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Abstract: The SARS-CoV-2 pandemic resulted in approximately 7 million deaths and impacted
767 million individuals globally, primarily through infections. Acknowledging the impactful in-
fluence of sedentary behaviors, particularly exacerbated by COVID-19 restrictions, a substantial
body of research has emerged, utilizing wearable sensor technologies to assess these behaviors.
This comprehensive review aims to establish a framework encompassing recent studies concerning
wearable sensor applications to measure sedentary behavior parameters during the COVID-19 pan-
demic, spanning December 2019 to December 2022. After examining 582 articles, 7 were selected for
inclusion. While most studies displayed effective reporting standards and adept use of wearable
device data for their specific research aims, our inquiry revealed deficiencies in apparatus accuracy
documentation and study methodology harmonization. Despite methodological variations, diverse
metrics, and the absence of thorough device accuracy assessments, integrating wearables within
the pandemic context offers a promising avenue for objective measurements and strategies against
sedentary behaviors.

Keywords: sedentary behavior; physical activity; COVID-19; pandemic; wearable devices; inertial
measurement unit (IMU)

1. Introduction

On 30 January 2020, the World Health Organization (WHO) officially designated the
coronavirus outbreak as a global public health emergency [1]. Across a span of three years,
the SARS-CoV-2 pandemic led to the death of nearly 7 million individuals and impacted
over 767 million people with infections on a global scale [2].

During the COVID-19 pandemic and its resulting lockdown measures, research [3]
showed a multitude of significant factors that emerged as primary contributors to obesity,
encompassing aspects such as insufficient physical activity, sedentary behaviors, and
compromised sleep quality.

A sedentary lifestyle, a pressing public health concern, refers to a way of living that
involves minimal physical movement and low energy expenditure, often associated with
walking, sitting, or reclining postures [4]. This lifestyle can have significant consequences
on our overall health and well-being, leading to a range of physical and mental health
issues. An increasing body of epidemiological evidence has established a connection
between sedentary behavior and a range of health risks, including an elevated likelihood of
developing type 2 diabetes, metabolic syndrome, cancer, and obesity, as well as increased
mortality rates associated with all causes and cardiovascular disease [5–10]. Recent research
has contributed significant insights into the impact of the pandemic on physical activity and
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sedentary behavior, and certain studies have attempted to explore the factors associated
with these changes in behavior [11–14].

Hence, the measurement of a sedentary lifestyle particularly during the COVID-19
pandemic has been important for several specific reasons such as the impact of lockdowns,
health consequences, risk identification, and public health preparedness for future crises.

In recent years, many people have incorporated personal wearable devices into their
daily lives. The integration of noninvasive wearable motion sensors has become a fun-
damental clinical tool within the healthcare industry, establishing itself as a common
practice [15]. In particular, inertial measurement units (IMUs) have enabled the accurate
estimation of kinematic parameters such as body position, acceleration, and speed, demon-
strating remarkable precision [16]. Fitbit (Fitbit, San Francisco, CA, USA) and activPAL
(Physical Activity Technologies, Glasgow, Scotland) are two widely utilized wearable de-
vices in scientific research that provide objective measurements of sedentary behavior. Fitbit
is designed to be worn on the wrist and offers continuous monitoring, while activPAL was
designed to be worn on the thigh to categorize free-living activity into sitting, standing, and
stepping behaviors. While the utilization of these devices offers a potential advantage in
terms of objective and measurable outcomes compared to conventional subjective methods,
there are still challenges in standardization procedures and limited comparability among
studies [17].

Given the impact of the COVID-19 pandemic on physical activity and sedentary be-
haviors, coupled with the wide prevalence of use of these devices, they have emerged
as essential tools in COVID-19 research. These devices played a key role in collecting
real-time, objective, and large-scale data on physical activity, enabling remote monitoring
and telehealth services. Recent studies have demonstrated the utility of wearable devices in
monitoring sedentary life during COVID-19 [18–24]. In their study, Leon et al. [22] utilized
commercialized ambient (vision) and wearable sensors within a controlled environment to
achieve real-time recognition. The study focuses on four human postures, standing, sitting,
bending, lying down, and walking activity, while also quantifying energy expenditure. The
results obtained showcased the platform’s automatic energy expenditure quantification
capabilities using both individual wearable and vision-sensing technologies, as well as a
combined version, achieving average accuracies greater than 93%. In another study [21]
by MAIR et al., the group developed JitaBug, a personalized Just-in-Time Adaptive In-
tervention (JITAI) smartphone application. The study aimed for usage in a real-world
environment to assist older adults in increasing or maintaining their physical activity levels.
Furthermore, this study assesses the feasibility of executing an efficacy trial for JitaBug
while also scrutinizing its acceptability in a real-world context among older adults. The
initial findings suggest that employing JITAI is favorably received for aiding physical
activity among older adults residing in the community; however, improvements to the
technical facets of the JitaBug app are needed before progressing to efficacy trials, aiming
to amplify user-friendliness, engagement, and overall user satisfaction.

