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Abstract: The sparse recovery (SR) space-time adaptive processing (STAP) method has excellent
clutter suppression performance under the condition of limited observation samples. However, when
the cluttering is nonlinear in a spatial-Doppler profile, it will cause an off-grid effect and reduce
the sparse recovery performance. A meshless search using a meta-heuristic algorithm (MH) can
completely eliminate the off-grid effect in theory. Therefore, genetic algorithm (GA), differential
evolution (DE), particle swarm optimization (PSO), and grey wolf optimization (GWO) methods are
applied to SR-STAP for selecting exact clutter atoms in this paper. The simulation results show that
MH-STAP can estimate the clutter subspace more accurately than the traditional algorithm; PSO-
STAP and GWO-STAP showed better clutter suppression performance in four MH-STAP methods. To
search for more accurate clutter atoms, PSO and GWO are combined to improve the method’s capacity
for global optimization. Meanwhile, the fitness function is improved by using prior knowledge of
the clutter distribution. The simulation results show that the improved PSO-GWO-STAP algorithm
provides excellent clutter suppression performance, which solves the off-grid problem better than
does single MH-STAP.

Keywords: space-time adaptive processing (STAP); off-grid effect; clutter subspace;
meta-heuristic algorithms

1. Introduction

Space-time adaptive processing (STAP) is an effective technique to suppress clutter
received by airborne radar and enhance its ability to detect moving targets [1–3]. However,
traditional STAP methods face challenges in acquiring sufficient training samples from
uniform clutter environments, a requirement that is often difficult to fulfill in practical
scenarios [4,5]. Sparse recovery (SR) approaches have demonstrated high accuracy in target
signal recovery by selecting vectors from an overcomplete dictionary [6,7]. SR-STAP builds
the sparse dictionary by discretizing the spatial-Doppler plane, which causes inaccuracy
regarding clutter atoms not located at grid points and the degradation of clutter suppression
performance [8,9]. This phenomenon is known as the off-grid problem in SR-STAP [10].
Although the off-grid effect can be weakened by reducing the mesh size and increasing
the number of vectors in the overcomplete dictionary, this will also bring about problems
such as an increase of computation and a strong coherence between space-time steering
vectors [11].

Recent research has increasingly explored the integration of deep learning with STAP.
The CNN-STAP method establishes a mapping relationship between low-resolution and
high-resolution clutter angle-Doppler spectra, subsequently utilizing the CNN output
to select main clutter component atoms for the reconstruction of the clutter covariance
matrix (CCM) [12]. An enhancement of this approach, DU-CNN-STAP, incorporates deep
unfolding (DU) concepts to refine the SR-STAP algorithm. This method leverages a high-
resolution clutter angle-Doppler spectrum as input for the CNN, offering more accurate
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clutter space-time spectrum estimation and reducing the CNN network scale compared
to the original CNN-STAP [13]. Additionally, deep learning has been applied to moving
target indication (MTI) in the STAP context. This novel approach inputs a low-resolution
clutter-plus-target angle-Doppler spectrum into the network, producing a high-resolution
target angle-Doppler spectrum output. It demonstrates the potential to accurately predict
targets with a limited number of samples [14]. In summary, deep learning-based STAP
methods differ significantly from conventional SR-STAP approaches, primarily by estab-
lishing suitable mapping relationships through extensive data training. Consequently,
deep learning-based STAP can be regarded as an offline process, which can be effectively
combined with SR-STAP.

To solve the off-grid problem in SR-STAP, the reduced-dimension local search clutter
subspace estimation STAP (RD-LSCSE-STAP) algorithm was introduced in [15]. The RD
global STAP dictionary is designed to lessen computational demands, but the accuracy of
the grid still depends on the grid division of the local dictionary. The local mesh splitting
subspace estimation STAP (LMSSE-STAP) algorithm further enhances performance through
continuous local mesh splitting [16]. However, the above methods essentially seek more
accurate atoms by increasing the mesh density, which may not fully eliminate the off-
grid effect.

A novel approach, the gridless STAP algorithm based on particle swarm optimization
(PSO-STAP), was proposed in [17]. This algorithm employs PSO to continuously search
for atoms in the spatial-Doppler profile without using a mesh dictionary, potentially
eliminating the off-grid effect and accurately determining the clutter subspace. However, it
lacks comparative analysis with other meta-heuristic algorithms, and its clutter suppression
performance requires further enhancement.

