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Abstract: Time-of-arrival transmitter localization systems, which use measurements from an array
of sensors to estimate the location of a radio or acoustic emitter, are now widely used for tracking
wildlife. Outlier measurements can severely corrupt estimated locations. This article describes a new
suite of location estimation algorithms for such systems. The new algorithms detect and discard
outlier time-of-arrival observations, which can be caused by non-line-of-sight propagation, radio
interference, clock glitches, or an overestimation of the signal-to-noise ratio. The new algorithms also
detect cases in which two locations are equally consistent with measurements and can usually select
the correct one. The new algorithms can also infer approximate altitude information from a digital
elevation map to improve location estimates close to one of the sensors. Finally, the new algorithms
approximate the covariance matrix of location estimates in a simpler and more reliable way than the
baseline algorithm. Extensive testing on real-world data involving mobile transmitters attached to
wild animals demonstrates the efficacy of the new algorithms. Performance testing also shows that
the new algorithms are fast and that they can easily cope with high-throughput real-time loads.

Keywords: location estimation; robust estimation; outlier removal; time-of-arrival localization;
wildlife tracking

1. Introduction

Tracking the movement of many species of wild animals remains highly challenging.
For many species, the only viable high-throughput high-resolution tracking technology
is time-of-arrival (ToA) transmitter localization [1]. Similar techniques are now also used
to track livestock [2]. In such systems, a network of radio or acoustic sensors (receivers)
estimate the times of arrival of a signal emitted by a transmitter attached to an animal to
the sensors. The system uses these ToA estimates to estimate the location of the transmitter.
Radio transmitters are used for ToA tracking of terrestrial species [2–4], and ultrasonic
audio transmitters are used for ToA tracking of aquatic species [5–8].

The principles of ToA localization have been known for decades and the literature
on modeling these estimation problems and algorithms for resolving the models is vast
(see, for example, [9,10]). However, several contemporary factors combine to make the
development of improved models and algorithms attractive and sometimes necessary,
especially for wildlife tracking:

• New high-throughput tracking systems, which can generate millions of localizations
per day across numerous individuals, often generate large numbers of incorrect
estimates, even when the rate of producing incorrect estimates is low;

• Improvements in compute power mean that algorithmic approaches that were
considered computationally too costly in the past are now acceptable, even for real-
time localization;
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• Transmitter localization wildlife tracking systems are regional by nature (their
coverage is limited by the limited range of terrestrial radio receivers and underwater
hydrophones), and localizations in marginal coverage areas near the edges of the
system are noisier than those in central areas.

These factors led us to develop a suite of novel algorithms for reliable and statistically
robust ToA location estimation, designed specifically to improve the quality of localizations
produced by a popular high-throughput wildlife radio tracking system called
ATLAS [4]. The algorithms were developed in response to incorrect localizations that
were produced by several existing ATLAS systems. We evaluate our new algorithms using
real-world data from an ATLAS system.

Our new algorithms eliminate or reduce localization failures caused by four underlying
factors:

1. Time-of-arrival measurements that are inconsistent with the distance between the
transmitter and the receiver, given the estimated variance of the measurement (when
the estimated variance is high, the measurement is assigned a low weight and
has little influence on the solution). The inconsistency can be caused by non-line-
of-sight (NLOS) propagation, radio interference, glitches in the receiver’s clock,
underestimation of the variance of a measurement (which is derived from an estimated
signal-to-noise ratio), or software bugs.

2. ToA measurements that are consistent with two possible transmitter locations. We
refer to this case as location ambiguity. Ambiguity usually arises when the number of
constraints that define the location is equal to the number of unknown parameters,
because the constraints are non-linear. The ambiguity usually disappears when the
number of constraints is higher, but it can arise with any number of constraints due to
symmetries.

3. ToA measurements by receivers close to the transmitter. The geometry of arrays of ToA
radio receivers, which is often characterized by approximately even distribution in the
plane but with very limited variation in elevation, usually does not permit an accurate
estimation of the elevation of a transmitter, so its plane location is estimated given
an assumed elevation. This normally leads to accurate plane estimates, except when
one of the receivers is close to the transmitter (the difficulty of localizing a transmitter
near one of the receivers has been known for a long time [Section III] of [3], but the
reason was not understood until now).

4. Numerical failures resulting from the use of fixed-precision arithmetic (64-bit floating
point numbers). Numerical failures are not common in ToA estimation algorithms,
but they did prove common in the algorithm that ATLAS used to approximate the
covariance of location estimates.

Section 2 describes a suite of algorithms that we developed to mitigate all of these
failure cases. We used a guiding principle when developing the new algorithm: as
much as possible, each localization should depend on ToA measurements of one packet
transmitted by a mobile transmitter. Location samples along an animal’s track are strongly
autocorrelated, so information on past and future locations strongly biases location estimates,
and this is used extensively in downstream processing [11]: tracks are cleaned (localizations
inconsistent with the bulk of a track are removed) and smoothed, to reflect the constraint
of autocorrelated position. Our guiding principle aims to enforce modularity. At the
processing phase we focus on in this paper, we aim to produce the best localization possible
for each transmitted packet separately. Autocorrelation is exploited at a later processing
phase. We only deviate from this principle to disambiguate ambiguous localization
problems; here, the only way to select the correct choice is to use information from
unambiguous future and/or past localizations.

The main contributions of this articles are:
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• New methods to detect and discard outlier ToA measurements, which can be caused by
non-line-of-sight propagation, radio interference, clock glitches, or an overestimation
of the signal-to-noise ratio.

• A method to detect cases in which two locations are equally consistent with the
measurements and to select the correct one in most cases.

• A method to infer approximate altitude information from a digital elevation map,
which improves location estimates close to one of the sensors.

• A new method to approximate the covariance matrix of location estimates. The new
method is simpler and more reliable than the baseline algorithm.

• Integration of all these new methods into high-performance production-quality
implementations.

• Demonstration of the efficacy of the new algorithms using extensive testing on real-world
data involving both fixed and mobile transmitters, some attached to wild animals.

• Demonstration of the performance of the new algorithms, allowing them to be used in
near-real-time high-throughput wildlife localization systems.

1.1. ATLAS

ATLAS has proven to be a maintainable and productive regional high-throughput
wildlife tracking system. It can track many species of wild animals at high temporal
and spatial resolution using ToA radio transmitter localization [3,4,12–14]. Six separate
ATLAS systems, each consisting of 5 to 25 receivers, in four countries have tracked over
7000 transmitters, called tags, over the past 8 years, and a few more systems are under
construction. Some of these systems consist of more than 25 receivers and cover more
than 1000 km2 [13]. Tracking of fruit bats [15], insect-eating bats [16], pheasants [17], barn
owls [18], shorebirds [13], and avian predators [19] by these systems has led to several
research articles in the scientific (ecology) literature.