Recently, multiple experts in different disciplines across public health, epidemiology,
and infectious diseases have formulated recommendations, informed by existing references,
to guide the management of future global pandemics [2,25–27]. In this post-mortem period,
to the author’s knowledge, not much attention has been paid to sedentary behavior and
the importance of maintaining consistent levels of physical activity during a pandemic.
Developing evidence-based protocols for maintaining physical activity levels during such
periods is essential for safeguarding individual health and well-being.

This systematic review aims to provide an updated framework of the current research
on the use of wearable sensors to measure sedentary behavior parameters during the
coronavirus pandemic. In addition, the authors will provide their perspective on potential
future application recommendations in the field.
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2. Methods
2.1. Search Strategy

A systematic literature search was performed to identify the most relevant studies
according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) checklist [28]. The following electronic databases were searched: Cochrane Li-
brary, IEEE Xplore, and PubMed including MEDLINE database of references and abstracts
on life sciences and biomedical topics to identify articles published during a 3-year period,
since the official COVID-19 pandemic began, from December 2019 to December 2022. The
specific search keywords and Boolean combinations used were ((wearable*) OR (Sensor*)
OR (Wearable device) OR (wearable sensor) OR (body worn) OR (device*) OR (tracker*)
OR (IMU) OR (Fitbit)) AND ((Sedentary*) OR (sedentary behaviour) OR (sedentary time)
OR (sedentary lifestyle) OR (physical activity) OR (exercise) OR (walk*) OR (sit*)) AND
((COVID*) OR (SARS-CoV-2)).

2.2. Study Selection Strategy

After removing duplicate manuscripts, two reviewers (Y.W. and A.M.T) independently
screened the title, abstract, and keywords of the records identified through database searching.
We used RAYYAN [29], an online systematic review tool, for the literature management.

The inclusion criteria for articles were as follows:

(1) Articles published in English.
(2) Full original research articles published in peer-reviewed scientific journals.
(3) Studies involving healthy adult human participants, aged between 18 and 75 years,

with no pre-existing health conditions.
(4) Studies focused on measuring sedentary behavior related to COVID-19 using charac-

teristics derived from wearable devices or body-worn sensors.
(5) Wearable devices need to be small, portable, easy to use, and unobtrusive for the

desired analysis.

To streamline the study selection and classification of retrieved papers, we defined the
following exclusion criteria:

(1) Studies that used animal models.
(2) Conference papers.
(3) Studies unrelated to sedentary behavior and COVID-19.
(4) Adults with chronic lifestyle illnesses were excluded, as they might have fitness plans,

dietician recommendations leading to physical mobility issues, or other physiological
considerations, mental health issues, or health-related motivations.

(5) Studies that did not primarily focus on wearable device analysis.
(6) Studies that utilized invasive wearables.
(7) Studies that employed wearables solely to track working status.
(8) Studies that only proposed protocols without presenting results.
(9) Studies primarily focused on virus spread prevention and social distancing.
(10) Studies concentrating on robotics were also excluded.

2.3. Data Extraction

Two reviewers (Y.W. and A.M.T.) thoroughly analyzed the articles, and the relevant
information was extracted and organized into two tables. Table 1, titled “Study charac-
teristics”, comprises details such as the aim of the study, characteristics of the recruited
population, selection criteria, and participants’ demographics. Table 2, named “Study
parameters and outcome measures”, provides information on the sensor type and spec-
ifications used in each study, the location on the body where the sensor was placed, the
calculated physical activity parameters, the sensor assessment protocol employed, the
environment (e.g., controlled or free-living) in which the study took place, and the main
findings derived from the research.
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Table 1. Study characteristics.

Author [18–24] Aim Population Recruitment
Characteristic Selection Criteria Participant Characteristics

Hojjatinia et al.,
2022 [18]

To explore the effect of the
COVID-19 pandemic on the

dynamics of physical activity
responses to digital message

interventions.

Young adults

Inclusion Criteria: Ambulatory individuals aged
18–29 with no functional limitations, a visual
impairment that hinders smartphone use, and
fluency in English (both verbal and written).

Participants must own a smartphone running
iPhone iOS v10.0 or later or Android OS v7 or
later and be willing to install the Random AIM

and Fitbit apps.
Exclusion Criteria: individuals engaging in

90 min or more of moderate or higher intensity
physical activity per week, participating in

mandatory physical activity programs, relying
on mobility-assistive devices, diagnosed with
cancer, cardiovascular disease, type I or type II
diabetes, or metabolic syndrome, pregnant or

planning to become pregnant in the next
6 months, or having any contradictions to

physical activity based on the Physical Activity
Readiness Questionnaire were excluded.

N: 28; Gender: M/F: 10/12
Mean age: 22.2 ± 1.7

Gilley et al., 2022 [19]

1. Evaluate self-reported physical,
mental, and social health outcomes

based on COVID-19 status.
2. Measure physical activity using

consumer-grade wearable
sensors (Fitbit).

3. Identify risk factors linked to
COVID-19 positivity in a population

of college students before the
vaccine was available.

