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Received: 8 October 2023

Revised: 23 November 2023

Accepted: 23 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Semi-Supervised Image Stitching from Unstructured
Camera Arrays
Erman Nghonda Tchinda ∗ , Maximillian Kealoha Panoff , Danielle Tchuinkou Kwadjo
and Christophe Bobda

Department of Electrical and Computer Engineering, The Herbert Wertheim College of Engineering, University of
Florida, Gainesville, FL 32611-6200, USA; m.panoff@ufl.edu (M.K.P.); dtchuinkoukwadjo@ufl.edu (D.T.K.);
cbobda@ece.ufl.edu (C.B.)
* Correspondence: enghonda@ufl.edu

Abstract: Image stitching involves combining multiple images of the same scene captured from
different viewpoints into a single image with an expanded field of view. While this technique has
various applications in computer vision, traditional methods rely on the successive stitching of
image pairs taken from multiple cameras. While this approach is effective for organized camera
arrays, it can pose challenges for unstructured ones, especially when handling scene overlaps. This
paper presents a deep learning-based approach for stitching images from large unstructured camera
sets covering complex scenes. Our method processes images concurrently by using the SandFall
algorithm to transform data from multiple cameras into a reduced fixed array, thereby minimizing
data loss. A customized convolutional neural network then processes these data to produce the
final image. By stitching images simultaneously, our method avoids the potential cascading errors
seen in sequential pairwise stitching while offering improved time efficiency. In addition, we detail
an unsupervised training method for the network utilizing metrics from Generative Adversarial
Networks supplemented with supervised learning. Our testing revealed that the proposed approach
operates in roughly ∼1/7th the time of many traditional methods on both CPU and GPU platforms,
achieving results consistent with established methods.

Keywords: image stitching; self-supervised learning; image blending; unstructured camera arrays;
scene representation

1. Introduction

Image stitching is an important technique in many computer vision applications.
Image stitching aims to combine multiple images captured from different viewpoints into a
single image with a wider field of view (FOV) that encompasses all contributing images.
Image stitching is a well-studied topic with widespread applications [1–5], and has proven
to be very useful in domains such as virtual reality, teleconferencing, sports broadcasting,
and immersive technologies [6–8]. However, existing stitching methods, despite their broad
adoption, do not scale well to systems with many unorganized cameras.

State-of-the-art techniques often use sequential pairwise image stitching to generate
panoramic images from multiple cameras [8–10]. Sequential Pairwise is a multi-step process
in which two images are stitched simultaneously. At every step, a new image is stitched
with the composite image of all already stitched ones. This image stitching technique
simplifies the problem of complex overlapping regions introduced by multi-cameras,
making it easy to find the intersection of the overlapping regions for efficient processing.
However, this sequential process has several issues regarding time complexity and error
propagation. An error introduced during an early merge is likely to be maintained rather
than corrected, leading to many issues in the final output. Additionally, by only examining
two sub-images, current solutions often fail to properly merge the content in the resulting
image, leading to broken objects and ghosting effects.
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As an alternative, seam-based approaches provide a way to limit error propagation
by differentiating the pixels that previously belonged to a seam; however, this approach
introduces seam-related artifacts [3,11]. Usually, an additional step is required to remove
these artifacts. Methods such as Poisson blending [4] are often the primary postprocessing
choice to remove color artifacts; however, Poisson blending assumes that the boundary
between the overlapping pairs of images (e.g., not the overlap of each image but the
overlap between each pair of images) is well-defined. In a multi-camera system with
unorganized camera arrays, this assumption does not stand. There may be many individual
sets of images, complicating the optimization process used in Poisson blending. As an
alternative to Poisson blending, multi-band blending bypasses complications stemming
from large amounts of overlapping images; however, it requires many iterations to convey
an acceptable outcome under the same conditions, raising the issue of time complexity.

It is common to find approaches in the literature that tackle each of these problems
individually very well; unfortunately, these methods are rarely able to produce an artifact-
free panorama stream in real time when used with more complex and heterogeneous setups
involving a large number of cameras [12]. In some approaches, significant computational
resources are required to remove visual artifacts. For example, seam-based methods require
additional processing, such as Poisson image blending, to eliminate visual artifacts caused
by camera exposure [11,13,14].

A few recent works have examined image stitching using deep learning [15–18].
However, all of these focused on pairwise stitching, wherein two inputs are stitched
together and the output is stitched with the next input until all inputs have been used,
similar to the traditional methods discussed above. This can lead to several problems, in
particular error propagation, as a single error early in the process can cascade; with each
iteration, pre-existing errors are built upon and expanded. In our work, we stitch several
images together concurrently, which mitigates this potential shortfall and leads to higher
efficiency when using a large number of cameras.

Deep learning is a powerful tool in computer vision, and recent advances in image
generation, particularly through Generative Adversarial Networks (GANs), have inspired
a large body of work. In a GAN, a generator creates an image, and a discriminator
scores or rates it, with the ultimate goal being the creation of an image that can fool
the discriminator [19]. Image stitching is similar in scope; the central idea is finding a
method to create a new image from several smaller ones such that the resulting image
maintains all the information, content, and structure from the constituent images. In [20],
Shen et al. proposed using a GAN for image stitching; however, their solution has a few key
weaknesses. Notably, their work focuses on pairwise stitching and requires a precomputed
and entirely accurate binary mask to highlight the overlap between image pairs when
generating an image, which adds additional computational overhead.

In this paper, we introduce a pioneering deep learning-based method for stitching
images from unstructured camera arrays. Our approach, distinct from Ye et al. [21], ensures
the preservation of image content in the final stitched output without the need for binary
masks during image generation. This method excels in handling the challenges of diverse
viewpoints and lighting conditions through a custom loss function and innovative semi-
supervised learning with a pre-trained perception model, significantly reducing the reliance
on labeled data.