1.2. System Model and Time-of-Arrival Constraints

ATLAS systems localize mobile radio transmitters, or tags, by estimating the time
of arrival of transmitted packets to receivers, also called base stations, at known locations.
We denote the unknown location `i =

[
xi yi zi

]
of a tag that transmits a packet at an

unknown time as τi. Transmission times are periodic, but the periodicity is not accurate
enough to be useful for radio time-of-arrival localization. We denote the known location of
receiver r by ρr. The fundamental equation that relates the time of transmission τi to the
exact absolute time t̊ir of which the packet arrives at the antenna of receiver i is

t̊ir = τi +
1
c
‖ρr − `i‖2 , (1)

where c is the known speed of propagation (speed of light). The receiver estimates the time
of arrival of the packet at the digital part of the receiver. The estimate, denoted tir, is related
to the time of transmission and to the locations by the following equation,

tir = τi +
1
c
‖ρr − `i‖2 + or + εir , (2)

where or is the sum of the delay of the signal from the antenna to the digital part of the
receiver and the offset of the clock of the receiver, and εir is the time-of-arrival estimation
error. From here on, we refer to or simply as the offset of receiver r, even though it is the
sum of a delay and an offset. The error εir is random and is not known, but the receiver
estimates its variance from an estimate of the signal-to-noise ratio (SNR) of the packet [4].
We denote the estimated variance by σ2

ir. The arrival time estimation errors of the same
packet in different receivers are probably sometimes correlated, but ATLAS treats them
as uncorrelated.

We treat or as a function of the receiver r and not as a function of time because ATLAS
receivers use GPS-disciplined clocks with highly accurate rates.
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Because the equations include the sum τi + or we cannot resolve both. If τi and or
satisfy the equations, so do τi + α and or − α, for any real α. Therefore, ATLAS arbitrarily
fixes one of these quantities to zero. This effectively selects a particular reference clock; the
choice has no effect on the estimation of `i.

We refer to known quantities in Equation (2) as a detection (a short form of detection
report) and we refer to a set of detections of the same packet as a detset (short form of
detections set).

The location of the tag cannot be estimated from one detset, because a detset of size m
represents m equations of the form (2) with m+ 3+ 1− 1 unknowns: the m offsets, the three
coordinates of `i, and the time of transmission τi, but minus the quantity that is fixed to
zero. To be able to estimate the unknown location, ATLAS associates with each detset of a
mobile transmitter one or more detsets of transmitters at known locations `b. We refer to
these transmitters as beacons (in underwater ultrasonic ToA localization, beacons are called
sync tags). The beacon equations are

tbr = τb +
1
c
‖ρr − `b‖2 + or + εbr . (3)

If the same m receivers receive both the tag and a beacon packet, they produce together
2m equations in m + 3+ 1 unknowns. We can solve the equations when m ≥ 4. With m = 4,
there is usually an exact solution satisfying εir = 0 and εbr = 0. With m > 4, ATLAS
solves the equations in the weighted least-squares sense, minimizing ∑ ε2

ir/σ2
ir + ∑ ε2

br/σ2
br.

ATLAS can also associate detsets of multiple beacon packets b, b′, b′′, . . . with a single mobile
transmitter packet and use all of them; this adds information about the offsets and can
improve (usually only slightly) the accuracy of the resulting location estimate.

The elevations of ATLAS receivers do not vary much, so ATLAS systems usually
cannot accurately estimate the altitude of tags (their z coordinate). Therefore, virtually
all the localizations that ATLAS systems have estimated so far have been estimated in
an assumed-altitude mode (2D mode for short), in which a known value was assumed for
the z coordinates. More specifically, the value that was used was the mean elevation of
the terrain in the region in which the system is deployed. In the assumed-altitude mode,
tag detsets have m + 2 unknowns, problems with m = 3 receivers can be solved exactly,
and problems with more than three receivers are solved in the least-squares sense. Unless
otherwise noted, we assume from here on that locations are estimated in 2D mode.

1.3. Data Flow and Information Processing

ATLAS receivers place radio frequency (RF) samples in a cyclic buffer. Samples are
typically processed a few seconds or less after being received. In most cases, detection
reports are sent via the internet to the ATLAS server with a delay of a few seconds relative
to the actual arrival time. When there is no network connection between a receiver and
the server, the receiver buffers the data and uploads them to the server when connection is
reestablished.

The server collects detections in a data structure called a detset grouper. Its job is to
group together detections of each transmitted packet. The default grouper relies on an
approximate time stamp associated with each detection; these are accurate to within about
1 ms. To ensure that detections are grouped correctly, detections linger in the grouper for
up to 30 s to compensate for varying network delays.

Grouped detsets are handed over to a localization problem generator. Its job is to group
together a detset of a mobile tag with several detsets of beacons from around the time of
the tag’s transmission. In order to be able to use beacon transmissions that follow the tag’s,
the generator delays tag detsets for another few seconds, to ensure that all relevant beacon
detsets are available.

Generated localization problems are solved by a software object called the localization
server. The resulting localizations are typically stored in a database and are sometimes also
fed to real-time clients (e.g., a real-time web application).
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The total delay between a tag’s transmission and the estimation of its location is about
45 s.

ATLAS estimates locations not only in real time, but in two additional settings,
in which detections are read in time order from a database.

First, a few minutes after the beginning of a round hour, ATLAS recomputes all the
localization for the preceding hours. The process is repeated if a receiver uploads detections
that are hours or days old, following a disconnected period. This setting is called the
hourly consistency enforcement. It can use more expensive and complex algorithms than the
real-time setting.

Finally, ATLAS users also compute location estimates in a batch query. This is typically
performed in order to compute the localizations using algorithmic parameters that are
different from the parameters that were used to compute the localizations stored in the
ATLAS database.

Figure 1 shows the data flow in the localization subsystem of an ATLAS server. The key
processing steps are the grouping of detections into detsets, the generation of localization
problems, which consist of a tag detsets and a few beacon detsets from about the same time,
hint injection, and estimating locations.

Version October 30, 2023 submitted to Sensors 5 of 25
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1.4. From Location Estimation Problems to Objective Functions

Most modern location estimation systems estimation locations by minimizing a non-
linear function of the observations [9,20,21].
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Localization problems produced by the generator consist of a tag detset and several
beacon detsets from nearby times. The localization server transforms each problem into
one or more objective functions objects. The objective functions are scalar functions of
the unknown parameters, defined such that the best estimate lies at a local minimum
of the function. More specifically, ATLAS, like most other location estimation systems,
defines least-squares objective functions [9,21,22]. The most straightforward functions have
the form

g(`i, τi, τb, or) = ∑r ε2
ir + ε2

br

= ∑r

(
tir − τi −

1
c
‖ρr − `i‖2 − or

)2
+(

tbr − τb −
1
c
‖ρr − `b‖2 − or

)2
.