College students

Inclusion Criteria: Participants aged 18 years or
older who are confirmed undergraduate or

graduate students at the University of Michigan
(whether on campus or at home). They must be
capable of providing informed consent digitally,
comfortable with reading and speaking English,
and have access to the necessary resources for
participating in an mHealth technology-based
intervention (such as a smartphone or tablet

device and internet access). Participants should
also be willing to use their personal equipment or

the Internet for the study.
Exclusion Criteria: participants who did not
complete the final (exit) assessment, did not

complete a minimum of two monthly
assessments, did not report a COVID-19

diagnosis, or did not wear the Fitbit device.

N: 1997; Gender: M/F/Other:
613/1367/16;

Mean age: not reported
(age ≥ 18)
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Table 1. Cont.

Author [18–24] Aim Population Recruitment
Characteristic Selection Criteria Participant Characteristics

Massar et al., 2021 [20]

To examine the changes in physical
activity behaviors during the
reopening phase, specifically

exploring the potential influences of
continued remote work and

smartphone usage.

University students and staff Inclusion: not reported
Exclusion: not reported

N: 198; Gender: M/F: 61/137; Mean
age: 26.1 ± 5.8;

Mair et al., 2022 [21]

This study aims to provide a
comprehensive description of

JitaBug, a personalized Just-in-Time
Adaptive Intervention (JITAI)

delivered through smartphones.
The intervention is designed to
support older adults in either

increasing or maintaining their
physical activity levels.

Additionally, the feasibility of
conducting an effective trial for the

JitaBug intervention will be
assessed, and the acceptability of
JitaBug among older adults in a

real-world setting will be explored.

Ambulatory, community-dwelling
older adults who use a smartphone

Inclusion: ambulatory, community-dwelling
older adults who use a smartphone

Exclusion: knee injury participants excluded

N: 31; Gender: M/F: 14/17;
Mean age not reported
(Age: 56–72 years old)

Leone et al., 2022 [22]

In order to develop a platform that
is widely accepted by users, two

different sensor technologies were
utilized to accurately measure and
quantify the energy expenditure of

older adults.

Aging Adults Inclusion: not reported
Exclusion: not reported

N: 11; Gender: M/F: 6/5;
Mean age not reported
(Age: 65–73 years old)

Capodilupo et al.,
2020 [23]

The objective of this study is to
measure and analyze changes in
sleep/wake behavior, exercise

behavior, and physiological markers
of health during the period of

physical distancing implemented
during the COVID-19 pandemic.

WHOOP strap members (US-based)

Inclusion Criteria: Participants must have
recorded their sleep for at least 120 out of the 135

days (89% of the days) between January 1 and
March 9 in both 2019 and 2020. Additionally,

participants should fall within the age range of 18
to 80 years on May 15th, 2020, which was the
date when data were extracted for analysis.

Exclusion Criteria: there are no specific exclusion
criteria mentioned in the provided information.

N: 5436; Gender: M/F: 3900/1536
Mean Age: 40.25 ± 11.33



Sensors 2023, 23, 9449 6 of 21

Table 1. Cont.

Author [18–24] Aim Population Recruitment
Characteristic Selection Criteria Participant Characteristics

Ong et al., 2021 [24]

The aim of this study is to analyze
sleep and physical activity (PA) data
obtained from the “Health Insights

Singapore” (hiSG) cohort.

Fitbit users from the Health Insights
Singapore (high)

study

Inclusion: young working adults between the age
21 and 40

Exclusion: not reported

N: 1824; Gender: M/F: 883/941;
Mean age: 30.9 ± 4.6

Table 2. Study parameters and outcome measures.

Author [18–24] Sensor Type and
Specifications Location on Body Calculated Physical

Activity Parameters
Sensor Assessment

Protocol Environment Main Findings

Hojjatinia et al., 2022 [18]

ActiGraph—wGT3X-BT
(Stage 1); 30 Hz
sampling rate.

Fitbit Versa/Versa Lite
Smartwatch (Stage 2).

Waist (stage 1), on the
participant’s dominant
side at the midline of

their thigh, wrist
(stage 2)

(1) Stage 1: (1) daily step
counts were measured as
counts per minute, and

(2) the mean overall
speed of physical activity

was calculated.
(2) Stage 2: (1)

Minute-level step counts
and (2) heart rate were
recorded. Before and
after the pandemic
declaration, seven

features were extracted
separately for weekends

and weekdays. These
features included initial
delay, peak magnitude,
peak delay, steady state,
rise time, settling time,

and effective time.

Stage 1 (Screening Stage):
physical activity was

measured over a period
of 7 consecutive days in

the field.
Stage 2 (Intervention

Stage): Participants who
wore the device for at

least 5 days with a
minimum of 600 min per
day and had an average
of less than 21.4 min per

day of
moderate-to-vigorous

physical activity
(equivalent to 150 min
per week) were invited

to participate in the
second stage of the study.

They were asked to
continue wearing the

device for the next
6 months.

Day to day

Following the declaration
of the pandemic, there was

a significant decrease in
daily step counts on
weekdays (Cohen’s
d = −1.40), while no

significant change was
observed on weekends
(d = −0.26). The mean

overall speed of the
response related to

physical activity
(dominant pole

magnitude) did not show
significant changes on

both weekdays (d = −0.18)
and weekends (d = −0.21).