We present SandFall, an innovative algorithm designed for the efficient representation
of image data. SandFall enables the processing of an unlimited number of camera inputs by
compressing images into a fixed volume size, thereby minimizing data loss and addressing
one of the key challenges in large-scale image stitching.

The primary contributions of our paper are:

• The development of SandFall, a novel algorithm for data representation that supports
an unlimited number of camera inputs while ensuring fixed-size image data.
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• A deep learning-based image stitching network capable of processing an unlimited
number of input images in a single forward pass, employing semi-supervised learning
to optimize training with limited labeled data.

• Adaptations of GAN performance metrics specifically tailored for assessing the quality
of image stitching, providing a robust framework for evaluation.

• Comprehensive quantitative and qualitative evaluations of our approach, demonstrat-
ing its effectiveness against popular image stitching algorithms using both standard
and custom datasets.

The remainder of the paper is structured as follows: Section 2 covers necessary back-
ground knowledge and related work in image stitching. Section 3 details our proposed
framework and the SandFall algorithm. In Section 4, we demonstrate our technique and
benchmark it against state-of-the-art methods. Our findings are discussed in Section 5, and
we conclude with reflections on our approach in Section 6. The complete source code for
this project, encompassing all algorithms and methods discussed, is publicly available for
reference and further research. It can be accessed on GitHub as of 22 November 2023 at
https://github.com/smartsystemslab-uf/unsup_image_stitching.

2. Related Work
2.1. Image and Video Stitching

Image stitching aims to create seamless and natural photo-mosaics using multiple
images from different sources. A comprehensive survey of traditional image stitching
algorithms is provided in [5]. Recent studies have focused on structure deformation and its
extension to video stitching [14,22]. These approaches assume a pairwise overlapping of
cameras and use dynamic programming to search for the optimal seam, which is unsuitable
for unstructured multi-camera systems. To handle unstructured camera arrays, Perrazi
et al. [10] used a straightforward approach for camera alignment by applying pairwise
homography directly on the input videos. While this makes the technique more flexible
and straightforward for camera alignment initialization, it requires additional processing
to handle lens distortion and exposure compensation.

Machine learning, particularly deep learning, is highly impactful in several domains,
particularly computer vision. Convolutional Neural Networks (CNNs), a type of deep
learning architecture, are extremely successful when applied to traditional computer vision
problems such as image classification [23], object detection [24], image segmentation [25],
and human pose detection [26].

Image stitching has received far less attention from deep learning experts than these
subdomains, though this is not to say there has been no prior work at all. Song et al. used
CNNs in [16,18], making use of weak supervision and expanding their network to work
with images taken in a simulated outdoor environment, which can be more difficult as
these images have more variation in exposure levels. In [15], Chilukuri et al. stitched two
images together and leveraged auto-encoders [21] in addition to standard convolutional
layers when constructing their network. Specifically, they encoded two input images
into a shared space and then decoded the result into a single output image. Shen et al.
proposed a method in [20] involving the use of a Generative Adversarial Network to stitch
two images with an overlapping field of view together using a CNN. Their work heavily
leveraged a mirror to finely tune the amount of overlap between the fields of view of the
images and to create perfectly aligned images for use as ground truth. However, while
their proposed network introduces low amounts of artifacts and is able to run in real-time,
which are among the greatest challenges in image stitching, it requires a precomputed
binary mask to highlight the overlap between the input images. Finally, in [17], Nie et
al. proposed a method using deep learning to better solve the problem of rectangling in
image stitching. Again, this requires a precomputed binary mask and only attempts to
solve pairwise stitching.

https://github.com/smartsystemslab-uf/unsup_image_stitching


Sensors 2023, 23, 9481 4 of 21

2.2. Parallax-Tolerant Stitching

Many recent approaches have focused on addressing parallax-tolerant stitching. One
variety of these approaches assumes that all images with the same projection center are
parallax-tolerant. It is possible to manipulate images to meet this constraint by carefully
rotating each camera in the scene [2,5]; however, many errors can be introduced through
misalignment of these projection centers caused by objects moving during image acquisition
or incorrect mitigation of lens distortion. These errors can be removed using Multi-Band
Blending (MBB) [2], content-preserving warping [13], and seam selection [3]. MBB usually
provides satisfactory results; however, several iterations may be required for the algorithm
to converge, making it unsuitable for real-time video stitching. Therefore, in this paper
we use content-preserving warping for camera alignment and a deep neural network to
increase stitching throughput.

2.3. Gradient Domain Smoothing

The main challenge with the seam-based approach is finding a good compromise
between the structure of an image and the visual perception of the seam. When the
emphasis is on preserving the structure of the objects in the scene, the stitches appear with
a more visible seam. Additional steps are often required to remove seam-related artifacts
using the Poisson equation, as formulated by Perez et al. [4]. The Poisson equation is
designed to blend the image based in the assumption that the boundary of the intersection
area is well-defined. To the best of our knowledge, this equation has not been formulated
for blending several images (more than two) simultaneously. One solution that is often
provided in the literature involves formulating the problem in the frequency domain and
then using a guidance vector to find and approximate the solution with FFT [27]. This
reformulation is known as the Fourier implementation of Poisson Image Editing [27–30].
These algorithms effectively remove additional artifacts when the composite image is not
multi-style. For instance, if one part of the scene is under shadow and the other part is
under strong illumination, the resulting image tends to be either too bright or dark.