The representation of the objective function is an object that can evaluate its value and
its derivatives, and in particular the matrix of its first derivatives, called the Jacobian.

The class of algorithms that are considered best for solving non-linear least squares
problems are iterative algorithms from the Gauss–Newton family, such as the Levenberg–
Marquardt algorithm [23]. By iterative, we mean that these algorithms produce a sequence
of estimates, starting from some initial guess, which hopefully converges to an accurate one.

The success rate and the performance of iterative non-linear least-squares solvers
depend on both the dimension of the problem (the number of unknown parameters) and
on the quality of the initial guess. Initial guesses near the true solution lead to rapid
convergence to an accurate estimate; far away guesses require more iterations and can
sometimes lead to convergence to a wrong local minimum, or to divergence. Problems in
high dimensions are harder.

ATLAS addresses the dimension challenge by exploiting of the separability of systems
of constraints of the forms (2) and (3) and eliminates the unknowns that the prediction
depends on linearly, line τi, τb, and or, using a one-shot matrix operation [4]. Therefore,
the representation of the objective function in ATLAS takes only a location hypothesis `i
and produces

f (`i) = min
τi ,τb ,or

f (`i, τi, τb, or)

and the Jacobian of f .
ATLAS supports three types of objective functions of this type: single-beacon, multiple-

beacons, and differenced or simplified, explained below. The localization server can
construct these functions in two or three dimensions (the dimension specifies the number
of unknown parameters in `i; distances are always evaluated in 3D).

The same objective functions are used by the old, baseline algorithm in ATLAS and by
the new robust algorithms. However, in the new algorithms, data from some receivers is
sometimes dropped from an objective function.

1.5. ATLAS’s Baseline Localization Algorithm: Generating and Ranking Initial Guesses

ATLAS’s baseline algorithm [4], the one that we aim to improve, is essentially a
sequence of attempts to find a good initial guess, followed by an invocation of the
Levenberg–Marquardt algorithm to compute the final maximum-likelihood estimate. The
sequence includes a fixed point in the center of the coverage area, the previous estimated
location of the tag, invocation of a derivative-free optimization algorithm [24], Nedler–
Mead [25], a simple grid search, and invocations of Levenberg–Marquardt on simplified
objective functions (2D rather than 3D or using a single beacon rather than multiple ones).
In this sequence, the initial guess provided to iterative algorithms is the best estimated
found up to that point in the sequence.

Clearly, for this strategy to work, the algorithm requires a mechanism to assess the
quality of a location estimate. The assessment is used in two ways. First, it is used to rank
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location estimates, so as to start the next iterative solver in the sequence (or the ultimate one)
from the best estimate found so far. Second, it is used to decide whether to skip expensive
steps in the sequence. For example, if the previous location of the tag is a good estimate for
the current location, we can skip the entire sequence and invoke Levenberg–Marquardt on
the ultimate objective function. Similarly, if Nedler–Mead found a reasonable estimate, we
can skip the expensive grid search.

The score that ATLAS’s baseline algorithm uses to assess the quality of estimates is
the maximum norm of the residual of a simplified 2D single-beacon objective function.
The norm is expressed in meters, not nanoseconds, for clarity. The success rate of ATLAS’s
baseline algorithm depends critically on the robustness of this objective function. Since no
attempt was made to remove outliers from it, it has not always been robust.

1.6. Approximating the Covariance of Location Estimates

ATLAS’s baseline algorithm [4] approximates the covariance matrix of computed
localizations using a formula that was derived using the implicit-function theorem,
specialized to non-linear least squares. The formula requires the evaluation of second
derivatives of the function that predicts the observed quantities. The authors of [4]
developed analytic expressions for these derivatives. The expressions involved squaring
and cubing the distance between tags and receivers. This has led to numerical failures,
including ones in which ATLAS presented localizations with large errors as having
tiny variances.

1.7. Related Work

We review in this subsection related work on statistically robust location estimation
and on closed-form solvers for ToA location estimation. For a thorough survey of robust
wireless location estimation, see the survey by Güvenç and Chong [22]. We also note that
several efforts to improve ultrasonic underwater tracking systems, some specialized to
aquatic wildlife tracking, have also been reported in the literature [5,26,27].

Our outlier identification method is based on RANSAC [28]. However, RANSAC
cannot be applied naively to our problem, primarily because the number of observations in
each problem is typically too small. Li et al. [29] presented a robust detect-and-discard
method to localize a target using distance measurements. Our consensus-based outlier
detector is closely related to their method. They selected random subsets of slightly
over-determined constraints and solved them using a combination of a closed-form
approximation and an iterative solver; this gives them a set of hypotheses. They then
computed a full residual vector for each hypothesis, selected the one in which the median
of the squared residual elements is smallest [30], and used it to identify outliers. Once
outliers were removed, they solved the remaining constraints in the least-squares sense; we
perform the same. Our method improves upon their in three ways. First, their closed-form
solver only finds one solution for each subset of constraints, but there can be two; ours
finds both. Second, their use of the minimum median residual element is useless when
there are not very many constraints (three constraints can always be satisfied exactly,
so when there are at most six constraints, the median is always zero and carries no
information). Third, their choice of subsets in completely random; we bias the selection
towards constraints with high-confidence measurements.

Kung et al. [31] follow a different approach to robust location estimation. Vector norms
that are less sensitive to large residual elements than the 2-norm, like the 1-norm, tolerate
moderate outliers better. Kung et al. [31] propose a parameterized family of specialized
penalty functions, called SISR, that are designed to give little weight to outliers and high
weight to inliers; they use them, sometimes with re-parameterization, to estimate locations
from distance measurements. In general, such methods do not cope well with gross outliers,
and they are computationally more expensive than methods based on least-squares building
blocks like ours and like that of Li et al. [29]. Park and Chang [32] propose another method
using the same general approach.
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Liu et al. [33,34] propose yet another outlier identification method for localizing
multiple targets from distance measurements. Their main idea is to identify the worst
outlier by solving least-squares problems involving all but one constraint and repeat. This
avoid the combinatorial explosion of RANSAC in high dimensions but suffers from the
problem that RANSAC aims to avoid, namely the fact that least-squares solutions that
include outliers are often completely useless for identifying outliers.

So-called harsh environments can lead to more than 50% outliers. Yin et al. [35] propose
a wireless ToA localization method that can cope with such environments. Since ATLAS is
used in relatively open areas, the fraction of outliers in ATLAS systems is much smaller.