However, there was
limited consistency in the
ranking of specific features
of intervention responses

before and after the
pandemic declaration.
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Table 2. Cont.

Author [18–24] Sensor Type and
Specifications Location on Body Calculated Physical

Activity Parameters
Sensor Assessment

Protocol Environment Main Findings

Gilley et al., 2022 [19] Fitbit wristband Wrist
(1) Number of steps per
day, (2) heart rate, and

(3) sleep

Participants were
provided with Fitbit

devices, which were sent
to their homes via mail.

They received
instructions to wear the
Fitbit continuously for a

minimum of
approximately 40 h per

week during the
3-month monitoring

period. The Fitbit was
used to measure their
physical activity, heart
rate, and sleep patterns

throughout this
duration.

Day to day

A significant proportion of
students (24% with

moderate and 49% with
severe anxiety levels)

reported anxiety according
to the State Trait Anxiety
Index. About one-third of

the students (33%)
disclosed having a mental

health disorder. Mental
health issues were

prevalent among the
student population, and
factors like substance use
were linked to increased

COVID-19 risk. These
findings underscore the

need to focus on
innovative strategies that

promote health and
well-being and consider
the long-term impacts of

COVID-19 on
college students.
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Table 2. Cont.

Author [18–24] Sensor Type and
Specifications Location on Body Calculated Physical

Activity Parameters
Sensor Assessment

Protocol Environment Main Findings

Massar et al., 2021 [20] Oura Ring; Finger (not specified)
(1) Sleep,

(2) physical activity
(step count)

Participants were
required to wear the

Oura ring consistently
throughout the entire
duration of both the

lockdown and
non-lockdown periods,
which lasted for a total

of 8 weeks.

Day to day

After the lockdown, the
reopening phase resulted

in noticeable changes,
including earlier sleep

timing, increased physical
activity, and changes in

mental well-being. These
changes were influenced

by factors such as
work/study arrangements

and patterns of
smartphone usage.

Mair et al., 2022 [21]

Fitbit
(Charge 4);

ActiGraph wGTX3-BT
accelerometer at 100 Hz

Non-dominant wrist
(both sensors)

(1) Daily steps,
(2) activity minutes goal

Participants were given
Fitbit activity trackers to

wear on their
nondominant wrist, with
no other trackers nearby.
They wore these devices
continuously for 8 days,

24 h a day, except for
bathing or showering.

The accelerometers, set
to collect data at 100 Hz,
were synchronized with

GMT and started
recording at 6 AM the
day after participants

received them to ensure
full data capture.

Day to day

The study indicates that a
smartphone-delivered
Just-in-Time Adaptive

Intervention (JITAI) is a
well-accepted method of

supporting physical
activity (PA) in older

adults within the
community. The

intervention was found to
be feasible overall;

however, user feedback
suggests that further

technical refinements to
the JitaBug app are needed

to improve its usability,
engagement, and user

satisfaction before
progressing to

effectiveness trials.
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Table 2. Cont.

Author [18–24] Sensor Type and
Specifications Location on Body Calculated Physical

Activity Parameters
Sensor Assessment

Protocol Environment Main Findings

Leone et al., 2022 [22] Shimmer3; 50 Hz Chest

Human postures:
(1) Standing,

(2) Sitting,
(3) Bending,

(4) Lying down,
(5) Walking

Each participant
underwent three data
acquisition sessions,
each consisting of
specific protocols

involving standing,
sitting, bending, and
lying tasks. Each task
lasted between 30 and

90 s. The protocols
included sequences of

static postures and
walking at various

speeds. The goal was to
assess the classification

performance of each
individual sensory node,

even in challenging
situations that could
potentially affect the

accuracy of the
classification.

Controlled

The study results
demonstrated the

platform’s ability to
accurately measure energy

expenditure using
different sensing
technologies. The

wearable sensor achieved
an average accuracy of

93.8% in posture
classification, while the

ambient sensor achieved
93.3% accuracy in walking

activity classification.
Combining the data from

both sensors resulted in an
approximately 4%

improvement. As a result,
the estimated energy

expenditure had a relative
error of less than 3.2% for

each participant,
successfully classifying
high-level information
such as postures and

walking activities. These
findings support the

proposed architecture of
the platform in terms of
hardware and software.

Novelty: “implementation
of a platform that provides

a novel tool for the
automatic quantification of
Energy Expenditure (EE)”.
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Table 2. Cont.

Author [18–24] Sensor Type and
Specifications Location on Body Calculated Physical

Activity Parameters
Sensor Assessment

Protocol Environment Main Findings

Capodilupo et al.,
2020 [23] WHOOP strap Wrist

(1) Sleep opportunity
duration, (2) Social jet

lag, (3) Sleep
opportunity offset,
(4) Sleep duration,

(5) Exercise frequency,
(6) Exercise type,

(7) Exercise intensity,
(8) Resting heart rate,

(9) Heart rate variability

To assess the immediate
changes in health-related

behavior, the study
defined the period from

1 January 2020 to 9
March 2020 as the

baseline period. The
period from 10 March

2020 to 15 May 2020 was
identified as the physical

distancing period,
during which restrictions

were implemented.