2.4. Supervised, Unsupervised, and Semi-Supervised Networks

As machine learning becomes increasingly popular, its limitations are becoming more
apparent. One of the largest drawbacks of supervised learning (the most common machine
and deep learning approach) is that it requires large datasets with accurate ground truth
labels [31]. The algorithm learns by predicting an input and comparing its result with the
known true result. Differences between these two sets are used to calculate a loss function,
which the network then attempts to minimize. As it does this, the network’s predictions
and the ground truth become more aligned and the model grows more accurate. Ideally,
the loss eventually reaches a minimum value, resulting in the network’s outputs closely
aligning with the ground truth.

It is not always possible to obtain a large dataset with accurate labels when training a
network. One possible solution to this problem is unsupervised learning. In unsupervised
learning, there are no known ground truth labels; instead, the characteristics of the data
itself are used as labels. A classic example of this in deep learning is the use of autoencoders
for noise reduction [31]. In these networks, the inputs are taken as labels. An encoder-
decoder network might receive an image, perform convolutions to lower its resolution,
deconvolve it to upscale it, and use the difference between the original image and output
to calculate the loss. Following this approach, labels can be quickly and automatically
generated rather than being found through human input or expensive computation.

Another popular solution, and the one that we use in this work, is known as semi-
supervised learning [32], which combines the two prior approaches of supervised and
unsupervised learning. Instead of needing to label an entire large dataset, a small subset
of collected data is labeled. The network first trains on this data in the same manner as in
supervised learning. Soon after, additional unlabeled data are added to the training set,
which is then trained in an unsupervised manner. By priming the network with supervised
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data, it should have a better chance to converge to a low loss than one trained in an entirely
unsupervised approach while requiring less labeled data than supervised learning.

2.5. Image Quality Assessment (IQA)

An important aspect of the training process is efficiently assessing the quality of the
generated output in a way that correlates with human judgment. This task is challenging
in the context of unstructured image stitching for two main reasons. First, the camera
registration process that allows images to be aligned in a frame of reference prior to
stitching consists of geometric transformations. These transformations often depend on
the perspective of dominant objects in the picture. Homography, for example, seeks to
favor dominant planar structures. Thus, the transformation matrices used for projecting
images into a common warping space are obtained as a trade-off between the content of
the image and the objective scene [2,5,10]. For this reason, it is difficult to design a ground
truth dataset for an unstructured array of cameras without it being subject to the geometric-
related error obtained during the registration process. Second, in unsupervised image
stitching the goal is to compare the generated image to the warped images. Because of the
geometric errors introduced during the alignment process, pixel-based metrics such as MSE,
PNSR, and SSIM that assess the image quality through direct pixel-to-pixel comparison are
not suitable for evaluating the quality of the generated image against the warped inputs. In
addition, these metrics do not usually correlate with human judgment, as shown by [33–35].
For this reason, throughout this work we weight feature-based metrics most heavily when
assessing the quality of images.

Recently, several metrics have been proposed to evaluate performance in GAN-based
image generation models [33–37]. These metrics can be categorized as featured-based, as
they evaluate the quality of images using high-level features from pretrained networks.
As opposed to pixel-based metrics (SSIM, PNSR, MSE, etc.), which compute the similarity
between two images by relying on pixel values directly, feature-based metrics correlate
well with human perception [33]. The Fréchet Inception Distance (FID) [35] was created
to evaluate the performance of GAN networks by measuring the Fréchet distance on the
feature space between the real image dataset and the fake one. The FID has been widely
adopted in the literature, along with other metrics such as the Inception Score (IS) and the
LPIPS for IQA.

3. Method

Stitching pipelines typically begin with image registration or alignment, followed by
optimal seam finding, image blending, and finally artifact removal. The alignment phase
involves projecting the input image into a reference frame by estimating the mutual poses
of the input images.

Our approach focuses on the post-image alignment phase and aims to generate a
seamless output. We formulate the stitching problem as finding a parametric function G
that maps a set of warped input images X = {w(Xi)} into a seamless image target T [1].
For simplicity, we use Xi as the warped image instead of w(Xi) in the following. In contrast
to existing approaches that use the pairwise methodology, we have designed our model
to assess the inputs simultaneously in order to generate the stitched output. Our system
consists of two components: a data representation S and an image transformation network
F ; S takes a set of multiple images and generates an intermediate representation with a
regular shape. The second component, F , uses the intermediate representation to generate
the stitched image.

G(X ; θ) = F
(
S(X ); θ

)
→ T (1)

3.1. Data Representation

In light of the intricacy posed by the unstructured nature of our method, the primary
goal of our data representation strategy is to facilitate fixed-size inputs for model training
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while enabling the network to simultaneously assess all pixels. This is especially crucial
when dealing with multiple cameras, which introduces an added layer of complexity to
representation and processing.

Historically, research has predominantly focused on pairwise image stitching. In this
approach, some images, denoted as Ii and Ij, are amalgamated to produce an intermediary
image Iij. This process is iterative. For example, Iij might be further combined with
another image Ik to yield Iijk, and so on [9,10,12,38,39]. A significant vulnerability arises in
this method: if an object’s representation is skewed during initial pairwise combinations
due to seam placement, the error becomes embedded, potentially affecting subsequent
stitching. In essence, when an error occurs, addressing it in subsequent iterations becomes
exceedingly difficult. This cascading effect amplifies the risk of objects being depicted
inaccurately or even omitted entirely in the final composite.

To address these limitations, we propose a straightforward yet effective method that
enables stitching all images simultaneously for a direct scene representation. A fundamental
way to achieve this is by creating a 3D volume wherein images are layered sequentially, as
illustrated in Figure 1 (left). For RGB images, the total number of layers would be three
times the camera count; however, the practicality of model training demands fixed data
dimensions. To meet this requirement, we present the SandFall method, which adeptly
converts any number of camera captures into a consistently sized tensor that is perfectly
suited for smooth model integration.