Recently, machine learning and neural networks are beginning to be explored for
robust localization [2,26]. In some cases, machine learning is used to classify outliers
and in others to also estimate locations from ToA or differences of ToA measurements.
These approaches require training for a particular geography, which is not necessary in
our approach. Some of these approaches (e.g., [2]) also ignore physical and mathematical
constraints that our approach exploits, such as the statistical relationship between the
signal-to-noise ratios and ToA measurement errors.

Closed-form solvers for these types of constraints have been known for many
years [36], but to the best of our knowledge, were always seen as a fast non-iterative
algorithm for finding an approximate location estimate (see, e.g., [37]). For this purpose,
they are not particularly attractive [38]. In contrast, We use the solver described below not
to generate location estimates, but to quickly generate hypotheses, as well as to enumerate
the two solutions of an exactly determined problem so that we can disambiguate them.
Our method is not new, but the derivation and presentation are new and completely
algebraic. They should be easier for most readers to follow and implement than equivalent
presentations in the literature [36,38].

2. Materials and Methods

We now present the new algorithms that are the main focus of this paper. The new
algorithms use the same objective functions as the baseline algorithm (but sometimes with
only a subset of the constraints), but they make more conservative assumptions and a
completely different approach.

More specifically, the new algorithms generate the initial guess for the iterative
minimization of the ultimate objective function not using a sequence of algorithms, but by
enumerating hypotheses that arise from closed-form solutions of minimal subsets of
constraints (see Section 2.9 below), and by selecting the best hypothesis either using a
consensus-based technique, inspired by the RANSAC method [28], or by using a clustering
technique.

The new algorithms also ignore constraints that appear to be highly inconsistent with
a reasonable hypothesis; this is also inspired by RANSAC.

The new algorithms also recognize that some location estimation problems are highly
likely to have two solutions with low residuals (good consistency with the constraints)
and it treats such problems cautiously, aiming to enumerate the solutions and to choose
the right one based on high-confidence localizations of the tag shortly before or after the
current problem.

The algorithms have been implemented in Java. The Apache Commons Math library was
used for matrix computations and for the clustering algorithm. The code is single-threaded.

2.1. Classifying Outliers

One of the most important advances in the new release is a mechanism to identify
outlier detections, so they can be removed from the least-squares problem whose solution
constitutes the location estimate. The classification of outliers is always performed with
respect to a hypothesis, either a location-only hypothesis ¯̀ i =

[
x̄i ȳi z̄i

]
, or a location-

and-time hypothesis ¯̀ i, d̄ir where d̄ir is an estimate of the transmission time difference
τi − τb.
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We classify outliers using difference constraints obtained from subtracting Equation (3)
from Equation (2),

tir − tbr = τi +
1
c
‖ρr − `i‖2 + or + εir

− τb +
1
c
‖ρr − `b‖2 + or + εbr

= (τi − τb) +
1
c
‖ρr − `i‖2 −

1
c
‖ρr − `b‖2 + (εir − εbr) ,

or

tir − tbr +
‖ρr − `b‖2

c
= (τi − τb) +

‖ρr − `i‖2
c

+ (εir − εbr) . (4)

The differencing eliminates the unknown offset or. It is possible to show that if the
covariance matrix of the time-of-arrival estimation errors ε is diagonal with diagonal
elements σ2

ir, σ2
br, then the weighted least-squares solution of the original constraints (2)

and (3) is the same as the weighted least-squares solution of the difference constraints (4), if

they are weighted by
√

σ2
ir + σ2

br [Section 10.4] of [20]. To simplify the notation, we denote

the difference quantities tibr = tir − tibr, τib = τi − τb, and σibr =
√

σ2
ir + σ2

br.
We classify outliers using a hypothesis and a weighted residual threshold. Given a

location and time hypothesis ¯̀ i, d̄ir and a threshold δ, we classify as outliers all the pairs
tir, tbr for which ∣∣∣∣∣tir − tbr +

‖ρr − `b‖2
c

− d̄ir −
∥∥ρr − ¯̀ i

∥∥
2

c

∣∣∣∣∣ > δ

σibr
. (5)

In other words, we consider differenced measurements that deviate from the hypothesis-
based prediction by more than δ standard deviations to be outliers. If we only have a
hypothetical location ¯̀ i, we first produce a robust value

d̄ir = medianr

(
tir − tbr +

‖ρr − `b‖2
c

−
∥∥ρr − ¯̀ i

∥∥
2

c

)

for τi − τb and then apply the same rule.

2.2. Hypotheses, Consensus Sets, Disambiguation, and Selection

Two important innovations in the new algorithms are (1) the algebraic generation of
location hypotheses and (2) mechanisms to select a good hypothesis, along with a single-
beacon problem consisting only of constraints that are in agreement (consensus) with the
hypothesis. We then solve this problem starting from the hypothesis; the solution is a good
initial guess for the ultimate solver.

We produce hypotheses in two ways. Given detest i for a tag and all the detsets
of beacons with |τib| of up to a few seconds, we first produce a set of rough closed-form
hypotheses. This happens in two phases. First, we rank the beacon detsets. The ranking
is lexicographic, starting with the cardinality of the intersection with detset i (number of
receivers that received both the tag and the beacon), then approximate time difference
τi − τb less than 2 s (we use tir − tibr for some r as the approximation), and finally the SNR
of the beacon detections in the intersection.

Next, we generate hypotheses from a few of the highest ranked beacon detsets (by
default from the best five). For each admitted beacon detset, we form the differenced
constraints (4) and generate a few triplets of constraints, ordered by largest σibr in the triplet.
That is, we favor triplets of constraints with small standard deviations. Each triplet gives
us three constraints in three unknowns. We then use a specialized algebraic closed-form
solver to analytically solve each triplet. Geometrically, the solutions are intersections of
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two half-hyperbolas in the plane. Normally each triplet produces two solutions with zero
residuals, but there could be only one solution or no solutions at all. These are the rough
closed-form hypotheses; they consist of both a location ¯̀ i and a time difference d̄ir.

From here on, we select the best hypothesis in one of two ways.
One variant, which we refer to as the clustering variant, is based on the observation

that in the absence of outliers, each triplet produces one solution near the target’s location.
We run a clustering algorithm, DBSCAN [39], on the set of all hypotheses locations (that
is, only on the ¯̀ i =

[
xi yi

]
coordinates of the solutions, discarding the d̄irs), find the

largest cluster, compute a center for the cluster, and then return the solution closest to
this center point. We define the center as the median of the x coordinates and the median
of the y coordinates in the cluster. The process is illustrated in Figure 2 using real-world
data. Because we return an actual solution, we also have its d̄ir value, and we know which
single-beacon transmission it came from. The parameters of this variance are set so as to
produce many hypotheses, up to a few hundreds; this makes the clustering robust.

