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Abstract: Visual simultaneous localization and mapping is a widely used technology for mobile
robots to carry out precise positioning in the environment of GNSS technology failure. However,
as the robot moves around indoors, its position accuracy will gradually decrease over time due to
common and unavoidable environmental factors. In this paper, we propose an improved method
called RTABMAP-VIWO, which is based on RTABMAP. The basic idea is to use an Extended Kalman
Filter (EKF) framework for fusion attitude estimates from the wheel odometry and IMU, and provide
new prediction values. This helps to reduce the local cumulative error of RTABMAP and make it more
accurate. We compare and evaluate three kinds of SLAM methods using both public datasets and
real indoor scenes. In the dataset experiments, our proposed method reduces the Root-Mean-Square
Error (RMSE) coefficient by 48.1% compared to the RTABMAP, and the coefficient is also reduced
by at least 29.4% in the real environment experiments. The results demonstrate that the improved
method is feasible. By incorporating the IMU into the RTABMAP method, the trajectory and posture
errors of the mobile robot are significantly improved.

Keywords: visual SLAM; RTABMAP; robot localization; multi-sensor fusion

1. Introduction

In recent years, the demand for high-precision mapping and positioning has signifi-
cantly increased due to the advancement and evolution of autopilot, AR and VR, UAV, and
robotics. Mapping and positioning are crucial components in various innovative technolo-
gies, and their accuracy and robustness are of great importance. The field of simultaneous
localization and mapping (SLAM), also known as Concurrent Mapping and Localization
(CML), is a popular area of study for scholars both domestically and internationally. SLAM
is used to process and construct maps in unknown environments and to determine the
location of robots within these maps [1-4]. Currently, the construction of unknown envi-
ronment maps and the acquisition of location information primarily rely on sensors such
as cameras (mono, stereo, RGB-D), lidar (single, multi-beam), and sonar (mainly used for
underwater mapping). Although lidar is widely used in real life, the advantages of low
cost, rich semantic information, high-resolution images, and other advantages of camera
solutions have always been popular areas of research.

In fact, it is not easy to construct an efficient and accurate map and obtain its own
precise location in it [5]. It requires a variety of different information. Single sensors often
struggle to meet the requirements for precise positioning due to limitations imposed by
their working principles and environmental conditions [6]. To overcome these limitations,
multi-sensor fusion positioning has become an area of great interest.

Mourikis et al. [7] proposed the VI-SLAM framework MSCKEF in 2007. This method
integrates IMU and camera data within the Extended Kalman Filter (EKF) [8] framework.
The key contribution of this method is the development of a measurement model that can
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express the geometric constraints that arise when observing static features from multiple
camera positions [9]. This model can adapt to more aggressive motion and texture loss
over a certain period of time, and serves as the foundation for many current VI-SLAM sys-
tems. Bloesch et al. [10,11] proposed a direct monocular visual inertial odometry method
(ROVIO) based on the Iterative Extended Kalman Filter (IEKF). The main idea of this
method is to track multi-level image features using pixel intensity errors of image blocks
and directly incorporate them into the EKF update step. This results in more accurate
tracking performance. This method also employs a robocentric approach and a minimal
representation of landmark parametrization to enhance consistency and computational effi-
ciency. Leutenegger et al. [12] proposed a method to tightly integrate inertial measurement
values into keyframe-based visual SLAM (OKVIS). The primary task is to closely integrate
visual measurements and IMU readings by using a joint nonlinear cost function. This
approach enables better utilization of information from both sensors and takes into account
IMU errors during optimization. It maintains global consistency even when the system is
stationary or moving slowly. To ensure real-time operation, they maintain a bounded-sized
optimization window by partially marginalizing the old state. Qin et al. [13] proposed a
method for VINS-Mono (monocular visual system) that utilizes a sliding-window-based
optimization approach to combine monocular vision and IMU data. The primary objective
of this method is to utilize previous information to constrain state estimation and enhance
the accuracy of the results; also, this approach enables the attainment of more precise state
estimation results while maintaining computational efficiency. Mur-Artal et al. [14,15] pro-
posed ORB-SLAM?2 in 2016. The front-end visual odometry of this method uses “Oriented
FAST” key points and BRIEF descriptors to extract and match feature points, while the
back-end uses nonlinear optimization with the BA method. The ORB feature points and
bag-of-words method are utilized for feature extraction and matching, providing benefits
such as illumination and scale invariance, as well as fast matching speed. Additionally,
an incremental map construction method is implemented, allowing for real-time dynamic
map updates and support for various camera types, including monocular, stereo, and
RGBD cameras. This approach has become a classic work in the field of SLAM due to
its numerous advantages. Stumberg [16] proposed a monocular visual inertial odometry
method based on delayed marginalization and attitude beam adjustment, DM-VIO (Dif-
ferential Monocular Visual-Inertial Odometry). The main work of this paper includes the
proposal of a delayed marginalization strategy to optimize factor graphs in sliding window
optimization. Conventional VIO methods usually use sliding window optimization to
estimate status, but the frequent edging of the old state will cause the density of graphs
to decrease [17]; therefore, DM-VIO suggests retaining some older keyframes without
marginalization to maintain graph density. They also use reparameterization to minimize
the impact of delayed marginalized frames on the most recent frame.