Figure 1. Illustration of 1D data representation of the SandFall method. The left side represents four
pre-aligned images I1−4 on the x axis, which normally requires a matrix size of (4× 12) to preserve
all of the information necessary for reconstruction with the naive representation. On the right side,
we apply our SandFall data representation approach and reduce the matrix size to (3× 12) while
mitigating information loss.

3.1.1. Weighted Mask Integration

For efficient operation of the SandFall algorithm, the inclusion of a weighted mask is
essential. This mask assigns priority levels to pixels, indicating their importance during
the “dropping” process. This mask assigns priority levels while actively modifying the
pixel values based on the weighting scheme, ensuring that certain regions of the image are
emphasized more than others during the warping and SandFall operation. This distinction
is grounded in the idea that certain parts of an image are more crucial for preserving scene
context and structure.

While evaluating functions to generate this mask, we found the sigmoid function to be
particularly effective. This function creates a gradient of pixel priorities that originates from
the center of the image. We considered the Gaussian function; however, its symmetric curve
sometimes resulted in undesirable weightings at the image boundaries. In comparison, the
sigmoid function offers better control over the transition between weights, making it more
suitable for different image conditions.
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An inverted sigmoid function was chosen in order to prioritize central pixels and
reduce the weight of boundary pixels. The weight associated with the distance from the
center of the image is defined as follows:

S′(x, y) = 1− 1
1 + e−k(D(x,y)−d0)

(2)

where:

• D(x, y) is the Euclidean distance of a pixel (x, y) from the image center.
• k is a constant that adjusts the transition’s steepness.
• d0 is a distance threshold that determines the transition’s starting point between high

and low weights.

Figure 2 displays the variations of the inverted sigmoid function based on different k
and d0 values and the corresponding effects on the weighted mask.

Figure 2. Illustrated variations of the inverted sigmoid function by different k values and d percent-
ages, defining the response rate and relative width against the image diagonal. The first column plots
the sigmoid curves with changing d values, while the second and third columns show the associated
two-dimensional weighted masks. Rows represent d values at 20%, 50%, and 70% of the diagonal,
alongside k values of 0.1, 0.05, and 0.01, demonstrating their influence on weight distribution in our
SandFall algorithm.

3.1.2. SandFall Algorithm

Upon obtaining the weighted mask using the aforementioned method, it is multiplied
element-wise with the input image to produce a weighted image. This weighted image is
subsequently warped to form the SandFall blob. This ensures that pixels closer to the image
center have a more pronounced contribution during the warping process while those near
boundaries exert reduced influence.

The foundational idea behind SandFall is that after warping the image into the shared
volume, each image is used to constitute a layer of our 3D volume (as seen in Figure 1).
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Every pixel in the 3D volume is then “dropped” as if it were a grain of sand. It descends
through the volume, replacing less significant or vacant pixels, until it reaches its rightful
position or descends to the bottom-most row. This method ensures that the bottom layer
retains the most comprehensive dataset, with data completeness diminishing for each
subsequent upper layer.

During training, the layers within the 3D volume are occasionally shuffled in order to
enhance the robustness of the model. This prevents the model from learning based on the
order of the layers, ensuring that the algorithm’s efficacy is not compromised.

One notable advantage of SandFall is its scalability with increased camera counts.
Because upper layers inherently contain less data, omitting many of these layers can reduce
the volume’s size while only marginally impacting the overall result. For instance, in a
context with N = 100 cameras, which would usually necessitate a H ×W × N × 3 array,
SandFall enables a reduction to a more manageable H ×W × k× 3 array (where k = 5).
This compact representation preserves significant scene data and aligns the input for deep
learning architectures that mandate fixed input sizes. The marginal data loss, mainly when
multiple camera perspectives overlap on a point, has an inconsequential bearing on the
model’s performance. Users can adjust the N parameter to strike a balance between image
space efficiency and the desired overlap.

In Figure 3, we illustrate the progressive construction of the stitched panorama using
the SandFall method across four levels. Figure 3a depicts the base level where the majority
of the complete data is present. Figure 3b–d shows progressively higher levels where
fewer data points are included, demonstrating how our algorithm effectively manages
overlapping and reduces the size of the dataset while maintaining the integrity of the scene.
Notice how the images become more fragmented with each subsequent level, reflecting the
selective inclusion of pixels based on their weighted importance.

Figure 3. Progressive visualization of the SandFall method across four levels (a–d).

3.2. Image Transformation Network

The pipeline for our stitching process can be seen in Figure 4. Our system consists
of three main components: warping, reprocessing, and stitching. The system accepts as
inputs a set of images X i consisting of k images taken at time i, each with three channels of
H ×W pixels. We then use the method described in [2] to project all images into a single
four-dimensional (4D) plane of size H ×W × k× 3 (the fourth dimension is fixed to 3 in
order to represent Red, Green, and Blue (RGB) for each image). We then utilize the SandFall
Algorithm 1 to compress this to a smaller 3D plane of size H ×W × N, where N denotes a
user-selected limit, n, multiplied by 3 (again, once for each RGB channel). This limits the
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amount of data that the stitching algorithm has to process while defining an input matrix
size that can represent an arbitrarily large number of cameras. At the same time, we create
k masks for the resulting plane in order to identify all pixels in the 4D plane that belong to
a single camera (i.e., the content of each warped image with only pixels where there are no
intersections between any cameras) when training the network.