Figure 2. Data from a run of the clustering algorithm. Each plus sign represents a hypothesis, one
solution of a closed-form problem. Two solutions of the same problem are connected by a gray line.
The hypotheses in the largest DBSCAN cluster are depicted in green, the rest in blue. The hypothesis
closest the medians of the cluster is marked by a red square. The figure was cropped to 5 by 5 km; the
hypotheses spanned an area of 3723 by 17,204 km. The largest cluster consisted of 299 hypotheses out
of 726 and it spanned 0.3 by 0.4 km. The localization problem consisted of detections from 16 base
stations and is one of the problems used in Table 1.
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Table 1. CPU Time (average number of milliseconds) per localization using several algorithms and
combinations of optional features. The data are derived from runs on one hour of data from three
beacons. Each entry represents the median of three runs. We do not show the performance of the
single-beacon baseline algorithm because it usually reverts automatically to use multiple beacons
when invoked on beacons (because they are received by many base stations).

Single Multiple DEM Single DEM Multi

consensus 1.0 10 1.7 13

clustering 37 51 35 51

legacy - 14 - 17

The other variant, which we refer to as the consensus variant, tests all the constraints of
a single-beacon problem for consistency, in the sense of Equation (5), with a hypothetical
solution (one of the closed-form solutions). We rank the hypotheses lexicographically by
the number of consistent constraints (the size of the so-called consensus set), then by the
distance to a prior estimate (as long as the largest weighted residual in the consensus sets
differ by at most 1), and then by the largest weighted residual.

In both variants, we now have a hypothesis and the single-beacon transmission
from which the hypothesis was generated. If the consensus set of the best closed-form
hypothesis contains more than three constraints, we improve this hypothesis by solving all
the constraints in the consensus set in the weighted least-squares sense using an iterative
solver, starting from the selected hypothesis. We refer to the solution as a single beacon-
transmission hypothesis ¯̀̄

i. It differs from the closed-form hypotheses in that it is based on a
least-squares solutions of all the constraints of the consensus set, not only three.

2.3. Building the Ultimate Set of Constraints

The user chooses whether to estimate `i using multiple beacon transmissions or only
one. Either way, we estimate `i from a set of constraints of the form (2) or (3), not from the
difference constraints (4). This set is the union of the constraints that make up the inlier
difference constraints in one or more single beacon-transmission problems.

If the user chooses to use one beacon transmission, we use inliers from the
best hypothesis.

If the user chooses to use multiple beacon transmissions, we classify the difference
constraints in all the single-beacon transmission problems using ¯̀̄

i and use the constituent
constraints of all the inliers.

2.4. Altitudes, Four Ways

The user also specifies how to treat the altitude of the tag. There are four options.
First, the system can assume a fixed height, say 0 for coastal systems tracking shore birds,
or average ground level plus 30 m for systems tracking birds or bats over flat terrain. In this
case, the ultimate set of constraints is solved once with the altitude treated as a known
quantity. This approach is suitable for very flat regions.

Second, the system can assume that the tag is at a fixed height above the terrain, say
0 m for a pheasant or 30 m for a bat. In this case, the ultimate set of constraints is solved
twice. The first solution sets the altitude to a fixed value. A digital elevation model (DEM)
is then used to determine the elevation at the estimated x-y coordinates. We now solve the
constraints again, constraining the altitude to this elevation (or to a fixed offset from it).
This is a good solution for more hilly terrain and for animals that spend most of the time
on the ground or at low altitude above ground. DEM files with resolution of about 30 m
are freely available for most of the Earth [40].

Third, the system can use the altitude sensed by an air pressure altimeter [41]. This is
the most accurate option but requires either data upload from the tag to a base station or
recapture of the animal to retrieve the tag to collect stored data.
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Finally, the system can simply estimate all three coordinates of `i from time-of-arrival
measurements if the tag was received by at least four receivers. Because the elevation of
receivers typically does not vary much, the altitude estimate produced by this method
often has a high variance, and errors in the altitude estimate can degrade the x-y location
estimate, so this is a technical capability that is usually not useful for wildlife tracking.

2.5. Representation and Maintenance of a Prior Distribution

Our new algorithms maintain a state-space representation of tag tracks. This
representation is treated as a prior distribution of the location of a tag at the time of
transmission. The representation consists of the location and optionally the velocity of the
tag, an estimate of the covariance matrix of these quantities, as well as a binary flag that
aims to differentiate between ambiguous states and unambiguous states.

This prior distribution is used in the ranking of the hypotheses in the consensus
variant. The code can use either the density of the prior distribution, which takes into
account the shape of the covariance matrix, or just the distance to the prior location estimate;
we currently use only the latter, which proved more robust in preliminary evaluations. The
prior distribution can also be used as the initial guess in the legacy algorithm.

The numerical part of the state is normally advanced using a Kalman filter. Each
localization of a tag constitutes a set of observation constraints on the location of the
tag, weighted by the estimated covariance of the localization. The state of the filter is
advanced using a system of evolution constraints. The user can choose between evolution
constraints that assume constant position and evolution constraints that assume constant
velocity. The covariance matrix of the evolution constraints is set so as to correctly reflect
the dynamics of an animal. For example, in the constant-position constraints, it makes sense
to set the standard deviations of the constraints to about 10 m times the number of seconds
between localizations, reflecting the prior knowledge that the animal can move at about
10 m/s but not much faster. To use the state of the Kalman filter as a prior distribution for
the next location estimate, the state of the filter is advanced and the resulting state is used
as the prior, not the state at the last observation.

New localizations advance the state of the Kalman filter only if they are reasonably
consistent with the current state. Inconsistency is defined by distance larger than 20∆t
where ∆t is the time difference, or distance of more than 250 m if the localization is based on
only three base stations, or a distance of more than 1 km if the localization is based on four
base stations. This outlier rejection mechanism proved highly important for the algorithm.

The binary flag starts in the ambiguous state; it also reverts to the ambiguous state once
the last localization of the tag is older than 20 min. The flag transitions to the unambiguous
state if the tag is localized from detections by six or more receivers, or if it was recently
localized at least five times from detections of four or more base stations (four or more each
time). In the latter case, the state is set to localization among the five whose coordinates are
the closest to the medians of the five locations in the x and the y directions, for robustness.

2.6. Revisiting Ambiguous Location Estimates

When a tag is detected for the first time or detected again after a long absence, and it
is detected by only three receivers, we often cannot disambiguate between two closed-form
hypotheses. The detections from the three receivers are often exactly consistent with two
separate locations. In some cases, one of the two locations will be so far from the receivers
that we know that the tag could not have transmitted from this location, but often both
locations are plausible.