Meta-heuristic algorithms (MH) are effective methods to solve global optimization
problems, which mainly simulate natural phenomena to achieve the optimal solution.
They are categorized into evolutionary computation (EC) and swarm intelligence (SI) algo-
rithms [18]. Within EC algorithms, genetic algorithms (GA) and differential evolution (DE)
are well-regarded, while particle swarm optimization (PSO) and grey wolf optimization
(GWO) represent SI. At present, meta-heuristic algorithms have been successfully applied
in many fields. According to [19] and [20], a meta-heuristic algorithm has worked in decen-
tralized detection based on wireless sensor networks (WSNs), and PSO-based quantizers
have optimized the performance of WSN. A dynamic modified chaotic PSO algorithm
is proposed for radar signal sorting in [21], which provides stable and fast performance
with excellent sorting indexes. In addition, meta-heuristic algorithms are also widely
used to achieve high-accuracy estimation of direction of arrival (DOA) [22,23]. There are
fewer studies on the role of meta-heuristic algorithms in solving the off-grid problem of
SR-STAP directly.

In this study, several meta-heuristic algorithms (GA, DE, PSO, and GWO) are em-
ployed to address the off-grid problem in SR-STAP. These algorithms select accurate atoms
by maximizing a suitable fitness function in a gridless spatial-Doppler profile. The findings
indicate that meta-heuristic algorithms significantly reduce the off-grid effect in SR-STAP.
Specifically, PSO and GWO, as SI algorithms, construct more precise clutter subspaces com-
pared to other algorithms. Furthermore, building on these findings, the PSO-GWO-STAP
algorithm is developed, amalgamating the strengths of PSO and GWO. Concurrently, the
fitness function is improved to boost the algorithm’s performance under certain conditions.
The results demonstrate that the PSO-GWO-STAP algorithm outperforms the PSO-STAP
algorithm, showing its suitability for SR-STAP applications.

The rest of this paper is organized as follows. Section 2 introduces the signal model and
the performance of basic MH-STAP methods. In Section 3, PSO-GWO-STAP is proposed,
and the fitness function is improved according to the clutter distribution. Accordingly,
performance analysis is performed in this section. Finally, the conclusion and further
avenues of research are given in Section 4.
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Notation: Boldface uppercase letters represent matrices, and boldface lowercase letters
represent vectors. T and H represent transposition and conjugate transposition operations,
respectively. The symbol ⊗ denotes the Kronecker product operation. ||•||0 and ||•||2
denote the l0 norm and l2 norm, respectively. (·)† is the Moore–Penrose inverse operator.

2. Background and Basic Method
2.1. Signal Model

The geometric model of an airborne radar system employing a uniform planar array
(UPA) consisting of M × N elements is depicted in Figure 1. Here, θ and ϕ denote the
azimuth and pitch angles, respectively. ψ is defined as the cone angle, and θp signifies the
angle between the antenna plane and the direction of the flight velocity V. The altitude
of the platform is denoted by H. Moreover, the radar operates at a wavelength of λ, with
an array spacing of d and a pulse repeat frequency of fr, and it transmits K pulses in each
coherent processing interval (CPI).
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Figure 1. Geometric model of UPA airborne radar.

To streamline computational demands, the system can be equivalently represented as
an N-element equally spaced linear array [24]. The space-time clutter plus noise snapshot
for the lth range cell can be expressed as:

Xl =
Nc

∑
i=1

γiS( fd,i, fs,i) + N (1)

S( fd,i, fs,i) = sd( fd,i)⊗ ss( fs,i) (2)

where Nc represents the number of independent clutter units and N refers to the white
noise received by the radar. γi is the complex amplitude. S is the space-time steering vector,
and ⊗ denotes the Kronecker product operation. sd and ss denote temporal and spatial
steering vectors, respectively, and their formulas are as follows:

sd( fd,i) = [1, exp(j2π fd,i), . . . , exp(j2π(K− 1) fd,i)]
T (3)

ss( fs,i) = [1, exp(j2π fs,i), . . . , exp(j2π(N − 1) fs,i)]
T (4)

In SR-STAP, the spatial-Doppler plane is uniformly dispersed into Ns = ρs N and
Nd = ρd K grid points along the spatial and temporal axes, respectively, where ρd, ρs > 1
determine the resolution of the plane. Assuming all clutter units are precisely located on
these grid points, Formula (1) can be reformulated as:

Xl = Φα+ N (5)

Φ =
[
S( fd,1, fs,1), . . . , S( fd,1, fs,Ns), . . . , S( fd,Kd

, fs,Ns)
]

(6)
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where Φ is the NK × NsNd overcomplete dictionary composed of space-time steering
vectors. α is the sparse coefficient, which can be solved by the following formula:

min
∣∣∣∣∣∣α∣∣∣∣∣∣0, s.t.