Figure 4. Overview of our proposed method. A set of images X captured simultaneously from
several cameras is warped into a shared space ω(X). The SandFall method is applied to the warped
images to ensure a fixed-size input. This input is then passed to our proposed stitching model to
generate an output ŷ. A pretrained model was used to compare the perceptual similarity between the
generated image and the target.

Algorithm 1: The SandFall Algorithm

Input: • X = {I1, I2, ..., Ik}: Set of RGB images of size H ×W × 3 where invalid
pixels have value −1,

• M = {M1, M2, ..., Mk}: Set of weighted masks,
• n: Max layers in output.

Output: V: Matrix H ×W × (3n).
1: Initialize: Vt ∈ RH×W = 0, V ∈ RH×W×3n = 0.
2: for (x, y) ∈ {1, ..., W} × {1, ..., H} do
3: for (Ik, Mk) ∈ X ×M do
4: if Ik[x, y] 6= −1 then
5: Ik[x, y]← Ik[x, y]�Mk[x, y]
6: m← Vt[x, y]
7: V[x, y, m]← Ik[x, y]
8: Vt[x, y]← m + 1
9: end if

10: end for
11: end for
12: return V

The network architecture for our stitching model consists of six inner convolutional
blocks and one larger convolutional skip connection. Each convolutional block consists
of the following layers (depicted in Figure 5). First is a 2D convolution with 64 1 × 1
kernels with a Rectified Linear Unit (ReLU) as the activation function, followed by a batch
normalization layer, then a ReLU activation, another 2D 1× 1 convolutional layer with
64 kernels and ReLU activation, and a final batch normalization layer. The output of this
layer is summed with the input to the first convolutional layer of the block to form a
residual connection, as described in [40]. Finally, the output of the first convolutional layer
is summed with the output of the penultimate layer to form a skip connection. This can be
seen in Figure 5. The output of the network is then compared to a reference through one of
two methods described in Section 3.2.2.
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Figure 5. The overall architecture of our neural network.

3.2.1. Overview

Let X = {X1, X2, ..., Xk} be a set of images captured simultaneously from a scene
with kc cameras; ω(X) = {ωi(Xi)}k

i=1 is the projection of each image Xi into their re-
spective warped space, e.g., an FOV where all pixels from each image can be seen, where
ω(X) ∈ RH×W×3∗k. We compute the target image y ∈ RH×W×3 using slow but high-quality
traditional image stitching methods and consider the resulting image as being stitched
successfully. When then use that stitched image as the label or ground truth when building
our training dataset for the supervised portion of our training. We refer to the image
generated by our stitching model as ŷ ∈ RH×W×3.

Generally, stitching is an operation that takes a set of images and produces a seamless
output panoramic image of the scene. Ideally, the output image should be able to preserve
the content of each of the original images individually.

We define the parametric function F that maps a set of input images to its target T i [1].
The central idea of our method is to find the optimal parameter θ of F through an iterative
learning process. Let X i = {X i,k}K

k=1 be a set of images captured simultaneously from
K cameras at a given moment i. Here, X i refers to the set of warped images and we the
notation shown below for clarity.

F
(
X i, θ

)
→ T i (3)

There are two ways to optimize the parameter θ through deep learning, namely, super-
vised and unsupervised learning. Because deep learning-based stitching (deep stitching)
is a relatively young field, there are not many publicly available datasets. Although there
are a few, we found none that met our requirements with regard to the number of cameras
and lack of constraints on camera position. Rather than create an exhaustive dataset, we
undertook the challenge of constructing a method to work with limited amounts of data. It
is for this reason that we combined both methods of learning for parameter optimization,
creating what is known as a semi-supervised network. We explain the process used to
compute the target for our training set in more detail in the following section.

3.2.2. Objective Function for Supervised Learning

Initially, we use supervised learning with known target images, with the primary
goal being the reproduction of the target image. To create the ground truth data, we
use multi-band blending with 20 bands to obtain high-quality mosaics through a slow
traditional process. Thus, for supervised training, F from Equation (3) is a 20-band multi-
band blending of all images. Using the result of this blending, we then compute the loss of
our network using the supervised loss function (Lsup) defined below:

Lsup(y, ŷ) = λcLc(y, ŷ) + λtvLtv(ŷ)+

+λrLr(y, ŷ) + λpLp(y, ŷ) (4)

1. Lc(., .) is the content loss function as defined in Equation (6).
2. Lp(., .) is the mean square error per pixel loss function as defined in Equation (9).
3. Ltv(., .) represents the total variation as defined in Equation (8)
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4. Lr(., .) is the reconstruction loss function as defined in Equation (7)
5. λc, λtv, λr, and λp control the contribution of each function to the overall loss calcu-

lated by the model.

3.2.3. Objective Function for Unsupervised Learning

For the unsupervised training, we aim to optimize the model based on the content
loss and the total variation. We first compute the feature map of the warped images for
each camera, find the mask for the region in the warped image that contains the image
data of the corresponding camera, then use that mask to select the region of interest from
the generated output for comparison. The unsupervised loss function (Lu(., .)) is defined
as follows:

Lu(ŷ, ω(X)) =
k

∑
i=0

λcLc(ŷ�mi, ωi(Xi))

+λtvLtv(ŷ�mi) (5)

where Lc is the content loss function that allows the error between the feature map extracted
from the warped images ωi(Xi) and generated image ŷ to be minimized and Ltv(.) com-
putes the total variation of the generated output image [41,42]. The mask mi corresponds to
the position of the non-zero pixels for each camera, � is a pixel-wise operator, and λc and
λtv are the weighted coefficients for the content loss and total variation loss, respectively.