Labbé et al. [18] proposed RTABMAP, which is an SLAM algorithm based on prob-
abilistic graph optimization. RTABMAP supports the simultaneous input of camera and
lidar data and allows users to simultaneously output 3D dense point cloud maps and 2D
grid occupancy maps. This method divides all nodes at runtime into three categories, STM
(short-term memory), WM (working memory), and LTM (long-term memory). Its unique
hierarchical memory management mechanism can coordinate the planning and modeling
of input image frames. While controlling the amount of mapping calculations within
the tolerance of the device, it can also achieve high real-time performance and loopback
detection accuracy.

In indoor SLAM, cameras have an advantage over 3D lidar in terms of cost and
semantic information. Meanwhile, wheel odometry is also one of the common sensors in
mobile robots. Table 1 shows the comparison of the above-mentioned SLAM methods, from
which it can be seen that RTABMAP not only supports the above three sensors, but also
outputs 2D grid occupancy maps and 3D dense point cloud maps at the same time. This
makes it possible to allow users to access different sensors and robots to develop various
solutions, and also makes it one of the classic SLAM algorithms.
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Table 1. Comparison of the SLAM methods and supported inputs and outputs.
Inputs Outputs
Method Camera IMU Lidar Wheel Pose Occupancy Point Cloud
Mono Stereo RGB-D 2D 3D 2D 3D
VINS-Mono v v v Sparse
ORB-SLAM2 v/ 4 Sparse
RTABMAP v 4 v v/ 4 v v/ 4 Dense
DM-VIO v v v Dense
VIWO v/ 4 v v v 4 v v/ 4 Dense

VIWO: RTABMAP-VIWO, Mono: monocular, Wheel: wheel odometry.

However, we found that RTABMAP’s own localization accuracy in the constructed
maps is not very high in practical tests, especially in the environment with multiple
interference factors. So, in this paper, we hope to improve the robustness and real-time
performance of the RTABMAP algorithm by improving the algorithm to adapt to diverse
scenes. At the same time, it provides a new reference for research and application in the
field of SLAM. This paper aims to optimize the RTABMAP method and integrate data from
various sensors. By combining the strengths of different sensors, their weaknesses can
be compensated for, resulting in more comprehensive, accurate, and reliable positioning
results. This article makes the following main contributions:

1.  Animproved algorithm for RTABMAP is presented in this paper. The main idea is
to use an EKF to fuse the IMU with the wheel odometry and provide a new state
estimation model to achieve more accurate location estimation.

2. We have validated the improved method through experiments conducted in public
datasets (indoors) as well as real environments, which include enclosed rooms and
open corridors.

2. Related Work
2.1. IMU State Estimation Model

The inertial measurement unit (IMU) mainly consists of sensors such as accelerometers,
gyroscopes, magnetometers, and others. It is generally categorized as 9-DOF and 6-DOF
(excluding the magnetometer). In addition to violent vibrations and shocks, IMUs are
hardly disturbed by other forms of external signals and extreme weather and strong
light. Due to the redundancy between the measured values of angular velocity and linear
acceleration, the “relative position change in a short period of time” of the IMU output has
a very high degree of confidence. The IMU is an independent system that can estimate the
relative position without relying on any external device to assist the derivation. In contrast,
lidar, camera, etc., are dependent on external sensing and have some instability.

In the IMU system, usually in order to explain the robot’s position, movement speed,
direction, etc., the corresponding coordinate system must be selected. In this paper, we use
the IMU’s installation plane as the carrier coordinate system (b coordinate system). Addi-
tionally, we select the geographical coordinate system as the navigation coordinate system
(n coordinate system) to simplify the attitude calculation and improve comprehension [19].
The three axes (X, Y, Z) of the n coordinate system are commonly achieved by sequentially
rotating the angles of roll (1), pitch (), and yaw (8). The conversion process is shown in
Figure 1.
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Figure 1. Conversion of n coordinate system to b coordinate system.

The transformation matrix between the n coordinate system and the b coordinate
system is often referred to as the direction cosine matrix. The coordinate transformation of
the direction cosine matrix can be expressed as follows:

Xp Xn
o | =C yn (1)
Zb Zn

In this formula, the subscript b represents the carrier coordinate system, the subscript
n represents the navigation coordinate system, and C% represents the rotation matrix from
the carrier coordinate system to the navigation coordinate system. This can be expressed
using Equation (2).

cosf cos cos 8 sin —sinf
Cl = |sin+ysin@cos p —cosysiny cosycosy +sinysinfsiny sinvycosh )
sinysiny 4 cosysin@siny cosPsiny cosp — cosysinf cosycosO

This representation method has a flaw known as gimbal lock, which can result in
the loss of one posture’s degree of freedom. To avoid this issue and provide a more
concise description of the robot’s motion, the four-element method [20] is commonly used.
This method is similar to algebraic complex numbers but is more compact and free of
singularities. Let the rotational quaternion be g, whose common representation is shown in
Equation (3).

q=4qo+ qii + g2 + g3k ®)

where g9, 41,92,493 are i, j, k real numbers and are the other three imaginary parts of the
quaternion.
The quaternionic representation of the rotation matrix is shown in Equation (4).

90> + q1% — 92% — 932 2(q093 + 9192) 2(9193 — 9092)
Chig)=| 2(qa2—4qoq3)  qo* —@*+ 2> —q3*  2(q293 + qoq1) )
2(q193 + 9092) 2(q293 — 9091) q0* — q12 — g2 + q5°
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By jointly solving Equations (2) and (4), the quaternion representations of 6, v, and ¢
can be obtained, as shown in Equations (5)—(7).