∣∣∣∣∣∣Xl −Φα
∣∣∣|22 ≤ σ2

n (7)

where ||•||0 and ||•||2 denote the l0 norm and l2 norm of the vector, respectively, and σ2
n is

the noise threshold.

2.2. Basic MH-STAP Method

Meta-heuristic algorithms typically commence with multiple candidate solutions as
initial values. These algorithms calculate the objective function value based on these
initial values and update the candidate solutions through various methods, eventually
progressing to the next iteration cycle. Theoretically, meta-heuristic algorithms are expected
to locate the global optimum over time. However, it is acknowledged that no single
algorithm is universally effective for all problem types. Consequently, although the basic
PSO-STAP method has been proposed, four meta-heuristic algorithms (PSO, GWO, DE,
and GA) are employed to address the off-grid problem. Their optimization performances
in relation to SR-STAP are compared in this section.

2.2.1. MH-STAP Algorithm Flow

In the PSO algorithm, particles are characterized by two attributes: position and
velocity. The velocity of a particle determines its position in the subsequent iteration.
Particles follow the current optimal particle to search in the space [25]. GWO executes
optimization through three processes, namely, tracking, encircling, and attacking prey, and
it requires the setting of fewer parameters compared to PSO [26]. The differential evolution
algorithm consists of three parts: mutation, crossover, and selection. It contains two critical
unknown parameters: the scale factor F in the mutation operation and crossover rate CR in
the crossover operation [27]. The standard genetic algorithm employs three types of genetic
operators for iteration: a selection operator, crossover operator, and mutation operator.
“Roulette wheel selection” is the most common method used to carry out the process of
survival of the fittest among individuals. New individuals are then generated according to
the crossover probability Pc and mutation probability Pm [28].

The fitness function is crucial for determining the optimal solution in meta-heuristic
algorithms. Fewer space-time vectors are expected to be selected to estimate the clutter
subspace for SR-STAP methods. Therefore, an appropriate space-time steering vector can
be selected by maximizing the fitness function in each iteration. The basic fitness function
formula is as follows:

F(a) =

∣∣∣S( fd, fs)
HPk

nR̂Pk
nS( fd, fs)

∣∣∣∣∣∣S( fd, fs)
HPk

nS( fd, fs)
∣∣∣ (8)

where R̂ = ΣL
l=1XlXl/L denotes a sample covariance matrix (SCM) of L samples. a = [ fd, fs]

represents the candidate solution, including two dimensions (spatial frequency and Doppler
frequency). And k represents the number of external iterations. Pn denotes a projection

matrix on the noise subspace and Pk
n = I−Φk

s(Φ
k
s)

†
. Φk

s represents the set of space-time
steering vectors of the selected atoms, and (·)† is the Moore–Penrose inverse operator.
Moreover, Pk

nR̂Pk
n can be understood as the residual of R̂ in the current iteration. The

numerator represents the atomic response to the residual, and the denominator can be
considered a normalization operation.

A previous study has established that the typical population size for PSO ranges
between 20 and 50 [29]. Consequently, the population size for the four algorithms is
uniformly set to 50. Subsequent testing determined the optimal number of iterations: 50 for
PSO and GWO, 100 for DE, and 300 for GA. (When calculating the average runtime, the
number of iterations is set to 50 for all algorithms.) Although increasing the population
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size and the number of iterations may enhance performance, it also significantly increases
computational demands. In addition, the boundary conditions of the four algorithms are
set as [−1, 1] according to the normalized space and Doppler frequency range. The input
parameters of algorithms are also optimized: Pc = 0.7 and Pm = 0.2 for GA, and F = 0.5 and
CR = 0.9 for DE. The parameters of PSO are consistent with [17]. The generalized process
for MH-STAP is as follows:

(1) Initialization: k = 0, P0
n = I, E0 = tr(R̂)/(NK), Φ0

s = [].
(2) Optimization: obtain the optimal space-time steering vector Sk under the current

iteration by using meta-heuristic algorithms.