Day to day

The findings indicate that
individuals demonstrated
improved health-related

behaviors, such as
increased exercise intensity
and longer sleep duration,

during the period of
physical distancing

restrictions. There were
positive changes observed

in cardiovascular
indicators of health.
However, it remains

unclear whether these
changes can be directly

attributed to the behavior
changes or if other factors

were involved.
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Table 2. Cont.

Author [18–24] Sensor Type and
Specifications Location on Body Calculated Physical

Activity Parameters
Sensor Assessment

Protocol Environment Main Findings

Ong et al., 2021 [24] Fitbit Ionic Wrist

(1) Bedtime,
(2) Waketime,

(3) Time in bed (TIB),
(4) Total sleep time (TST),

(5) Sleep efficiency,
(6) Step counts,

(7) Time spent in MVPA,
and (8) Resting heart rate

The collected physical
activity (PA) data

included total
daily steps,

moderate-to-vigorous
physical activity (MVPA)

minutes, resting heart
rate levels, and 15 min
interval step counts. To

ensure data accuracy,
certain filtering criteria

were applied, excluding
days with insufficient

Fitbit wear time or
atypical activity levels.
Atypical activity levels

were defined by specific
thresholds for daily steps
and sedentary minutes.
The PA data analysis

involved an average of
1375 participants at each

time point, with an
average daily wear time

of 18–19 h.

Day to day

During the initial phase of
COVID-19 mobility
restrictions, physical

activity (PA) was found to
be more significantly

impacted compared to
sleep. An evaluation using

the RAR (Response
Analysis and Reporting)
technique revealed that
there was a variation in

individuals’ responses to
the lockdown, which

could potentially be linked
to different outcomes if the

resolution of COVID-19
continues for an extended
period. This suggests that
prolonged restrictions may

have varying effects on
individuals’ physical

activity levels and overall
well-being. Novelty:
“demonstrate how

heterogenous groups are
affected by using novel
rest-activity rhythm and
hierarchical clustering

approaches”.
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2.4. Methodological Quality

The quality evaluation of each included article was performed using a custom quality
assessment worksheet (Table 3) based on the reviews conducted by Benson et al. and
Campos et al. [30,31]. The table comprises 12 items that are divided into four sub-scales:
reporting, external validity, internal validity (bias), and power analysis. Two authors,
namely Y.W. and A.M.T, independently assessed the quality of each study included in this
systematic review. For each item, three possible answers were provided: “Yes” or “No”. In
case of any discrepancies in scoring between the authors, they discussed the disagreements
until they reached a consensus.
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Table 3. Quality assessment questions.

Question Hojjatinia et al.,
2022 [18]

Gilley et al.,
2022 [19]

Massar et al.,
2021 [20]

Mair et al.,
2022 [21]

Leone et al.,
2022 [22]

Capodilupo et al.,
2020 [23]

Ong et al.,
2021 [24]

Q1. Is the hypothesis/aim/objective of the
study clearly described? Y Y Y Y Y Y Y

Q2. Are the main outcomes clearly described in
the Introduction or Methods? Y Y Y Y Y Y Y

Q3. Are the characteristics of the participants
clearly described (including age, sex, and status
as healthy/injured/pathological)?

Y N N N N Y Y

Q4. Are the inclusion and exclusion criteria
described and appropriate? Y N N N N N N

Q5. Are the main findings of the study
clearly described? Y Y Y Y Y Y Y

Q6. Are estimates of the random variability in
the data for the main outcomes provided? Y Y Y Y Y Y Y

Q7. Have actual probability values been
reported for the main outcomes? Y Y Y Y Y N Y

Q8. Are the participants representative of the
entire population from which
they were recruited?

Y Y Y Y Y Y Y

Q9. Are the setting and conditions typical for
the population represented by the participants? Y Y Y Y Y Y Y

Q10. Are the statistical tests used to assess the
main outcomes appropriate? Y Y Y Y Y Y Y

Q11. Are the main outcome measures used
accurate (valid and reliable)? Y Y Y Y Y Y Y

Q12. Is a sample size justification, power
description, or variance and effect
estimates provided?