3.2.4. Formulation of Each Objective Function

Content Loss Function (Lc) is widely adopted in the literature [41,42] to measure
the similarity of the high-level features between the target y and output ŷ. The features
are extracted using a pretrained network Φ such as VGG on ImageNet, with any trailing
densely, fully connected, or perceptron layers removed to expose the final feature map of
the convolutional layers. It is defined as follows:

Lc(y, ŷ) = E
[∥∥Φ(y)−Φ(ŷ)

∥∥2
2

]
. (6)

Reconstruction Loss (Lr) is used for supervised training to ensure the consistency of
data between the gradients of both images. Similar to the per-pixel loss, the reconstruction
loss computes the mean squared error of the gradient of both images. It is more robust than
the naive MSE, and ensures that local pixel variations remain consistent between the target
and the generated image. The ∇(.) operator indicates the gradient in Equation (7).

Lr(y, ŷ) = E

∑
i,j

∥∥∥∇yi,j −∇ŷi,j

∥∥∥2

2

 (7)

Total Variation (Ltv) is a regularizer used to ensure that the resulting output image
is smooth.

Ltv(ŷ) = E

∑
i,j

(
(ŷi+1,j − ŷi,j)

2 + (ŷi,j+1 − ŷi,j)
2
) β

2

 (8)

Per-pixel Loss Function (Lp) is the simple mean squared error between the two images.
It ensures that the pixels of each image (as opposed to their features) are as similar as
possible, and adds a level of refinement to the output.

Lp(y, ŷ) = E
[∥∥y− ŷ

∥∥2
2

]
(9)

However, as the number of known target images is limited, it is necessary to switch to
an unsupervised network in order to work with unlabeled data. Although there may not
be proper ground truth labels for the majority of data, we can leverage the images provided
as inputs to the model to make broad predictions as to the expected output. Specifically,
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our approach to the stitching problem at the unsupervised level is to view it as an image
reconstruction problem in which each layer of the data represents a corrupt view of the
scene, similar to [21]. The most relevant aspects here are the parallax-related errors, the
camera exposure, and the image resolution. This implies that using per-pixel metrics such
as the Mean Squared Error (MSE) and the Structural Similarity Index (SSIM), may not be
ideal due to misalignment errors.

Instead, we turn to a customized loss function based on image perception, the inspi-
ration for which is discussed in further detail in Section 3.2.2. This loss function uses a
pretrained and frozen network following the InceptionNet (v3) architecture, and is trained
for object recognition on ImageNet in the way discussed in [36]. We use this network to
score the similarity between two images across a few different domains, including content
and pixel value, as shown in Equation (5). Specifically, we take the warped image and use
it to identify a mask to select the same pixel locations from the final output image. We
then use the perception network to compare the warped image and masked output image
in order to determine similarities in style and content, and take the amount of difference
in each as a component of loss. As the images grow more similar in each category, the
information from the warped image should be more present in the stitched one, which, if it
is true for all warped images, leads to a final image that is a better representation of the
true scene. The loss found from the differences can then be used to update the weights of
the stitching model, though not the perception model.

3.2.5. Generating the Dataset for Training

We use the global camera registration method to train our model to generate warped
images, then compute the SandFall block and subdivide the tensor into patches of size
256× 256 (in pixels) with a step size of 64 to allow overlapping between patches. Moreover,
to enable the stitching model to capture global and local features during the training,
we define multiple scale factors to resize the warping images. The scale factors allow a
multi-level patch extraction to be performed on the final warping images, as illustrated
in Figure 6. Scale factors are floating numbers α1..l ∈ R defined such that the size of the
output images is multiplied by 1

αi
.

Figure 6. Illustration of the process used to generate patches for the training dataset. The images
of the tensor are resized based on the scale factor until the resulting image has the same size as the
patch. Sx is the step size, (Px × Py × K) is the patch size, and K corresponds to the depth of the
SandFall block.

4. Experimental Results
4.1. Dataset and Preprocessing

We used a large unlabeled dataset from a publicly available source by Walt Disney [10].
A few sample images from the dataset can be seen in Figure 7. This dataset was chosen
because it is one of the few to utilize multiple (more than two) cameras in an unstructured
manner. In addition, we created our own dataset using multiple synchronized cameras
connected to Raspberry Pi 3Bs to record 1920 × 1080 pixel videos encoded with H264
in both indoor and outdoor scenes. We converted these videos into image sequences
frame-by-frame. The cameras were the standard Raspberry Pi camera modules with Sony
IMX219 8-megapixel sensors (Sony Corporation, Tokyo, Japan). The combined dataset
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contained a wide range of image resolutions, from low-resolution images with 256× 256
pixels to high-resolution 5K images. The first step in our training process is data preparation,
where we use a simple image registration process as proposed by Brown et al. [2] to warp
input images into a common space. We then split that common plane into 256× 256 subsets.
use SandFall to compress them into a reduced array and prepare the appropriate masks.

Figure 7. Sample dataset used for experimentation

4.2. SandFall Results

As a second preprocessing step, each set of input images Xi is compressed and refined
using our SandFall algorithm. We selected the user parameter to be n = 5, which was
determined experimentally. Figure 8 shows the contents of each layer after compressing
images from fourteen cameras via SandFall. Specifically, it can be seen that in two cases
there is no data loss at all (the fifth layer is empty), despite the storage array being reduced
to just over one third the original size, from 42 channels to 15.