(3) Update: k = k + 1, Φk
s =

[
Φk−1

s , Sk
]
, Pk

n = I−Φk
s(Φ

k
s)

†
, Ek = tr(Pk

nR̂Pk
n)/(NK).

(4) Judgment: When the criterion Ek < ησ2
n is satisfied, jump out of the loop.

Then, the weight vector of STAP is calculated by:

w = PnS0 (9)

where S0 is the steering vector of target.

2.2.2. Performance Comparison

In this letter, the performances of four algorithms applied to SR-STAP are evalu-
ated and compared with the traditional algorithm under the condition of UPA with the
parameters in the Table 1.

Table 1. Simulation parameters.

Parameter Symbol Value

Platform height H 8000 m
Signal wavelength λ 0.23 m

Array spacing d 0.115 m
Pulse repeat frequency fr 2434.8 Hz

Flight velocity V 140 m/s
Element number in UPA M × N 8 × 8

Pulse number in CPI K 8
Clutter-to-noise ratio CNR 60 dB

Non-side-looking angle θp 15◦

The first experiment focused on comparing the distributions of atoms in GA-STAP,
DE-STAP, PSO-STAP, GWO-STAP, and LMSSE-STAP (ρd = ρs = 6) within the spatial-
Doppler profile, under the condition of η = 0.8. The global meshless search characteristic of
the four meta-heuristic algorithms resulted in atoms being predominantly located on the
actual clutter ridge, as illustrated in Figure 2. Meanwhile, the difference between the four
meta-heuristic algorithms is inconspicuous. LMSSE-STAP depends on the resolution of
the initial mesh and the number of local mesh splits, so the presence of atoms that deviate
from the clutter ridge is difficult to avoid.

The second experiment aimed to compare the residual power E of the five algorithms,
which is the average of 100 Monte Carlo trails (similarly hereinafter). As shown in Figure 3,
LMSSE-STAP exhibited a higher residual power after the 15th iteration and required more
iterations to reach the threshold.

Among the four MH-STAP algorithms, PSO and GWO exhibited the most rapid
decline in residual power, followed by DE, with GA showing the slowest rate of decline.
When the number of iterations exceeded 33, the residual powers of the five algorithms
converged to a similar level. Reaching the threshold requires 25 iterations for PSO-STAP
and GWO-STAP, 26 for DE-STAP, 27 for GA-STAP, and 29 for LMSSE-STAP. This indicates
that meta-heuristic algorithms require fewer atoms to represent the clutter subspace than
LMSSE-STAP.
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The third experiment is set to evaluate the improvement factor (IF) of the five algo-
rithms in the same situation, which is defined as:

IF =

∣∣wHss
∣∣2

wHRw
· tr(R)

sH
s ss

(10)

where R denotes the exact clutter covariance matrix. IF curves of the five algorithms are
shown in Figure 4, and LMSEE-STAP demonstrates the least effective performance. The
four meta-heuristic algorithms continued to exhibit robust performance in this part. Swarm
intelligence (SI) algorithms outperformed evolutionary computation (EC) algorithms, pos-
sibly due to their inherent nature, as clutter is regularly distributed on the spatial-Doppler
plane, favoring the search capabilities of SI. While the performance of EC algorithms
could be enhanced by increasing the number of iterations, this would lead to a substantial
computational burden.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 14 
 

 

where R  denotes the exact clutter covariance matrix. IF curves of the five algorithms are 
shown in Figure 4, and LMSEE-STAP demonstrates the least effective performance. The 
four meta-heuristic algorithms continued to exhibit robust performance in this part. 
Swarm intelligence (SI) algorithms outperformed evolutionary computation (EC) algo-
rithms, possibly due to their inherent nature, as clutter is regularly distributed on the spa-
tial-Doppler plane, favoring the search capabilities of SI. While the performance of EC 
algorithms could be enhanced by increasing the number of iterations, this would lead to 
a substantial computational burden. 

  
(a) (b) 

Figure 3. Comparison of residual power. (a) 0–35 iterations. (b) 20–30 iterations. 