¢ = atan2(2(q192 + qo93), (43 + 73 — 35 — 43)) ®)
6 = arcsin(—2(q143 — Goq2)) ©)
v = atan2(2(q2q3 + q0q1), (Q% - ‘7% - fJ% + q%)) @)

The IMU has both advantages and disadvantages. In an IMU, both accelerometers
and gyroscopes use an integral method to measure data. For example, integrating linear
acceleration can obtain linear velocity, and integrating again can obtain position information.
The rotation angle can also be obtained by integrating the angular speed measured using
the gyroscope. However, when attempting to solve the state quantity through integration,
particularly in discrete form, it is inevitable that various errors will be introduced. The
IMU errors are mainly divided into systematic errors and random errors. The former
mainly include the scale factor error, axis deviation error, bias error, and temperature error,
while the latter mainly include random walk and bias instability. Systematic errors usually
follow certain patterns, which can be eliminated through real-time compensation. Random
errors, on the other hand, typically refer to noise, and it is often challenging to identify a
suitable function to describe the noise, making the processing quite complex. Usually, the
manufacturer corrects the systematic errors in the IMU chip when leaving the factory [21].
As for random errors, various data fusion technologies have been developed to overcome
them [22-24].

Random walk and bias instability are key parameters in the fused positioning system.
There are related calculations in many fused SLAM algorithms involving the IMU (such
as VINS and ORB-SLAM3). Once the above parameters are obtained, a covariance is set
on the pre-integrated error term of the IMU [25], which in turn reduces the impact of
random errors on the overall system. This article uses the Allan variance [26,27] method
(this method is one of the time series analysis methods) to conduct error modeling analysis
on the zero-point offset data. By processing the MEMS inertial device output data using
the Allan variance method, various error coefficients can be identified more accurately.

The steps of the Allan variance calculation are as follows.

1.  Acquire and group the data.

Set a fixed sampling frequency f, collect the output value of the inertial device, collect
a total of N sampling points, and obtain the sample space. Divide each n data point into M
independent arrays, which can be expressed by Equation (8).

- () g

2. Calculate the average value of the data.

Calculate the average value of each set of raw output data, i.e., the average value of
the dataset wy(n), to obtain an array of random variables as shown in Equation (9).

wi(n) =

S
™=

Il
_

‘ w(k—l)n-‘,—ir k=12,---,M (9)

1
3.  Obtain the Allan variance.

Defining the sampling time of each group as 1, = n/f, as a time series, the Allan
variance is defined as Equation (10).

-1

M
) = gy 2 (et~ i) (10
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In this paper, data were collected by keeping the IMU stationary for about 2.5 h,
using a frequency of 200 Hz. The output data were processed according to the Allan
variance formula described above. The Allan variance curve is shown in Figure 2 and
the obtained error parameters are shown in Table 2. The specific analyzing tools used are
Kalibr toolbox [28] and imu_utils [29].

T T 10° T
acc-x — gyrx
acc-y T yry
acc-z gyr-z
sim-acc-x sim-gyr-x
sim-acc-y sim-gyr-y
sim-acc-z ) sim-gyr-z
il 10 il
<
[+
o
©
®©
IS
Rl
(2]
1 10" 1
I | | 100 bt ! !
2 0 2 4
-2 0 . 2 4 10 10 . 10 10
10 107 time:sec 10 10 time:sec

Figure 2. Allan variance curve of accelerometer (left) and gyroscope (right) over time. sim-acc and
sim-gyr are the data output from the analog accelerometer and analog gyroscope in imu_untils,
respectively.

Table 2. Error parameters and their corresponding values.

Variables Meanings
Sampling interval of IMU sensor 200 Hz
Gyroscope measurement noise variance, og 0.00109 rad/s
Accelerometer measurement noise variance, o, 0.0234 rad/s
Gyroscope measurement “bias Instability”, o, 0.00000859 m/s?
Accelerometer measurement “bias Instability”, oy, 0.000697 m/s?

2.2. IMU Fusion Method Based on Extended Kalman Filter

Because the Kalman Filter (KF) is more suitable for linear systems, and our system has
many sensors, there are many uncertainties, so we cannot continue to use this algorithm.
The EKF applies linear analysis to the KF model, allowing for the use of a nonlinear
model in the prediction and update process of the linear model. Suppose there is a robot
that measures information such as linear velocity through a wheel odometry and uses
an IMU to measure information such as acceleration and angular velocity. This paper
presents a new odometry that utilizes the EKF for data fusion from two sensors, enabling
accurate estimation of the robot’s attitude and position. The EKF divides the system into
prediction and update steps, which are implemented based on the system’s motion model
and observation model, respectively [30,31].

The state of the robot is represented by the state vector, and the state equation is shown
in Equation (11).

Xk = [Px, Py, P2, 0,7, ¥, Ux, 0y, Uz, ba, bg]—r (11)

where py, py, pz are the positions of the robot in the world coordinate system. 0, -y, ¢ are the
Euler angles of the robot. vy, vy, v, are the velocities of the robot in the world coordinate
system, and b, be are the bias of the accelerometer and gyroscope of the IMU, respectively.
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The motion of the robot is described by a nonlinear system model, as shown in
Equation (12).
X = f(Xp—1, Ug—1,At) + Wy (12)

where f(x) is the state transition function, uj_1 is the IMU measurement value, At is the
time interval, and wy_; is the process noise.
The observation equation of the robot is shown in Equation (13).