Figure 8. These images are the result of the data representation using the SandFall method. The
original data consist of fourteen images. Using our method, the input sample is represented using
five layers without any major loss. The fifth image represents the data of the fifth layer, which in this
instance can be discarded without any information loss.
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4.3. Experimental Setup and Training Parameters

Training and inference were conducted entirely via Nvidia RTX 3090 Graphical Pro-
cessing Unit (GPU) and a Tensorflow 2.0 back-end for Keras and Python 3.6. The Central
Processing Unit (CPU) for the system was an Intel 9700K at 3.6 Gigahertz (GHz) clock with
20 Gigabytes (GB) of Random Access Memory available, and the dataset was stored on a
512 GB 7200 rotations per minute (RPM) hard disk. The system parameters were as follows.
As mentioned above, n was set to 5 for SandFall. We used the ‘Adam’ optimizer with
default Keras settings and a 10−3 learning rate. The patch diameter chosen for the unsuper-
vised loss was d = 33, with a distance of 10 pixels per patch center. Finally, the model was
trained for 100 epochs. These parameters were all determined experimentally. Each weight
loss was set up experimentally during the training; we used λc = 0.1, λp = 10−5, λr = 0.4,
and λtv = 4× 10−7 for the content weight loss, the per-pixel loss, the reconstruction loss,
and the total variation loss, respectively.

4.4. Model Performance

We evaluated the performance of our model against state-of-the-art methods for
stitching inputs from unstructured camera arrays on a number of different image sets.

Table 1 compares the time required by our method to stitch camera images to two
well-established stitching methods from the literature, namely, multi-band and seam-based
stitching. As each of these approaches uses the same warped image set as inputs, it is
possible to clearly evaluate the differences in stitching performance between them. From
this experiment, it can be observed the number of cameras has little impact on the amount of
time required by our system to generate an output. This is because SandFall fixes the input
size regardless of the number of cameras. As a result, our method is much more scalable
for systems with many cameras compared to other methods, which often need on the order
of one second to stitch an image pair together even when using GPU acceleration [15,38].
It is important to note that we ran our method entirely on CPU in our experiments in order
to more directly compare our approach to multi-band blending and seam-based stitching,
which are recent approaches able to operate on unstructured camera arrays and are limited
to CPU. Our results would likely be significantly faster if executed on GPU, as is the case
for other neural networks. Even with this handicap, Our approach requires far less time to
execute than the other methods tested, requiring less than one fifth the time of the method
used to create our ground truth labels.

Table 1. Time required for Seam Based Stitching (SBS) and Multi-Band Blending (MBB) with 5 or
20 bands compared to our method.

Image Set # of Cameras Multi-Band Blending (5) Multi-Band Blending (20) Seam-Based Stitching Our Method

Terrace 14 17.35 s 74.7 s 187.6 s 12.77 s

Malibu 5 24.8 s 101.19 s 126.4 s 15.5 s

Airplane 14 25.55 s 106.16 s 122.3 s 15.14 s

Street 5 16.89 s 81.6 s 177.6 s 9.2 s

Indoor 14 1.21 s 5.04 s 19.25 s 1.80 s

Averages N\A 17.16 s 73.4 s 126.63 s 10.89 s

4.4.1. Quantitative Comparisons

In order to compare our method to traditional stitching approaches, we compared
the quantitative results of the stitching process. To do this, we quantified the artifacts in
the stitched images using four performance metrics: the Learned Perceptual Image Patch
Similarity (LPIPS) [33], Fréchet Inception Distance (FID) [35], Inception Score (IS) [34],
and Improved Inception Score (SG) [36]. Here, we report quantitative results obtained
by comparing the output of our model with those of multi-band and seam-based image
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stitching. We created a dataset that contains a variety of images with an emphasis on
the number of cameras. The results of this analysis can be found in Table 2. Specifically,
we evaluated performance using a number of metrics, as introduced in Section 2.5. The
reasoning behind the selection of each of these metrics and what they convey can be found
in Section 5.1. While our model does not outperform traditional methods in every case,
it does on FID, and produces similar results to the existing methods in the others while
executing far more quickly.

Table 2. This table compares the performance metrics of three stitching methods on five datasets. The
performance metrics are computed as defined in Equation (10). LPIPS and FID are distance metrics,
meaning that lower values are preferable, while higher values are desirable for IS and SG. Note that
in this example multiband denotes 20-band Multi-Band Blending. The down arrow in front of the
metric name (↓) means lower is better, while the up arrow (↑) means higher value is better.

LPIPS ↓ FID ↓ IS ↑ SG ↑

Dataset Seam Multiband Ours Seam Multiband Ours Seam Multiband Ours Seam Multiband Ours

Windmills 1.241 1.172 1.239 16.18 15.45 16.90 4.10 1.89 1.87 1.41 0.63 0.62

Terrace 0.531 0.517 0.533 5.66 5.60 4.92 1.357 1.337 1.344 0.305 0.290 0.295

Airplanes 1.238 1.163 1.234 11.74 11.60 12.32 1.61 1.57 1.48 0.48 0.45 0.39

Street 0.694 0.67 0.696 13.35 13.46 11.67 5.84 2.86 2.45 1.76 1.05 0.89

Malibu 1.177 1.10 1.174 16.48 16.91 16.07 4.65 2.57 2.83 1.53 0.94 1.04

Averages 0.9762 0.9244 0.9752 12.682 12.604 12.376 3.5114 2.0454 1.9948 1.097 0.672 0.647

4.4.2. Qualitative Comparisons

Here, we provide example outputs from each methodology for comparison in Figure 9.
Our method results in outcomes with fewer or less noticeable artifacts than the others in
most cases, although we admit this is more of a subjective comparison. Nonetheless, a
number of common issues that traditional methods struggle with are solved through our
technique, as shown in Figure 10. In particular, our approach can better address the problem
of ‘broken objects’, where features are not properly aligned after being stitched together.
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Figure 9. Comparative display of image stitching outcomes using three different methodologies.
The columns represent the results from the Multiband (level-20), Seam-based, and Our proposed
methods, respectively. Each row showcases the performance of these methods on a variety of datasets,
including Airplane, Malibu, NSH, Street, and Terrace scenes.
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Figure 10. Comparative visualization of stitching quality across different methods. Subfigures (a),
(b), and (c) display results using Multiband, Seam-based, and Our proposed methods, respectively.
Each image is marked with red frames to emphasize regions of interest where stitching artifacts are
most prevalent. These regions highlight the strengths and weaknesses of each method, particularly
in maintaining structural integrity and seamless blending.