 
Figure 4. Comparison of IF curve. 

Finally, the computational complexities of the four kinds of STAP based on meta-
heuristic algorithms are analyzed. The time complexity of MH-STAP can be approxima-
tively considered as ( )O K P T D× × × , where K is the external number of iterations, not 
pulses in CPI (search for the collection of clutter atoms), P is the population size, T is the 
number of internal iterations (find the best atom via meta-heuristic algorithm), and D is 
the dimension of the data. With the same population size and number of internal itera-
tions, the SI algorithms (PSO and GWO) generally require fewer external iterations than 
the EC algorithms (DE and GA) to reach the threshold, which means EC SIK K> . Hence, 
the time complexity of EC-STAP is higher than that of SI-STAP in general. The average 
runtimes of the five algorithms under the same threshold conditions are shown in the 
Table 2, which verifies the conclusions of the time complexity analysis. 

In conclusion, compared with the traditional method, meta-heuristic algorithms can 
vastly improve the performance of SR-STAP with certain increases in the amount of cal-
culation. PSO-STAP and GWO-STAP show better clutter suppression and less computa-
tional complexity, making them promising prospects for SR-STAP. 

Table 2. Average runtimes of five algorithms. 

Figure 4. Comparison of IF curve.

Finally, the computational complexities of the four kinds of STAP based on meta-
heuristic algorithms are analyzed. The time complexity of MH-STAP can be approxima-
tively considered as O(K× P× T × D), where K is the external number of iterations, not
pulses in CPI (search for the collection of clutter atoms), P is the population size, T is the
number of internal iterations (find the best atom via meta-heuristic algorithm), and D is the
dimension of the data. With the same population size and number of internal iterations,
the SI algorithms (PSO and GWO) generally require fewer external iterations than the EC
algorithms (DE and GA) to reach the threshold, which means KEC > KSI . Hence, the time
complexity of EC-STAP is higher than that of SI-STAP in general. The average runtimes of
the five algorithms under the same threshold conditions are shown in the Table 2, which
verifies the conclusions of the time complexity analysis.

Table 2. Average runtimes of five algorithms.

STAP
Algorithm LMSSE PSO GWO GA DE

Average runtime(s) 1.53 1.93 1.97 2.14 7.64

In conclusion, compared with the traditional method, meta-heuristic algorithms can
vastly improve the performance of SR-STAP with certain increases in the amount of calcu-
lation. PSO-STAP and GWO-STAP show better clutter suppression and less computational
complexity, making them promising prospects for SR-STAP.

3. Improved PSO-GWO-STAP

The observations indicate that both the PSO and GWO algorithms demonstrate ex-
ceptional efficacy in SR-STAP. In general, PSO may converge on local optimal solutions,
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and GWO can maintain the balance between local and global search [30]. Therefore,
PSO and GWO are combined in an iterative process to improve the overall performance.
Concurrently, the fitness function is improved based on prior information in this section.

3.1. Improved Fitness Function

As shown in Figure 5, the spatial-Doppler plane can be divided into two parts based
on the clutter distribution, which is determined by airborne platform and radar system
parameters. Based on the above prior information, we propose a constraint factor C using
the following formula:

C =

{
1, if | fs − fd| < ε

e−| fs− fd |/2, else
(11)
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The expression for the new fitness function is as follows:

FN(a) = C · F(a) = C ·

∣∣∣S( fd, fs)
HPk

nR̂Pk
nS( fd, fs)

∣∣∣∣∣∣S( fd, fs)
HPk

nS( fd, fs)
∣∣∣ (12)

where ε depends on the clutter distribution. When θp = 15◦, ε is taken to 0.3. The main
role of C is to reduce the possibility of selecting particles outside the clutter distribution
region, so as to construct a more accurate clutter subspace and improve the convergence
performance of the algorithm.