N N N N N N N

Note: Y = Yes, N = No.
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3. Results
3.1. Search Results

Figure 1 represents the study selection process conducted across three databases. The
systematic review initially identified 582 studies, and after removing duplicates, 299 rele-
vant studies remained. These manuscripts underwent further detailed full-text analysis
based on the inclusion/exclusion criteria, resulting in 30 publications for closer examina-
tion. Finally, seven final papers [18–24] met the criteria and were included in this systematic
review. The primary reason for excluding most studies in the final phase was the presence
of participants with mental or health backgrounds that did not align with the study’s focus.
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3.2. Study Characteristics and Reported Limitations

Table 1 provides an overview of the study and participant characteristics of the seven
selected studies, which utilized different commercially available wearable devices to assess
various physical activity measures for different objectives. One study [18] focused on
evaluating responses to digital message interventions, while Gilley et al. [19] identified risk
factors associated with COVID-19 positivity in a population of college students before the
vaccine’s release. Massar at al. [20] examined the evolution of physical activity behaviors
during reopening, and Mair et al. [21] described the development of JitaBug, a personalized
smartphone-delivered intervention application. Leone et al. [22], Capodilupo et al. [23],
and Ong et al., 2021 [24] studied changes in sleep and physical activity behaviors during
COVID-19 physical distancing restrictions. The total sample size across the studies ranged
from 11 to 5436, encompassing different population characteristics such as young adults,
college students [18,19], aging adults [22], and mixed-gender groups. Regarding the
selection standards, five studies reported their inclusion criteria [18,19,21,23,24], while
three studies reported their exclusion criteria [18,19,21].

In Capodilupo et al. [23], limitations include potential bias in the US-based WHOOP
user demographic, limited global generalizability and adherence to physical distancing,
reliance on an estimated timeline for period distinction, and concerns about inflated sig-
nificant findings due to multiple testing. In Leone et al.’s [22] study, limitations stem
from a small sample of aging subjects, challenging statistical robustness, difficulties in
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evaluating subjects with mobility disorders, and using a methodology misaligned with
gold-standard energy expenditure measurements. Restricted monitoring due to sensor
device operating ranges further limits the study’s representation of real-world activities.
Mair et al.’s [21] study relies on Fitbit trackers, which are potentially less valid compared to
research-grade accelerometers (e.g., ActiGraph), for activity intensity assessment, while
muscle-strengthening activities are underrepresented. A lack of contextual data utiliza-
tion and a predominantly well-educated demographic raise generalizability concerns.
Gilley et al.’s [19] study faces limitations due to the overrepresentation of Asian students,
gender imbalance, and potential data attrition. The reliance on self-reports for COVID-19
diagnosis and limited validation pose challenges. However, the study demonstrates the
feasibility of longitudinal research during a pandemic using mobile health technology.
Massar et al.’s [20] study uses a convenience sample with limited generalizability, skewed
gender ratios, and a lack of pre-lockdown data. Sample size estimation challenges are
addressed by combining objective tracking with self-reported data to minimize reporting
biases. Hojjatinia’s [18] study deals with limitations including temporary changes in living
arrangements and employment status. The use of dynamical system modeling is effective,
but reinforcement-learning algorithms are impractical due to the data size. Instead, system
identification methods are used for efficient analysis. Ong’s [24] study relies on consumer-
grade sleep tracking and lacks data on sleep disorders. The ongoing nature of the study
and potential future lockdowns limit generalizability, while concerns exist about tracking
short daytime naps and the influence of government financial support on sleep patterns in
socioeconomically distressed populations.

3.3. Study Parameters and Outcome Measures

Table 2 presents a concise overview of the parameters and outcome measures extracted
from the selected studies. In order to gather the necessary data, all of the selected studies
utilized one or more wearable devices that were affixed to the participants’ bodies to
capture information regarding their physical activity.

3.3.1. Sensor Type and Body Location

All the studies included in the analysis provided specific information regarding
the brands of physical activity trackers they employed. Among the selected studies,
three [18,21,22] explicitly mentioned their sampling frequency, which varied between 30
and 100 Hz. The Fitbit wristband (Fitbit, Inc., San Francisco, CA, USA) was utilized in four
studies [18,19,21,24], while the ActiGraph (ActiGraph, Pensacola, FL, USA) was used in
two studies [18,21]. Additionally, one study [22] utilized the Shimmer tracker (Shimmer,
Dublin, Ireland), and another study [23] utilized the WHOOP strap (WHOOP, Inc., Boston,
MA, USA). Regarding the placement of the physical activity trackers on the body, all studies
reported varying locations. Specifically, the trackers were positioned around the wrist or
finger [18–21,23,24], on the thigh [18], and on the chest [22].

3.3.2. Key Sedentary Parameters and Assessment Procedures

The physical activity data obtained from the body-worn trackers underwent pro-
cessing to derive variables that characterized various aspects during different assessment
procedures. All studies [18–24] focused on investigating the total number of steps taken
per minute, per day, throughout the entire duration of the study and walking poses. Addi-
tionally, heart rate data were collected and analyzed in four studies [18,19,23,24] to assess
variability, resting heart rate, and sleep-related parameters such as bed and lying time. Five
studies [19,20,22–24] reported data on sleep-related variables. One study [22] conducted its
assessments in a controlled environment, which included tasks such as standing, sitting,
bending, and lying down, with each task lasting between 30 and 90 s. On the other hand,
the remaining six studies [18–21,23,24] collected physical activity data in a real-world, day-
to-day setting, capturing information over different periods of time. Hojjatinia et al. [18]
conducted their study in two stages: a screening phase lasting 7 days, followed by a
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6-month intervention phase. Other studies by Gilley et al. [19], Massar et al. [20], and
Mair et al. [21] collected data over durations of three months, eight weeks, and eight
consecutive days, respectively.