5. Discussion
5.1. Image Quality Assessment (IQA)

Except for the Inception Score, metrics used for image quality assessment are often
designed around the availability of ground truth data for use as a reference or target y with the
generated output ŷ. However, it is often difficult to obtain a ground truth in the context of an
image stitching model for unorganized arrays of cameras. To mitigate this issue, we propose
an extension of existing metrics that utilizes data that must be available, namely, the image
input X.

The goal of many types of image generation is to create an image that contains the
desired structure and information. When ground truth data are available, it is easy to
compare the generated image to the ground truth using various metrics to score the
similarity of content. However, as mentioned previously, in image stitching there is often
no available ground truth. The content and structure of the final image should reflect all the
information in the constituent images. With this in mind, we assume that an image is likely
to be well stitched if the high-level features of the individual warped images can be drawn
from the features space of that image; put another way, it should be possible to regenerate
the input images from the stitched image. Therefore, our metrics for quality assessment
measure the similarity between the stitched image and the individual warped images used
as ground truth in the feature space. This is the primary reason that we have choose to use
feature-based metrics such as the LPIPS [33], Inception Score [34], and FID [35], which are
intended for these exact scenarios, instead of traditional metrics such as MSE, PNSR, and
SSIM, despite the shortcomings of the former [33]. While pixel-based similarity metrics
help to ensure that images are clear and sharp, their lack of correct content and structure
means that they are ultimatly of limited value. However, as clarity and sharpness are
important in images, we do include MSE in the loss.
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Given a stitched image ŷ, warped images ω(X) = {ωi(Xi)}k
i=1, and metric function

Mp, we compute the final metric between the images by the taking the average:

M(ŷ, ω(X)) =
1
k

k

∑
i=0
Mp(ŷ�mi, ωi(Xi)). (10)

We used the method described in Equation (10) to compare and evaluate the perfor-
mance of our method against other stitching algorithms such as multi-band image stitching.

5.2. SandFall

One of the main issues in image stitching is time complexity, with real-time solutions
being relatively rare [16,20]. While stitching a low number of images together in real time
has already been accomplished under certain constraints [20], doing so for a large number
has yet to be addressed. One of the major challenges is that pairwise stitching does not scale
well with additional images, at best being O(N ∗ log2(N)) complexity [10], which, due to
the high computational complexity of stitching even two images, makes this approach
undesirable. Thus a method to ensure flat time when stitching multiple images is essential.

At the same time, many image stitching approaches, both traditional ones and those
based on deep learning, have hard limitations on the number of images that can be processed
simultaneously, at the very least requiring a known number. This obviously presents a challenge
to unstructured camera arrays, which can have an unknown or differing number of cameras.

We have introduced SandFall to resolve both of the above issues simultaneously. By
compressing multiple images into a fixed size, SandFall not only ensures that stitching
takes the same amount of time regardless of the number of cameras, it allows for a set
number of inputs that the network can expect. It does this with minimal loss of data, as
shown in Figure 8; however, as the number of overlapping views in the scene increases,
there is likely be at least some data loss. By ensuring that a minimum number of views are
present prior to any data loss, however, SandFall mitigates the effects of this loss. This is not
to say that data loss is nonexistent or unimportant; as SandFall is a naive implementation
and its current implementation has no criteria for what values are selected or would be the
best to preserve, we leave this question to future work.

Intrinsic Artifact Mitigation

Additionally, there is one more benefit over traditional methods when using our
neural network for image stitching, namely, the removal of intrinsic artifacts such as noise
and image pixel corruption from input images. Removing these artifacts often requires
additional processing steps for multi-band and seam-based techniques, which adds to
computational overhead. Using our neural network, the model can remove or mitigate
these artifacts without requiring these extra steps; a comparison between methods based
on the type of artifacts is shown in Figure 11. Specifically, it can be seen that our method
is able to more easily recover from JPEG artifacts and noise than MBB and SBB and
that it performs similarly with low-resolution inputs, all while requiring less time than
either method.
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Figure 11. Experimental results evaluating the robustness of each method in the presence of artifacts.
Experiments were conducted by manually introducing artifacts into the images prior to stitching. The
first row simulates compression artifacts (JPEG), the second row simulates the stitching of low-resolution
images into high-resolution ones, and the last row simulates the introduction of Gaussian noise in one of
the images.

6. Conclusions

In this work, we propose an image-stitching framework that supports an unlimited
number of unstructured cameras, unlike other deep-learning stitching networks that only
operate pairwise. As a result, our network throughput scales better with additional cam-
eras than many existing state-of-the-art approaches. This improvement is thanks to our
proposed SandFall algorithm, which enables accurate representation of perspectives from
an unlimited number of cameras. To better handle parallax-induced misalignment errors,
we leverage semi-supervised learning and a custom loss function to simultaneously handle
both color variation and potential image artifacts. Finally, we compare our model’s output
with the multi-band blending and seam-based approaches, finding that our method has
similar performance and sometimes outperforms traditional algorithms in terms of quality
and metrics. Thus, while there may be differences in the outputs between our method and
the reference outcomes, they are generally very similar.
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