3.2. PSO and GWO Algorithms

In PSO, the formula for a particle to update its velocity and position is as follows:

vt+1
i = ωtvt

i + c1r1(Pbestt
i − xt

i) + c2r2(Gbestt − xt
i)

xt+1
i = xt

i + vt+1
i

(13)

where v is the velocity vector; x is the position of the particle; t is the iteration number; c1
and c2 are acceleration coefficients; and r1 and r2 ∈ [0, 1] are random values. Pbest and
Gbest denote the best individual position and the best global position, respectively:

Pbestt+1
i =

Pbestt
i , if F(xt+1

i ) ≤ F(Pbestt
i)

xt+1
i , if F(xt+1

i ) > F(Pbestt
i)

Gbestt+1 = argmaxF(Pbestt+1
i ), 1 ≤ i ≤ imax

(14)
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and ω generally adopts a linear decreasing weight strategy:

ωt =
(wmax − wmin)(T − t)

T
+ wmin (15)

where T is the maximum number of iterations, and wmax and wmin are the setting parameters.
In GWO, the course of the hunting process is expressed as follows:

→
Dα =

∣∣∣∣→C1 ·
→
Xα(t)−

→
X(t)

∣∣∣∣
→

Dβ =

∣∣∣∣→C2 ·
→
Xβ(t)−

→
X(t)

∣∣∣∣
→

Dσ =

∣∣∣∣→C3 ·
→

Xσ(t)−
→
X(t)

∣∣∣∣
(16)

→
X1(t) =

∣∣∣∣→Xα(t)− A1 ·
→
Dα

∣∣∣∣
→
X2(t) =

∣∣∣∣ →Xβ(t)− A2 ·
→

Dβ

∣∣∣∣
→
X3(t) =

∣∣∣∣ →Xσ(t)− A3 ·
→

Dσ

∣∣∣∣
(17)

→
X(t + 1) =

→
X1(t) +

→
X2(t) +

→
X3(t)

3
(18)

where
→
Dα,

→
Dβ, and

→
Dσ are the distances between the α, β, and δ wolves and the prey.

→
Xα,

→
Xβ, and

→
Xσ are the current positions of the α, β, and δ wolves.

→
X1,

→
X2, and

→
X3 are

the adjusted positions guided by the α, β, and δ wolves, respectively. t is the number of

current iterations.
→
A and

→
C are determined coefficients, and their calculation formulas are

as follows: →
A = 2

→
a ·→r 1 −

→
a (19)

→
C = 2 ·→r 2 (20)

where
→
r and

→
r 2 are random numbers in [0, 1];

→
a linearly decreases from 2 to 0 as the

number of iterations increases. The expression for
→
a is as follows:

→
a = 2− 2

(
t
T

)
(21)

where T is the maximum number of iterations.

3.3. The Process of the Proposed Method

As previously mentioned, the PSO algorithm has its own drawbacks. Therefore, PSO
and GWO are combined to form a new optimizer to obtain better clutter suppression
performance. The PSO-GWO algorithm process is as follows:

Step 1: Set the population size P, boundary conditions, and maximum number of
iterations T, and randomly generate two populations (P1 for PSO and P2 for GWO). In
other words, initialize parameters including the particle position x0

i , velocity v0
i , and grey

wolf position
→
X(0).

Step 2: The fitness value of each particle and wolf is calculate using (12). According to

the results, the α wolf current position
→
Xα(0), β wolf current position

→
Xβ(0), and δ wolf

current position
→

Xσ(0) are obtained in the P2 population. Meanwhile, Pbest0
i and Gbest0

are obtained in the P1 population.
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Step 3: Update
→
X(t+ 1) using (16)–(21), and update

→
Xα(t+ 1),

→
Xβ(t+ 1), and

→
Xσ(t+ 1).

Step 4: Update xt+1
i and vt+1

i using (13) and (15).
Step 5: Sort xt+1

i by the fitness function (12) from largest to smallest, and update

xt+1
P =

→
Xα,xt+1

P−1=
→
Xβ, and xt+1

P−2=
→

Xσ .
Step 6: Update Pbestt+1

i and Gbestt+1 using (14).
Step 7: Steps 3 to 6 are repeated until the number of iterations t reaches the set

maximum number T, and the final Gbest is the optimal solution of the algorithm.
The improved PSO-GWO-STAP is a method to obtain the optimal space-time steering

vectors using the PSO-GWO algorithm; the process of the proposed model is shown in
Figure 6.
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3.4. The Performance of the Proposed Method

This subsection first analyzes the impact of the improved fitness function and the
PSO-GWO algorithm on clutter suppression performance in SR-STAP. The improvement
factor (IF) is regarded as the main evaluation parameter, and the results are shown in
Figure 7a,b with different population sizes (P) and iteration times (T).