When the algorithm is used for real-time localization, we emit one of the locations so
that the user knows that the tag can be localized. The user can inspect the localization and
see that it is ambiguous. In principle, we also can emit both locations, but we do not think
that this would be useful to users.
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However, ATLAS always recomputes locations at the end of each round hour,
and users can also ask the system to recompute data on demand. In these batch offline
computations, the system tries to refrain from emitting ambiguous localizations.

This mechanism has several algorithmic components. The first is the classification
of location estimates into ambiguous and unambiguous ones. We classify an estimate as
ambiguous if it was produced from time-of-arrival constraints of only three receivers when
the prior distribution was also labeled as ambiguous.

In the offline batch setting, ambiguous estimates are not emitted; instead, all the raw
data are stored and is re-processed later. In most cases, the system is able to compute an
unambiguous location estimate for the tag at some later time, when the tag is detected
by four or more receivers in consensus. When this happens, the system propagates
unambiguous location estimates backward in time all the way to the beginning of the
queue of ambiguous problems.

The number of ambiguous localization problems that the system stores in memory for
each tag is capped. When the limit is reached, the system recomputes an estimate of the
oldest stored problem and emits it, even though it is ambiguous.

2.7. Providing Hints

When the system starts a batch localization process using detections stored in the
database, it initializes the prior distribution from localizations stored in the database. More
specifically, it retrieves from the database the 10 most recent localizations based on four or
more base stations of each tag and uses them to initialize the prior distribution of the tag.
Only localizations from the 12 h prior to the start time of the batch are used.

2.8. Estimating the Covariance of a Location Estimate

We also improved the estimation of the covariance of location estimates. Rather than
trying to fix the numerical issues in the original algorithm, we developed a new covariance
approximation that is simpler and only requires first derivatives, not second derivatives.

The final location estimate ˆ̀ is always a least-squares minimizer,

ˆ̀ = f (b) = arg min
`
‖B(M(`)− b)‖2

2 ,

where M is a function that maps hypothetical solutions ` to the measured quantities
(arrival times or arrival-time differences), b consists of the actual measurements, and B is a
composition of a projection that eliminates nuisance parameters (transmission times and
clock offsets) and a weighting matrix [4].

For a small perturbation δ of the observations we have

f (b + δ) = f (b) + J f (b)δ + O
(
‖δ‖2

)
≈ ˆ̀ + J f (b)δ .

We denote by f (b + δ) = ˆ̀ + ∆̂ = arg min` ‖B(M(`) − (b + δ))‖. Our strategy is to
approximate J f (b) by expressing ∆̂ as a linear transformation of δ; that linear transformation
approximates J f (b). We define ∆ = `− ˆ̀ or ` = ˆ̀ + ∆, so a first-order approximation of
M(`), and a change in variables leads to

ˆ̀ + ∆̂ = arg min
`
‖B(M(`)− (b + δ))‖2

2

≈ arg min
`

∥∥∥B
(

M
(

ˆ̀
)
+ JM

(
ˆ̀
)(

`− ˆ̀
)
− (b + δ)

)∥∥∥2

2

= ˆ̀ + arg min
∆

∥∥∥B
(

M
(

ˆ̀
)
+ JM

(
ˆ̀
)

∆− (b + δ)
)∥∥∥2

2
.

The second term is a linear least-squares problem whose solution is
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∆̂ = arg min
∆

∥∥∥B
(

M
(

ˆ̀
)
+ JM

(
ˆ̀
)

∆− (b + δ)
)∥∥∥2

2

=
(

BJM

(
ˆ̀
))+(

BM
(

ˆ̀
)
− B(b + δ)

)
= −

(
BJM

(
ˆ̀
))+

Bδ +
(

BJM

(
ˆ̀
))+

B
(

M
(

ˆ̀
)
− b
)

= −
(

BJM

(
ˆ̀
))+

Bδ .

We dropped the rightmost term in the line before last because it is zero. To show that we
note that the gradient of f is zero at the minimizer ˆ̀,

0 = ∇ f

(
ˆ̀
)

= 2
(

BM
(

ˆ̀
)
− Bb

)T ∂BM( ˆ̀)
∂`

= 2
(

BM
(

ˆ̀
)
− Bb

)T
BJM

(
ˆ̀
)

.

Therefore, (
BJM

(
ˆ̀
))+

B
(

M
(

ˆ̀
)
− b
)

=
(

JT
M

(
ˆ̀
)

BT BJM

(
ˆ̀
))−1 1

2
∇T

f

(
ˆ̀
)

= 0 .

We have shown that
∆̂ = −

(
BJM

(
ˆ̀
))+

Bδ ,

so
J f (b) ≈ −

(
BJM

(
ˆ̀
))+

B .

When we take cov(ε) to be diagonal, which is the case in practice [4], we can simplify
the expression for the covariance of ˆ̀ using the structure of B = (I −UUT)W, where U is
orthonormal and WWT = cov−1(ε). We have

cov
(

ˆ̀
)
≈ J f

(
M
(

ˆ̀
))

cov(ε)
(

J f

(
M
(

ˆ̀
)))T

=
(

BJM

(
ˆ̀
))+

B
(

W2
)−1

BT
((

BJM

(
ˆ̀
))+)T

=
(

BJM

(
ˆ̀
))+(

I −UUT
)((

BJM

(
ˆ̀
))+)T

. (6)

The expression on the last line is the one we use as an estimate of cov( ˆ̀).

2.9. An Algebraic Closed-Form Solver

We now show how to find closed-form solutions to exactly determined differenced
time-of-arrival localization problems (2D problems with m = 3 or 3D problems with m = 4).

To keep the notation in this section simple, we rename the quantities in (4) as follows:

c(tir − tbr) + ‖ρr − `b‖2 7→ ti

c(τi − τb) 7→ t

ρr 7→
[
xi yi zi

]
`i 7→

[
x y z

]
.

Consider a system of equations of the form
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ti − t =
√
(xi − x)2 + (yi − y)2 + (zi − z)2 (7)

where the tis, xis, yis, and zis are known, x and y are not known, and t and z might or
might not be known. Note that ti and t are quantified in units of distance (meters), not time
(seconds). We square both sides of each equation, obtaining

t2
i − 2tit + t2 = x2

i − 2xix + x2 + y2
i − 2yiy + y2 + z2

i − 2ziz + z2 . (8)

In trilateration, t is known. In this case, every solution of Equation (7) also solves (8)
and vice versa. In multilateration, t is an unknown and every solution of Equation (7)
corresponds to two solutions of (8): one with ti − t > 0 and one with ti − t < 0. The first
satisfies Equation (7), but the second does not. We show below how to address this.