Zp = h(xk) + Uk (13)

where hi(xy) is the observation matrix that maps the robot’s state to the output space of the
IMU and odometry, and vy, is the observation noise.

Finally, the prediction state and the covariance matrix are divided into the following
four steps:

1. Define the prior estimate, as shown in Equation (14).

xAk = f(xAk—l/uk/ O) (14)

where %;_1 represents the posterior estimate at the moment k — 1.
2. Define the prior estimation error covariance matrix, as shown in Equation (15).

P, =F_1P \F i+ Q (15)

where F,_1 = % |2, is the Jacobian matrix of the state transition matrix, and Qy is
the covariance matrix of the process noise.
3. Define posterior estimation as shown in Equation (16).

R = Rp_1 + Ki(zk — h(%_1,0)) (16)

where Kj is the Kalman gain.
K, = P_HI (H,.P HT + R ! 17
k k 1k ( -1k k) ( )

where P~ represents the covariance matrix of the prior estimation error, Hy = % |24
is the Jacobian matrix of the observation matrix, and Ry is the covariance matrix of
the observation noise.

4.  Define the posterior estimation error covariance matrix, as shown in Equation (18).

Py = (I — KyHy) P4 (18)
where [ is the identity matrix.

From the calculation process of the above formula, it is clear that the EKF can effectively
incorporate the conducive information in the observation value z; — h(%;_1,0) through
the Kalman gain (K}). This, in turn, enables the algorithm to correct the prior estimate of
the state vector by giving more weight to the useful information. This paper utilizes state
estimation from the IMU and wheel odometry for prediction, and the positioning result
from RTABMAP as the observation to update the state vector [32]. In this paper, the ROS
function package robot_localization [33] is used to realize the fusion location of the EKFE.

2.3. RTABMAP Improvement Method

The IMU is not affected by the environment when solving poses. Therefore, it can
estimate the speed, position, and attitude of all parameters solely based on the inertial
information generated by the carrier’s motion. The improvement method in this paper
introduces the IMU for fusion in the framework of the RTABMAP algorithm based on
visual-wheel-odometry. The IMU can estimate motion parameters that can be utilized to
rectify the absence of scale information in the camera. It can also offer high-frequency
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attitude estimation data (acceleration and angular velocity) and real-time rapid response
positioning [34]. On the other hand, the wheel odometry can obtain a more precise displace-
ment and linear speed compared to the IMU. Furthermore, the camera’s measurement of
the carrier motion can rectify the cumulative error of the IMU. The IMU provides absolute
proportions and accurate poses in a short period of time at a much faster sampling rate than
images [35]. Integrating the camera with the IMU and wheel odometry can enhance the
robustness and positioning accuracy of the algorithm. This integration can also improve
the inaccurate results of the visual algorithm caused by certain movements or scenes with
simple textures [36].

The proposed system has two main parts: multi-sensor fusion localization and 3D
dense point cloud mapping. The multi-sensor fusion localization section integrates position
estimation from wheel odometry, the IMU, and cameras. The robot obtains displacement
and velocity through trajectory extrapolation with the help of wheel odometry, and at
the same time obtains angular velocity, angular displacement, and acceleration with the
integration algorithms of the IMU’s gyroscopes and accelerometers. Finally, the EKF is
utilized to fuse the above data into a motion model of the robot, and the robot’s state
is updated in real-time by the prediction step and update step of the EKF. Due to the
different locations of the sensors in space, there is also a translation of the coordinate
system between the sensors, so the EKF will eventually provide a TF coordinate translation
as well as an odometry called Odom_combined, which is then time-synchronized with the
camera’s raw data and deposited into the node created by the STM. The node also holds
visual words for loop closure and similarity detection (similar to the visual bag-of-words
model of ORB-SLAM?2) and a local occupation grid for building a global map. Finally, the
corresponding solution is performed based on the data in the node, and the solution result
will be used as the constraints for the graph optimization (next node). When there is a
new loop closure or proximity link added to the graph, graph optimization propagates
computational errors throughout the map to reduce odometry drift and performs ranging
corrections via TF transformation to correct the robot’s localization in the map. For the 3D
dense point cloud mapping, the original RTABMAP method is used to generate a real-time
dense three-dimensional point cloud map of the robot’s environment in rtabmapviz. The
specific system framework is shown in Figure 3.

WM » Map Data

Map Graph
STM Loop closure and ]
Proximity Detection :
—)
/map—/odom_combined U
I

I
: » OctoMap
I
I

Point Cloud

Dead Double iniearal
reckoning J integral 9

| 2D Occupancy
—> Grid

Displacement estimation estimation

. ] L
i [ Velocity& ]: [Translational] [Rotational]
! t):

]

1
| Prediction steps Update steps 1 T T
{ :

i

' Priori Covariance Kalman Posterior | J|Covariance|(

i |[estimation matrix gain estimation matrix !

{ !

.