It can be seen that compared with the single MH-STAP method, both the improved
fitness function (IFF) and the PSO-GWO algorithm can improve the performance of SR-
STAP. With the increase of the algorithm population size and the number of iterations, the
performance improvement brought by the improved fitness function becomes limited, but
the PSO-GWO algorithm continues to demonstrate its advantages. The reason for this
phenomenon is that with the increase in computational complexity, the search capability of
the algorithm is strengthened, allowing for better solutions without external constraints.
Moreover, the most critical aspect of MH-STAP is to accurately find the clutter atom
subset, which is limited by the search capability of the chosen meta-heuristic algorithm.
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A single meta-heuristic algorithm can improve its search capability by increasing the
population size and iteration number, and it is highly likely to fall into local optima.
The technique of algorithm hybridization can achieve global optimization under limited
conditions. Therefore, PSO-GWO-STAP can obtain a more accurate clutter subspace than
PSO-STAP, and its performance improvement is not affected by increases in population
and iterations in this case.
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The time complexity of the PSO-GWO-STAP algorithm can be considered as O(KPSO−GWO×
Psub−PSO× (Tsub−PSO +1)×Dsub−PSO)+O(KPSO−GWO×Psub−GWO×Tsub−GWO×Dsub−GWO);
sub-PSO and sub-GWO represent the PSO part and GWO part of the PSO-GWO algorithm,
respectively. Although KPSO−GWO < KPSO, KGWO in general, all else being equal, PSO-
GWO-STAP still has higher complexity than PSO-STAP (or GWO-STAP) in this case. In
fact, the performance improvement brought about by increasing the population size and
the number of iterations is also limited, so we set the sub-population size of PSO-GWO to
30, while the population size of the single PSO algorithm is set to 50, and the number of
iterations is set to 50. Under such conditions, the performances of PSO-STAP and improved
PSO-GWO-STAP have basically reached the optimal level. Therefore, this means that
relatively fewer computational resources are consumed to improve the performance of the
improved PSO-GWO-STAP method. The average runtime of PSO-GWO-STAP is 3.01 s,
which is the same magnitude as single MH-STAP.

As shown in Figure 8a, the residual power of the proposed PSO-GWO-STAP method
decreased slightly faster than those of PSO-STAP and GWO-STAP, eventually aligning in
later stages. Notably, it only takes 24 iterations for PSO-GWO-STAP to reach the threshold.
In addition, it can be seen that the IF of the proposed PSO-GWO-STAP method is narrower
in Figure 8b, which denotes superior performance in clutter suppression.
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Furthermore, the actual target detection capability of the proposed PSO-GWO-STAP
method is verified with mountain-top data. In Figure 9, a comparison of the normalized
output power with the PSO-STAP method is provided, where the target was positioned
at the 100th range gate. It can be observed that both algorithms can effectively detect a
target which is located at this location. The normalized output power of PSO-GWO-STAP
is slightly weaker than that of PSO-STAP, which means greater clutter suppression and
target detection capabilities.
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4. Conclusions

In this study, an improved PSO-GWO-STAP algorithm is proposed for airborne radar
to solve the off-grid problem of SR-STAP. First, we apply meta-heuristic algorithms (GA, DE,
PSO, and GWO) to SR-STAP to achieve meshless searching. Simulation and experimental
results show that, compared with the traditional method, MH-STAP methods can more
accurately find atoms on a spatial-Doppler profile. Furthermore, PSO-STAP and GWO-
STAP show better clutter suppression performance than the other methods. Then, the
fitness function is improved based on the prior information of the clutter distribution,
which can improve the performance of MH-STAP under certain conditions. To obtain
more excellent performance, PSO-GWO-STAP is created by combining GWO and PSO.
GWO will transmit information to PSO in each iteration to improve the global optimization
ability. The results show that the improved PSO-GWO-STAP algorithm can construct
a more accurate clutter subspace than single MH-STAP. The limitation of the proposed
method is that it consumes certain computing resources while improving the performance.

