transmission of wireless communication systems based
on a transmission block structure employing time domain pilots.
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