Figure 3. Improved RTABMAP system architecture TF is a package that lets the user keep track of
multiple coordinate frames over time.
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3. Experiment

To validate the improved method’s effectiveness in real-world scenarios, this paper
assesses localization accuracy through two dataset experiments and three real-world experi-
ments. The dataset is the V1 series in EuRoC, the real experimental scenarios are all indoors,
and each experimental site is of different sizes and contains complex environmental condi-
tions to verify the feasibility under different settings. In this paper, the original method is
still called RTABMAP. The improved method is called RTABMAP-VIWO, abbreviated as
VIWO. We use the EVO [37] to compare our experimental results. This tool enables users
to visualize, analyze, and statistically evaluate SLAM algorithms and trajectory data from
public datasets. It helps to make the evaluation process more intuitive and informative.
The assessment indicator is the absolute pose error (APE) value that considers rotation and
rotation. APE is a measurement utilized for examining the overall coherence of trajectories
in SLAM. APE is based on the absolute relative pose between two poses Py.f i, Pest,i € SE(3)
at timestamp 1.

Ei = Pesti © Profi = Pyt Pest,i € SE(3) (19)

where © represents the inverse compositional operator that calculates the relative poses
between two given poses. Pt ; and P, ; are the estimated and true postures, respectively.

In the calculation of APE, the translation error (APE;,,s ;) and rotation error (APE,; ;)
are calculated, respectively, by using the translation part and rotation part of E;.

APEtmns,i :H trans(Ei) || (20)

APErot,i :H rOt(Ei) - I3><3 HF (21)

where 3,3 is the identity matrix.
The complete error taking into account rotation and translation errors is calculated
using the full E;.
APE; =[| E; — Iyx4 [|F (22)

where I3, 4 is the identity matrix.
Finally, for ease of understanding, this paper uses the Root-Mean-Square Error (RMSE)
to evaluate the accuracy, which is calculated as shown in Equation (23).

1
RMSE = |/ & y N APE2 (23)

where N represents the Nth timestamp.

In real-world scenarios, we use RGB-D cameras as the primary sensor, but for dataset
testing purposes, we rely on stereo cameras as the primary sensor due to the types of sensor
limitations of the EuRoC dataset. Despite the difference in sensors, we are still able to
validate the feasibility of our proposed method.

3.1. Evaluation and Analysis of EuRoC Dataset

The dataset utilized in this article is the EuRoC MAV visual inertial dataset [38], which
was gathered using the AscTec “Firefly” hex-rotor helicopter. The data were collected
through a binocular camera (AptinaMT9V034, 20 Hz) and a synchronous measurement
MEMSIMU (ADIS16448, 200 Hz), along with the Vicon motion capture system (VICON) and
laser tracker (LeicaMS50). This part of the experiment only involves the stereo camera and
IMU, and the other sensors can be ignored. RTABMAP is a visual odometry (stereo camera
odometry) and VIWO is a visual-imu odometry (stereo camera + IMU odometry). The
hardware environment for running the dataset is a laptop with the following specifications:
CPU: i5-7300HQ, 2.50 GHz x 4; RAM: 16 GB; GPU: NVIDIA GTX1050Tj; operating system:
Ubuntu 18.04; ROS: Melodic.
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3.1.1. Running in Dataset V1_01_easy

For this experiment, we use the V1_01_easy sequence (V101) to assess and compare
the trajectories of VIWO and RTABMAP. To ensure a fair and convenient comparison, we
compare VIWO with the original method using the actual trajectories from the dataset,
and compare one or more APEs using the evo_res tool in EVO. In the V101 sequence, the
camera direction remains constant regardless of the drone’s attitude, resulting in minimal
stimulation of the three-axis gyroscope in the IMU. The absolute pose error map of the V101
sequence is shown in Figure 4a,b, it can be seen that the errors of our method in several
large turns are small RTABMAPs, and the maximum error is only 43% of RTABMAP. A
comparison of violin plots between the two methods is shown in Figure 5b(I). The results
show that the APE of VIWO is obviously reduced in this sequence. As a result, only
the translation error can be compared in this sequence, while the rotation error can be
disregarded. Table 3 displays the error parameters for the two evaluation methods. Upon
comparative analysis, it is evident that the RMSE decreases by 48.1% and the standard error
decreases by 57.8%. As a result, the trajectory estimated by VIWO is more accurate and
closely resembles the actual trajectory. Although the improvement in RTABMAP-VIWO in
V101 is not significant, it still verifies the feasibility.

Table 3. Comparisons between our proposed method and RTABMAP were made based on the
APE values.

Dataset ID Method Std RMSE Min Median Mean Max
V101 RTABMAP-VIWO 0.04894 0.08539 0.00757 0.06353 0.06997 0.20492
RTABMAP 0.11488 0.16415 0.01657 0.06311 0.11725 0.47280

(a)

Std: standard error, RMSE: Root-Mean-Square Error, Min: minimum error, Median: median error, Mean: mean
absolute error, and Max: maximum error.
-0.472
--- reference I

-0.205
--- reference I
-0.241

(b)

-0.008 -0.009

Figure 4. The absolute pose error (APE) in V1_01_easy considers both rotation and translation errors.
Column (a): absolute pose error of VIWO. Column (b): absolute pose error of RTABMAP. reference:
actual trajectories of the robot.

3.1.2. Running in Dataset V1_03_difficult

In the V101 sequence, this paper demonstrates the feasibility of making improvements
to RTABMAP, and the performance enhancement effect of VIWO is further demonstrated
subsequently. In this test, we conduct comparison experiments using the V1_03_difficult
sequence (V103) and include ORB-SLAM?2 in the comparison. Both the RTABMAP and
ORB-SLAM?2 methods utilize feature extraction to extract and match feature points in the
image. Both methods are based on nonlinear optimization to optimize the camera position
and map, and both include complete loop closure detection and support multiple cameras.
Therefore, they share many similarities in the algorithm’s details. Because ORB-SLAM?2
produces sparse point cloud maps, its performance is superior. During the experiment, the
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trajectory of ORB-SLAM?2 appears smoother due to its recording of more pose keyframes
compared to RTABMAP.