3.4. Methodological Quality

The results of the quality assessment, as depicted in Table 3, provide valuable insights
into the evaluated research studies. Upon thorough analysis, it is evident that these
studies generally demonstrate a fair level of proficiency in explaining their current level
of knowledge, research objectives, and significant findings. However, it is important to
highlight certain areas that require improvement and further clarification.

Specifically, there are notable deficiencies in the description of participant character-
istics in terms of mean age and health status across certain studies [19–22]. This lack of
clarity hinders a comprehensive understanding of the demographic composition of the
study populations, which could potentially impact the generalizability and applicability
of the findings. Furthermore, a significant number of studies [19–24] failed to provide
any information regarding their inclusion or exclusion criteria. This omission limits the
transparency and reproducibility of their methodologies, making it difficult to assess the
extent to which the selected participants represent the target population.

On a positive note, all studies effectively described their findings and main outcomes,
enabling readers to grasp the essence of their research endeavours. It is worth noting that
the participants in these studies were drawn from a diverse population, encompassing
both young and aging adults, with an age range spanning from 18 to 73 years. The test
settings and conditions employed in the majority of the studies were representative of
real-life environments, where continuous movement data were collected using sensors.
However, it is important to highlight that Leon’s study [22] deviated from this approach by
conducting experiments in a controlled environment. This distinction should be taken into
consideration when assessing the generalizability of the results.

In terms of statistical analyses, all studies adequately defined the utilized tests and
outcome measures, which contributes to the rigor and validity of their findings. However, it
is worth mentioning that none of the studies provided justification for their chosen sample
sizes or a description of any conducted power analysis. The absence of such details raises
questions about the adequacy of the sample sizes employed and the statistical power of
the studies. Consequently, further elaboration on these aspects is necessary to ensure the
reliability and robustness of the reported findings.

4. Discussion

The COVID-19 pandemic has had a significant impact on global health, resulting in
the implementation of widespread public health measures to control its transmission [32].
This systematic review aims to provide an analysis of the utilization of wearable devices in
assessing sedentary lifestyle parameters between December 2019 and December 2022 of the
COVID-19 outbreak and propose potential future directions based on the existing research
findings. Seven studies [18–24] were identified, employing diverse study protocols and
settings, including laboratory and real-world environments. Table 2 presents a summary
of the included studies, all of which demonstrated the effectiveness of wearable sensor-
based devices in achieving their specific objectives. In addition, Table 4, adapted from
Prill et al. [33], outlines an instant view of all key study and sensor characteristics, and
Figure 2 illustrates sedentary parameters count and number of sedentary parameters by
category, highlighting the top measured parameters count by category.
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Table 4. Summary of key study and SENSOR characteristics.

Study/Wearable
Sensor

Charectaristic

Hojjatinia
et al., 2022 [18]

Gilley et al.,
2022 [19]

Massar et al.,
2021 [20]

Mair et al.,
2022 [21]

Leone et al.,
2022 [22]

Capodilupo
et al., 2020 [23]

Ong et al.,
2021 [24]

Main sedentary
measured

paramaters

Step count,
heart rate

Step count,
heart rate,

sleep

Sleep, step
count

Step count,
personalized

physical
activity time

goal

Standing,
sitting,

bending, lying
down (sleep),

walking (step)

Sleep, heart
rate, physical
activity (step)

Step count,
sleep, heart

rate

Day–day
environment + + + + - + +

Controlled
environment - - - - + - -

Number of sensors 2 1 1 2 1 1 1

Upper limb
placement + (Fitbit) + + + - + +

Lower limb
placement + (Act.Gr) - - - - - -

Trunk placement - - - - + - -

Commercial
device/s + + + + + + +

Sampling
frequency: <50 Hz + N.R N.R - - N.R N.R

Sampling
frequency:
50–100 Hz

- N.R N.R + (Act.Gr) + N.R N.R

Weight: <50 g N.R N.R N.R N.R N.R N.R N.R

+ = Yes; - = No; N.R = not reported.

Figure 2. (left): reported sedentary parameters count; (right): number of sedentary parameters
by category.

Multiple studies addressed various aspects of health interventions during the COVID-19
pandemic. One study [18] assessed digital message intervention impacts, while another [19]
identified COVID-19 risk factors for college students pre-vaccine. In 2021, Massar et al. [20]
studied evolving physical activity behaviors during reopening. In 2022, Mair et al. [21]
created JitaBug, a personalized app for health intervention. Also, three studies [22–24]
examined changes in sleep and activity during COVID-19 restrictions. Nevertheless,
due to the disparities in objectives, methodologies, and outcomes, the task of synthesis
remained unfeasible.
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All studies used a commercialized physical activity tracker brand, placed at different
points around the trunk, upper, and lower limbs. Less than half of the studies [18,21,22]
reported their data collection sampling frequency, which ranged between 30 and 100 Hz,
a suitable sampling rate frequency due to the low-pace nature of protocol tasks [34]. On
the other hand, none of the studies calculated or reported test–retest reliability and min-
imum detectable change values of the sensors. Given the motion sensors’ susceptibility
to test–retest variability, their reliability is compromised, leading to an elevated minimum
detectable change. To address this specific issue, the authors recommend that future
studies incorporate evaluations of device accuracy, which should encompass compre-
hensive measures of reliability. This approach is in line with the recommendation by
Düking, P. et al. [35].