Any solution of a set of equations of the form (8) also satisfies differences of equations.
This is useful, because in the differences the quadratic terms cancel out:

t2
i − 2tit + t2

−
t2

j − 2tjt + t2

=

x2
i − 2xix + x2 + y2

i − 2yiy + y2 + z2
i − 2ziz + z2

−
x2

j − 2xjx + x2 + y2
j − 2yjy + y2 + z2

j − 2zjz + z2

7→ (
t2
i − t2

j

)
− 2
(
ti − tj

)
t

=
(

x2
i − x2

j

)
− 2
(
xi − xj

)
x

+
(

y2
i − y2

j

)
− 2
(
yi − yj

)
y

+
(

z2
i − z2

j

)
− 2
(
zi − zj

)
z .

We assume that if t and z are known (trilateration), we have two original equations, that
if t or z are known but not both (trilateration in three dimensions of multilateration in
two), we have three original equations, and that if none are known (multilateration in three
dimensions), we have four equations. If we think of each of the m original or squared
equations as a vertex in a graph, we can form at most m− 1 linearly independent difference
equation. The resulting equations will be structurally independent only if the edges of the
graph that correspond to difference equations forms a spanning subgraph with no cycles.
For simplicity, we can simply subtract equation i + 1 from equation i.

We now have m − 1 equations in m unknowns. We denote this linear system by
Au = b. If both t and z are not known, we have

Ai:∗ =
[
2(xi − xj) 2(yi − yj) 2(zi − zj) −2(ti − tj)

]
bi = −(t2

i − t2
j ) + (x2

i − x2
j ) + (y2

i − y2
j ) + (z2

i − z2
j ) .

If t and/or z are known, the corresponding column of A multiplied by that value is
subtracted from b and dropped from A.

Assuming A has full rank, the solutions u have the form

u = UΣ−1VTb + αv = w + αv . (9)

where AT = UΣV
T

is the thin SVD of A and v is the null vector of A. We substitute
this expression for u =

[
x y z t

]
(or with fewer elements for problems with only two

or three unknowns) in Equation (8) to obtain a quadratic equation in one unknown, α.
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That is, we substitute x 7→ w1 + αv1, y 7→ w2 + αv2, and so on. This normally yields two
solutions for α, which we substitute in Equation (9) to obtain two solution vectors to the set
of squared Equations (8).

The structure of the quadratic equation is as follows. Consider the term (xi − x)2

under the substitution x 7→ w1 + αv1,

(xi − x)2 = (xi − w1 − αv1)
2

= x2
i + w2

1 − 2xiw1

+(−2xiv1 + 2w1v1)α

+v2
1α2 .

The other terms have the same structure.
If all of these solutions have ti − t ≥ 0, we are finished. If all the tis are identical and

ti − t < 0, we need to negate the differences,

ti − tfixed = −(ti − t)
tfixed = ti + (ti − t)
tfixed = 2ti − t .

If the tis are not all the same and some ti − t < 0, the original equations are inconsistent
even though the squared ones are.

3. Results

We now present real-world data that show the effectiveness of the new algorithms.
The data were generated by an ATLAS system installed in the Harod valley in Israel.
The location of base stations and beacons is shown in Figure 3. We use data collected in
two separate efforts. One data set is a large study of the movement of wild barn owls (Tyto
alba) [18] and the other is a data set collected using a transmitter mounted on a car, intended
to characterize the accuracy of ATLAS and its location estimation algorithms.

ã

N

,,

Figure 3. The layout of the ATLAS system in the Harod valley in Israel. Base stations locations are
marked by red circles and beacon locations by green circles.
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We compare the new algorithms to a baseline version from November 2021.
Localizations from the baseline versions were computed in 2D using the simplified
(differenced) single-beacon transmission formulation.

Unless otherwise noted, we run the new algorithms with the following parameters:
the initial guess is selected using the consensus method, outliers were rejected based on an
unweighted residual threshold of 100 m (the weighted residual was subject to a small limit,
so most of the time the unweighted threshold classified outliers). The standard deviation of
the evolution constraints of the Kalman filter was set to min(0.1∆t, 750), and the distance
parameter of DBSCAN, called epsilon, was set to 50 m.

We label some of the data with the number of base stations (NBS) that were used to
produce a localization, and by the standard deviation of the localization in meters (std),
which we define to be the square root of the largest eigenvalue of the 2D covariance matrix;
this is the standard deviation of the localization along the direction of maximal uncertainty.

3.1. Easy Cases

In many cases, the baseline algorithm performs well. In such cases, the behavior of
the baseline algorithm and the new algorithms is virtually indistinguishable. Figure 4
shows such a case. The two tracks overlap each other. Both suffer from a few outliers,
caused by arrival time measurements that are very noisy. The covariance matrices of such
localizations indicate clearly that they are inaccurate, as shown in the figure. Most of the
tracks produced by ATLAS are this good.

5 km

Leaflet | © OpenStreetMap contributors © CARTO

NBS=3, std=1930m 

NBS=3, std=2015m 

NBS=8
std=2m 

NBS=8
std=20m 

NBS=3
std=733m 

Figure 4. Localizations of one barn owl over one night. Orange dots represents localizations by the
new robust algorithm, and green dots, mostly obscured by the orange dots, represents localizations by
the baseline algorithm. The tracks show that in easy cases the baseline algorithm performs well and
they show that the robust algorithm mostly eliminates outlier localizations derived from more than
three detections. Outliers derived from three detections are not removed by the robust algorithm.
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3.2. Outlier Rejection

In harder cases, the new algorithms, especially the consensus-based one, are much
more effective. Figures 5 and 6 demonstrate the effectiveness of the new consensus-
based robust localization algorithm. The figures present data from a set of localizations
of a static female barn owl. Owls are cavity breeders where the females as the sole
incubator are being fed by their partners and do not leave their nest box [42]. Due to
their asynchronous hatching (incubation starts when the first egg is laid), incubation lasts
1–2 months depending on the number of eggs (typical 2–11 [43]). Nest survey confirmed
this female was incubating at least three eggs, and accordingly we assumed conservatively
that incubation lasted at least 32 days (28-day incubation period and an egg laid every
2 days).

5 km Leaflet | © OpenStreetMap contributors © CARTO

clustering outliers

baseline outliers

consensus outliers (few)

nest box

Figure 5. Localizations of a stationary female barn owl that never left its nest box, marked by a red
square. Localizations produced by the baseline version are shown in dark pink, those produced by
the new robust consensus-based version in purple, and those produced by the new robust clustering-
based version in green. Purple dots often obscure pink and green ones underneath. The shape formed
by the localizations is typical (see text).
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Figure 6. Quantification of the errors in the localizations shown on the map in Figure 5. Errors in the
baseline algorithm (left), in the new robust consensus-based algorithm (center), and the cumulative
distribution functions of true-to-estimates error ratios in all three algorithms (right). The data is for
the localizations shown in Figure 5.