(a) (b)

APE w.r.t. translation part (m)
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0.1
0.0
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Figure 5. Comparison of APE values (RES) between VIWO, RTABMAP, and ORB-SLAM?2 in
V1_01_easy and V1_03_difficult. Column (a) is a comparison of multiple absolute pose error (APE)
changes over time. Column (b) is a comparison of violin plots. Row (I): V1_01_easy, Row (II):
V1_03_difficult.

The V103 sequence was recorded in a challenging environment, ranging from slow
flight with good visibility to dynamic flight with motion blur and poor lighting. This posed
a significant increase in difficulty compared to the V101 sequence. Upon comparing the
blue mark ring in Figure 6a to the red mark ring in Figure 6b, it becomes apparent that
near this position (the time node is located between 103 s and 109 s of V103 sequence),
RTABMAP experiences a significant trajectory drift, whereas VIWO, under the constraint
of the IMU, aligns more closely with the actual trajectory. Labbé [18] shows that in V1
sequences, the performance of RTABMAP is worse than that of ORB-SLAM2 because the
global bundle adjustment performed by ORB-SLAM2 on loop closures would then give
better optimization than only using graph optimization performed by RTABMAO for these
sequences. However, in this paper, we use the EKF to fuse IMU data, which significantly
improves the performance of VIWO. As shown in Table 4, the RMSE is reduced by 59.2%,
and the standard error is reduced by 60.3%. A comparison of violin plots between the three
methods is shown in Figure 5b(II), and it is clear from the figure that our method has a
lower median, as well as a lower discrete stratification of the APE. Moreover, the difference
between the results of other evaluations and those of ORB-SLAM?2 is negligible, and in
some cases, our results even outperform those of ORB-SLAM?2.
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Figure 6. The absolute pose error (APE) in V1_03_difficult considers both rotation and translation
errors. Column (a): absolute pose error of VIWO. Column (b): absolute pose error of RTABMAP.
Column (c): absolute pose error of ORB-SLAM2. Reference: actual trajectories of the robot.

Table 4. APE values were compared between our proposed method and RTABMAP as well as
ORB-SLAM2 in Dataset V1_03_difficult.

Dataset ID Method Std RMSE Min Median Mean Max
RTABMAP-VIWO 0.06715 0.11993 0.02001 0.08238 0.09937 0.56543
V103 RTABMAP 0.16965 0.27017 0.01908 0.14518 0.21027 0.73483
ORB-SAM2 0.10144 0.15709 0.01212 0.08991 0.11994 0.49687

3.2. Real Environment Verification and Analysis

In order to better validate the robustness and accuracy of the positional trajectories
of RTABMAP-VIWO in the real world, we built a wheeled mobile robot driven by four
DC reduction motors with encoders. The motor operating voltage is 24 V, and the steering
method is differential steering. The controller chip of the lower system is STM32F407VETS6,
and the controller used by the upper system is the same laptop that was used to run the
dataset, CPU: i5-7300HQ, 2.50 GHz x 4; RAM: 16 GB; GPU: NVIDIA GTX1050Ti; camera:
realsenseD435; RGB FOV (H x V): 69° x 42°; fps: 30; IMU: HiPNUC Hi226 (6-DOF); refresh
rate: 200 Hz; operating system: Ubuntu 18.04; ROS: Melodic. The mounting position of
each sensor is shown in Figure 7.

Figure 7. Wheeled mobile robot for experiment.
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Figure 8 shows the RES of VIWO, RTABMAP, and ORB-SLAM2 in test 1 to test 3,
respectively. The quantitative results comparison report is shown in Table 5. In real-
world testing, RTABMAP is a visual-wheel odometry (RGB-D camera + Wheel odometry),
VIWO is a visual-imu-wheel odometry (RGB-D camera + IMU + Wheel odometry), and
ORB-SLAM2 is a visual odometry (only RGB-D camera).

APE w.r.t. translation part (m) ( )
(with Sim(3) Umeyama alignment)
—— RTABMAP-VIWO 1.0

—— RTABMAP
ORB-SLAM2

(I) : (&) |

Room1

--- Groundtruth
—— RTABMAP-VIWO
—— RTABMAP

o

o ORB-SLAM2 - 0.0
-4 -2 0 2 a 3 2 43 63 83 103 123 143 163 RTABMAP-VIWO RTABMAP ORB-SLAM2
X (m) t(s) estimate
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-75 -5.0 -25 ooy(rzn)s 50 7.5 100 0 14 28 2 . 56 70 8 % 104 RTABMAP-VIWO RTABMAP ORB-SLAM2
Figure 8. Comparison of APE values (RES) between VIWO, RTABMAP, and ORB-SLAM2 from test 1
to test 3. Column (a) is a comparison of the absolute positioning errors of the three methods. Column
(b) is a comparison of multiple APE changes over time. Column (c) is a comparison of box plots.
Groundtruth: actual trajectories of the robot. Row (I): test 1, Row (II): test 2, Row (III): test 3. In
column (a), the green circle is the start of the experimental route, the blue rectangle is the end of the
route, and the red pentagram is the location of the air conditioner. In column (a) of Row (I), the black
line is the wall and the purple dotted line is the connecting passages.