Regarding derived sedentary parameters, all studies [18–24] employed stepping
activity-related calculations such as total steps per minute, per day, or over a specified study
duration. Heart rate data [18,19,23,24] were collected and examined for variability and
resting rate, while four studies [19,20,22–24] presented data related to sleep duration, bed-
time, and time spent lying down. Even in the absence of uniform reporting standards for
physical activity metrics, these parameters continued to play a crucial role in deciphering
sedentary behaviors within the unique contexts of their research goals.

Among the seven studies, only the studies by Ong et al. and Leone et al. [22,24]
distinctly highlighted their respective novelty in the state of the art. Study [22] introduced
a novel platform for the automatic quantification of energy expenditure, and study [24]
demonstrated the impact of COVID-19 restrictions on physical activity levels through
innovative rest–activity rhythm and hierarchical clustering approaches.

The studies reviewed in this discussion section have several limitations that can be cat-
egorized into three main areas and should be considered when interpreting their findings.

(1) Sample selection: Several studies relied on convenience samples, which may not
be representative of the wider population [20,23,24]. Additionally, some studies
had skewed gender ratios [20] or overrepresented certain ethnic groups [19]. These
limitations limit the generalizability of the findings to the wider population.

(2) Data collection methods: Some studies used consumer-grade wearables to measure
physical activity and sleep [21,22,24]. While these devices are convenient and widely
used, they may be less valid than research-grade devices for assessing activity in-
tensity and sleep quality [21]. On the other hand, these devices present a multitude
of advantages for health research. They are not only more cost-effective than pre-
mium research devices [36], but also boast comfort in wear [37], making them easily
accessible to consumers at an affordable price [38]. Additionally, some studies lacked
pre-lockdown data for comparison [20,23], which makes it difficult to determine the
true impact of COVID-19 on physical activity and sleep.

(3) Data analysis: Some studies made assumptions about the linearity of relationships
or the constancy of model parameters and were unable to use certain data analysis
techniques due to the small sample size or noisy data [18]. These methodological
limitations may have affected the accuracy of the findings.

Another interesting observation is that three of the studies [19,20,24] included in this
summary rely on self-reported data to some extent. This raises concerns about the accuracy
of the findings, as self-reports can be biased and unreliable. Future studies should explore
ways to collect more objective data on physical activity using wearable devices or other
technological solutions.

4.1. Future Directions

Due to the rapidly growing nature of wearable technology, we believe that wearable
devices could be used in novel ways to assess related aspects of sedentary lifestyles to
better prepare for the next world pandemic. Some potential applications include:
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• Telehealth Integration: We now comprehend the negative repercussions of extended
waiting periods on overall health during the COVID-19 lockdowns and the burden in
post-pandemic times [39]. One way to uphold preventative medicine measures and
potentially bridge this gap may be to leverage wearable devices. Wearable devices
have the potential to seamlessly integrate with telehealth platforms, enabling health-
care practitioners to remotely monitor sedentary behavior. This integration would
empower healthcare professionals to offer individualized recommendations and inter-
ventions aligned with individuals’ well-being, thereby amplifying the effectiveness of
remote healthcare services. Simultaneously, these wearable devices possess the capa-
bility to meticulously trace prolonged sedentary patterns, facilitating the discernment
of overarching trends and their associations with diverse health consequences. This
valuable insight could significantly inform the creation of targeted interventions and
strategies for fostering behavioral changes.

• Self-Psychological and Emotional Assessment: The past few years have highlighted
the role of physical activity to alleviate psychosocial challenges during a lockdown [40].
Advanced wearables equipped with sensors can record objective physiological indica-
tors such as heart rate variability and electrodermal activity, providing quantifiable
insights into stress levels and emotional well-being [41]. In conjunction with other
tools, such as a mood diary, or a self-reported emotional scale, wearables may of-
fer another layer of self-awareness for people to assess emotional shifts in line with
sedentary behavior and take preventative measures during lockdowns.

4.2. Limitations

It is important to note the lack of standardization in protocols, including variations
in apparatus type, study duration, and different environments (such as controlled and
day-to-day settings), poses challenges for cross-study comparisons.

5. Conclusions

Acknowledging the considerable influence of sedentary lifestyles, especially in the
context of the worldwide health repercussions stemming from COVID-19 restrictions,
numerous investigations have been initiated to assess these behaviors employing wear-
able sensors. Despite disparities in research methodologies, measured variables, and the
absence of device accuracy assessments, the integration of wearable devices during the
global pandemic offers a promising avenue for supplementary objective measurements
and strategies to counter sedentary living. With rapid technological progress and the valu-
able insights gained from the recent pandemic, we strongly advocate for the widespread
adoption and innovation of wearable technologies within the research and institutional
sectors. These innovations can significantly bolster our better response to potential future
global health crises.
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