Figure 5 shows that the localizations produced by the baseline version are scattered
along a hyperbola, with many gross outliers. This tends to happen when a transmitter is
detected by only three receivers, two with good SNR, thereby localizing the transmitter to a
hyperbola, and a third with poor SNR, which spreads the localizations along the hyperbola.
The localizations produced by the consensus-based robust algorithm are also scattered
along the same hyperbola, but much less so. The clustering-based robust algorithm has
many more outliers than the consensus-based ones, including at locations that are never
generated by the baseline algorithm (to the east).

The leftmost scatter plot in Figure 6 shows that the baseline version produces
numerous localizations that are 1–4 km away from the actual location of the owl, with the
error in most of them being grossly underestimated. This happens even when the
localizations use four or five base stations.
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On the other hand, the data for the consensus-based robust version, shown in the
center scatter plot, indicates that it produces few outliers, and that virtually all of them
have an NBS value of three, making them easy to identify later. The algorithm was able
to classify most of the erroneous time-of-arrival measurements as outliers and to discard
them (this is why there are no estimates with NBS values of five or six).

The CDFs in the rightmost graph show that the fraction of localizations with
approximate standard deviations that are significantly smaller than the true errors is small
in the robust consensus algorithm, but large in the two other algorithms.

We stress that difficult cases like this occur mostly under well-understood conditions,
many of which are of notable importance for ecological research. In some of these cases,
the difficulties arise because the tracked owl reaches the edge of the coverage area. Accurate
tracking is much needed in such cases to estimate the size of the home range and the
variation in foraging bouts in space and time. Furthermore, female owls commonly remain
within the nest box for many days during incubation and early nestling rearing, being fed by
their partners [42]. Therefore, studies of breeding success and division of labor (or sex roles)
among parents require accurate records also during such stationary periods [42,44,45].
Hence, system performance may also be important in these cases to distinguish false
movements outside the nest from real ones.

3.3. Tags Close to Base Stations

Figure 7 demonstrates the effect of two new algorithmic mechanisms on the localization
errors, especially when tags are close to base station. The graphs show that the baseline
version generates errors of 100–200 m when tags are close to the base station. This is
caused by the height assumption. The new robust version also generates large errors, 50–
200 m, in such cases, but only if outliers are not rejected from the final optimization (we
implemented an option to include outliers specifically to generate this graph). When a
DEM is used, the errors near a base stations are often much smaller. Also, when outliers
are rejected, errors near a base station are much smaller; this is caused by the time-of-
arrival measurement at the base station closest to the tag being rejected as an outlier when
it is inconsistent with the best hypothesis due to the incorrect assumed altitude. This is
acceptable, but not as good as using a DEM, because the algorithm is rejecting a measurement
that typically has good SNR.
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Figure 7. Localization errors as a function of the distance from the base station closest to the tag.
The data are from two tags mounted on a car that also carried a GPS device whose localizations are
used as ground truth for these graphs. Errors are shown for five different variants of the localization
algorithm.

3.4. Improvements in Error Estimation

The new Gauss–Newton-based technique for estimating the covariance of localizations
produces fewer underestimates of the variance. The data in Figures 6 and 8 show that the
new algorithm produces more accurate estimates and fewer underestimates. The data in
Figure 8 are from stationary tags that were relatively easy to localize. A larger data set of
mobile tags (mounted on a car) from the edges of the system showed a smaller discrepancy
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between the two algorithms, and slightly more significant underestimate (ratios of 10–20
between the actual error and the standard deviation).
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Figure 8. The ratio between the actual localization error and the estimated standard deviation of the
error. Reliable error estimates are characterized by a concentration around one. A heavy tail indicates
that there are many underestimates of the error. The data is from stationary tags over a period of
about 2 weeks. The data is split by the number of base stations (NBS) that produced each localization.

3.5. Performance

Localization algorithms designed for high-throughput systems must be efficient, both
to cope with real-time data and to be able to recompute the massive quantities of stored
historical data. Table 1 shows the running time (on a laptop with an Intel i7-8565U processor
running at 2.0 GHz) of several algorithms and combinations of features when they are
used to localize one beacon using detections from two other beacons. This is close to the
worst-case performance of the algorithms because the beacons are detected by many base
stations, often more than 10, due to high placement and high-gain antennas. We do not
show data for single-beacon-transmission localization with the legacy algorithm because
this algorithm almost always reverts to the use of the multiple-beacons variance when used
on beacons.

The data show that the new consensus-based algorithm is faster than the legacy
algorithm; in multiple-beacon settings, it runs in about 10 ms per localization without
snapping to a DEM and in about 13 ms with snapping, compared to 14 and 17 ms for
the legacy algorithm. In the single-beacon transmission setting, the consensus-based
algorithm is much faster, taking about 1 ms without snapping to a DEM and about 1.7 ms
with snapping.

This is good performance. From the spectrum utilization standpoint and from the base
station performance standpoint the throughput of a large single0 channel ATLAS system
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can reach about 100 localizations per second. A localization server using the single-beacon
consensus-based algorithm can easily cope with this load, and even the multiple-beacons
setting is manageable.

The clustering algorithm is about 4–5 times slower. This is mostly due to the
performance of the implementation of DBSCAN that we use. We have not yet explored
other implementations or alternative clustering algorithms.

4. Discussion

The new algorithms that we have presented are novel, effective, fast, and they resolve
or significantly mitigate actual failures of the baseline algorithm.

Of the two methods to generate a good initial guess, our results suggest that the
consensus method is both more reliable and much faster than the clustering method.
However, we have spent significant efforts on tuning the consensus method and less efforts
on tuning the clustering method, so it too might be made competitive. Also, our results do
not rule out the possibility that the clustering method is more effective than the consensus
one in some specific cases, such as localizations from observations by many receivers.

Our consensus and outlier classification rules are applied to differences of two
constraints, each based on one raw observation. Therefore, if one observation is an
outlier, we discard both. A method to classify individual constraints might discard
fewer observations.

The way we use a DEM, by computing a 2D estimate, looking up its elevation in the
DEM, and then computing one more 2D estimate with the altitude snapped to the DEM’s
elevation is simple and works well in practice but is not optimal. A more reliable approach
would be to go through iterations of 2D localization and snapping until reaching a fixed
point. Another approach, which focuses on the model rather than on the algorithm, is to
use the DEM to define a differentiable function elevation(x, y) and to add the constraint
z = elevation(x, y) to the least-squares problem.

The new algorithms are fast enough to not become a bottleneck in most ATLAS servers,
but their performance can probably be significantly enhanced, both by tuning algorithmic
parameters, and by replacing the library implementations of key subroutines by faster
ones (e.g., replacing the SVD from the Apache Commons Math library by the SVD from
LAPACK, or by using a GPU, etc.).
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