Table 5. APE values were compared between our proposed method and RTABMAP as well as

ORB-SLAM?2 in Real Environment.
Test ID Method Std RMSE Min Median Mean Max

RTABMAP-VIWO 0.03236 0.05736 0.00430 0.03713 0.04736 0.21107
Test 1 RTABMAP 0.03411 0.11640 0.02933 0.11352 0.11129 0.19791
ORB-SAM2 0.16599 0.39933 0.06341 0.36843 0.36320 0.98348
RTABMAP-VIWO 0.03336 0.06411 0.00685 0.04551 0.05475 0.14472
Test 2 RTABMAP 0.09341 0.22949 0.02395 0.19688 0.20961 0.39448
ORB-SAM2 0.17345 0.34326 0.01885 0.29120 0.29621 0.84962
RTABMAP-VIWO 0.22203 0.36744 0.04565 0.22955 0.29277 0.78441
Test 3 RTABMAP 0.37641 0.51839 0.01877 0.18227 0.35644 1.38872

ORB-SAM2 0.88130 1.50840 0.25462 0.88784 1.22417 4.34613
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3.2.1. Runing in Closed Room Scenario 1

During test 1, the mobile robot navigated an S-shaped path indoors. The experiment
involved two methods of turning: turning on the spot and turning at a differential speed.
Scenario 1 is a large, connected laboratory (approximately 12 m x 11 m in size) consisting
of Room 1 and Room 2, where Room 1 has no air conditioning vibrations and Room 2 has
air conditioning vibrations, and the rest of the conditions are the same in both rooms. The
dividing walls and connecting passages of the two rooms are shown in Figure 8a(I). The
environment included strong reflective lights on the ground and the vibration from the
air-conditioning. The robot moves from Room 1 to Room 2, so the first half of the journey is
a little affected by the air-conditioning vibrations, and in the second half of the journey, the
closer you are to the air-conditioning, the more the vibrations increase. Real-life scenarios
are depicted in Figure 9, as seen in images a through d.

Figure 9. Some images captured and used for camera computation in test 1 (a-d) and test 2 (e-h).

Figure 10(II) shows that RTABMAP’s visual wheel odometry estimation is relatively
accurate. However, when using the turn-in-place approach to navigate a right-angle
corner, the estimated trajectory drifts and the error increases linearly. This contrasts with
the performance of VIWO in Figure 10(I). By examining test 1 of Table 5, it is evident
that although VIWO has a maximum absolute position error of 0.211, its mean error
(Mean) is significantly lower than that of RTABMAP. This indicates that the trajectory
estimated by VIWO is closer to the actual trajectory. Additionally, the APE curves of our
proposed method are much smoother, demonstrating the higher robustness of our system.
Additionally, the overall performance of ORB-SLAM?2 in test 1 is inferior to that of the
dataset. Upon analyzing the error map of ORB-SLAM2, we discovered that the trajectory
error increases as the robot approaches the placement of the air conditioner. A comparison
of the trajectories of the three methods is shown in Figure 8a(I). The experimental results
show that the error assessment index of our proposed method is significantly lower than the
error value of RTABMAP with ORB-SLAM?2, and VIWO is highly suitable for positioning
robots in challenging environments.

3.2.2. Runing in Closed Room Scenario 2

Mobile robots are typically assigned closed-loop routes to travel, regardless of the
scenario they are used in. Hence, in test 2, this paper assesses the VIWO via a closed-loop
pathway. The entirety of test 2 in Scenario 2 takes place in Room 2, so the environment in
test 2 encompasses light reflection and air-conditioner vibration. Refer to Section 3.2.1 for
the difference between Room 1 and Room 2. And a portion of the actual scene is depicted
in images e through h in Figure 9.
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Figure 10. Absolute pose error (APE) of test 1 considering both rotation and translation errors. Row
(I): RTABMAP-VIWO, Row (II): RTABMAP, Row (III): ORB-SLAM2. Column (a) shows the error
trajectory of the three methods, while Column (b) displays the curve of APE changing over time for
each method. reference: actual trajectories of the robot.

As shown in Figure 11a(I), the VIWO proposed in this paper achieves a more accurate
closed-loop effect, while the RTABMAP exhibits translational errors at both the bend and
end points. The performance of ORB-SLAM?2 is similar to that in test 1, where the estimated
trajectories drift due to light reflections from the ground and air-conditioning noise. By
examining test 2 of Table 5, it is evident that our proposed VIWO has an RMSE of 0.064.
Additionally, the mean absolute error (Mean) of VIWO is only one-fourth that of RTABMAP
and one-sixth that of ORB-SLAM?2. These values are lower than the corresponding values
for RTABMAP and ORB-SLAM?2. In addition, other error coefficients due to our proposed
method are lower than those of the other two methods. A comparison of box plots between
the three methods is shown in Figure 8c. Hence, the experimental outcomes of test 1 and
test 2 demonstrate that VIWO can offer not only a precise positioning estimation outcome
but also facilitate the navigation of mobile robots in closed-loop paths in challenging
surroundings.
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Figure 11. Absolute pose error (APE) of test 2 considering both rotation and translation errors. Row
(I): RTABMAP-VIWO, Row (II): RTABMAP, Row (III): ORB-SLAM2. Column (a) shows the error
trajectory of the three methods, while column (b) displays the curve of APE changing over time for

each method. Reference: actual trajectories of the robot.

3.2.3. Testing in Indoor Corridors

In indoor settings, it is inevitable to encounter long, narrow corridors or tunnel-like
structures with a high degree of repetitive features. In test 3, we test the mobile robot in this
scene. As shown in Figure 12, this scene has unique characteristics that include stronger
light illumination, ground light reflection, and walls with high similarity compared to test
1 and test 2. Additionally, there are two transparent glass doors and passing pedestrians in
the scene. These factors will pose significant challenges to the precise positioning of the
mobile robot.

Figure 12. Some of the live images captured by the camera in test 3. (c) is passing pedestrians.

(a,b,d) are actual views of the corridor.
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As shown in Figure 13a(II), the localization accuracy of RTABMAP during the latter
part of the driving journey is unsatisfactory. This is due to the repetitive nature of the
environment, which has few feature points and results in a noticeable trajectory drift.
RTABMATP, even with the aid of the wheel odometry, performs only moderately well in this
scenario. On the other hand, in harsh environmental conditions, ORB-SLAM?2 experienced a
more severe trajectory drift compared to test 1 and test 2. The trajectory was even deflected
to a 3D trajectory due to light reflection, with the APE (Max) reaching an astonishing 4.34
and the RMSE about 1.51, much higher than those of the other two methods. Specific
results are shown in test 3 of Table 5. During the actual experiments, both RTABMAP and
ORB-SLAM2 experienced a certain number of estimation failures. On the contrary, our
proposed method in this paper significantly improves the positioning accuracy by using
the EKF loosely coupled wheel odometry and IMU for prediction, as shown in Figure 13(1).
The RMSE of VIWO is 0.36, while the RMSE of RTABMAP is about 0.52, as shown in test 3
in Table 5. Hence, the method proposed in this paper effectively minimizes the localization
error and misjudgment rate of RTABMAP in intricate corridor settings. Additionally, it
further validates the practicability of multi-sensor fusion techniques in achieving more
precise positioning in complex settings.

(b)
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(not aligned)
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Figure 13. Absolute pose error (APE) of test 3 considering both rotation and translation errors.
(I): RTABMAP-VIWO, (II): RTABMAP, (IIT): ORB-SLAM2. Column (a) shows the error trajectory of
the three methods, while column (b) displays the curve of APE changing over time for each method.
reference: actual trajectories of the robot.

4. Results and Discussion

The results of the dataset experiments are shown in Tables 3 and 4, and the RMSE
of our proposed method is reduced by 48.1% and 59.2% compared to the RTABMAP. The
author of RTABMAP [18] mentioned ORB-SLAM?2 in the original paper and performed
comparison experiments, and the results show that ORB-SLAM?2 performs better than
RTABMAP in this dataset. And the RMSE coefficient of our proposed method is 24.2%
lower compared with ORB-SLAM?2. The results of the real environment experiments are
shown in Table 5. In the three experiments in the real environment, the RMSE of our
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proposed method is reduced by 50.8% and 72.0% compared with the original method,
and even in test 3, which is the harshest environment, the RMSE of our proposed method
is reduced by 29.1%. ORB-SLAM?2 does not perform well in real environments, due to
environmental factors, and its performance is much worse than that of our proposed
method and the RTABMAP.

In this paper, we conduct experiments on the EuRoC dataset with the main purpose of
verifying the feasibility of our method. However, the dataset experiments are different from
the real environment, and the purpose of our improvement is to enhance the performance
of RTABMAP and to be able to be applied in real life, so we conducted the experiments in
a real environment with multiple common interferences. Five experiments ranging from
simple to difficult finally proved that the RTABMAP-VIWO system utilizing the EKF fusion
IMU is superior to RTABMAP and exhibits higher positioning accuracy and anti-jamming,.

There are limitations that exist in our method. The individual sensors in the wheeled
robot we built are mainly fixed by aluminum as well as 3D-printed non-standard parts,
which creates a considerable mounting error for the TF conversion in the whole system. In
addition, when operating in the environment shown in Figure 12, the robot can experience
a large trajectory drift if the presence of liquid on the ground causes the wheels to slip.

5. Conclusions

Aiming at the complex indoor environment, this paper proposes an improved
RTABMAP method. To achieve precise and reliable robot pose estimation in indoor envi-
ronments, this paper integrates the IMU into the original system using the EKF to minimize
positioning errors caused by the primary sensor. By combining the 3D dense point cloud
map, constructed using RTABMAP, with the proposed visual inertial wheel odometry
estimation, mobile robots can achieve more accurate indoor repositioning. This provides
more precise sensory information for further path planning and autonomous navigation.

This paper conducts tests and evaluations in both common and challenging indoor
environments. The performance of three SLAM methods is compared in both public
datasets and real-world scenarios. In RTABMAP, motion estimation during localization or
loop closure detection is mainly performed visually. The experimental results demonstrate
that both RTABMAP-VIWO systems, using stereo and RGB-D cameras as the primary
sensors, respectively, exhibit low drift error and high robustness. In addition, the main
work of this paper is the improvement in the localization accuracy of the mobile robot, while
the map construction and navigation have not been studied in depth. In the future, we will
incorporate low-cost 2D lidar, which will improve the robot’s localization accuracy and
build a higher-quality map, creating the basis for subsequent robot navigation. In addition,
we will combine SLAM with deep learning to further reduce the impact of reflective ground
lighting and passing pedestrians on localization.
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