In the future, we will research a low-computational-complexity algorithm which can
achieve a greater improvement in clutter suppression performance for SR-STAP. Meanwhile,
the proposed new fitness function can play a limited role only if it meets certain conditions,
we will also research on a more universal function based prior information to further
improve performance.
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Abbreviations

Full Name Acronym
Clutter covariance matrix CCM
Coherent processing interval CPI
Differential evolution DE
Direction of arrival DOA
Deep unfolding DU
Evolutionary computation EC
Genetic algorithm GA
Grey wolf optimization GWO
Improvement factor IF
Improved fitness function IFF
Local mesh splitting subspace estimation LMSSE
Meta-heuristic algorithms MH
Moving target indication MTI
Particle swarm optimization PSO
Reduced-dimension local search clutter subspace estimation RD-LSCSE
Sample covariance matrix SCM
Swarm intelligence SI
Sparse recovery SR
Space-time adaptive processing STAP
Uniform planar array UPA
Wireless sensor networks WSNs

References
1. Klemm, R. Introduction to space-time adaptive processing. Electron. Commun. Eng. J. 1999, 11, 5–12. [CrossRef]
2. Lin, X.; Blum, R.S. Robust STAP algorithms using prior knowledge for airborne radar applications. Signal Process. 1999, 79,

273–287. [CrossRef]
3. Melvin, W.L. A STAP overview. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 19–35. [CrossRef]
4. Wicks, M.C.; Rangaswamy, M.; Adve, R.; Hale, T.B. Space-time adaptive processing: A knowledge-based perspective for airborne

radar. IEEE Signal Process. Mag. 2006, 23, 51–65. [CrossRef]
5. Han, S.; Fan, C.; Huang, X. A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery. IEEE Geosci.

Remote Sens. Lett. 2017, 14, 213–217. [CrossRef]
6. Yang, Z.; Li, X.; Wang, H.; Jiang, W. On clutter sparsity analysis in space–time adaptive processing airborne radar. IEEE Geosci.

Remote Sens. Lett. 2017, 10, 1214–1218. [CrossRef]
7. Cui, W.; Wang, T.; Wang, D.; Liu, C. An improved iterative reweighted STAP algorithm for airborne radar. Remote Sens. 2022, 15,

130. [CrossRef]
8. Duan, K.; Liu, W.; Duan, G.; Wang, Y. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery

STAP. IET Radar Sonar Navig. 2018, 12, 557–564. [CrossRef]
9. Feng, W.; Guo, Y.; Zhang, Y.; Gong, J. Airborne radar space time adaptive processing based on atomic norm minimization. Signal

Process. 2018, 148, 31–40. [CrossRef]
10. Li, Z.; Ye, H.; Liu, Z.; Sun, Z.; An, H.; Wu, J.; Yang, J. Bistatic SAR clutter-ridge matched STAP method for nonstationary clutter

suppression. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5216914. [CrossRef]
11. Tropp, J.A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004, 50, 2231–2242. [CrossRef]
12. Duan, K.; Chen, H.; Xie, W.; Wang, Y. Deep learning for high-resolution estimation of clutter angle-Doppler spectrum in STAP.

IET Radar Sonar Navig. 2022, 16, 193–207. [CrossRef]
13. Zou, B.; Feng, W.; Zhu, H. Airborne radar STAP method based on deep unfolding and convolutional neural networks. Electronics

2023, 12, 3140. [CrossRef]
14. Gu, Y.; Wu, J.; Fang, Y.; Zhang, L.; Zhang, Q. End-to-End moving target indication for airborne radar using deep learning. Remote

Sens. 2022, 14, 5354. [CrossRef]
15. Li, Z.; Zhang, Y.; He, X.; Guo, Y. Low-complexity off-grid STAP algorithm based on local search clutter subspace estimation. IEEE

Geosci. Remote Sens. Lett. 2018, 15, 1862–1866. [CrossRef]

https://doi.org/10.1049/ecej:19990102
https://doi.org/10.1016/S0165-1684(99)00101-2
https://doi.org/10.1109/MAES.2004.1263229
https://doi.org/10.1109/MSP.2006.1593337
https://doi.org/10.1109/LGRS.2016.2635104
https://doi.org/10.1109/LGRS.2012.2236639
https://doi.org/10.3390/rs15010130
https://doi.org/10.1049/iet-rsn.2017.0425
https://doi.org/10.1016/j.sigpro.2018.02.008
https://doi.org/10.1109/TGRS.2021.3125043
https://doi.org/10.1109/TIT.2004.834793
https://doi.org/10.1049/rsn2.12176
https://doi.org/10.3390/electronics12143140
https://doi.org/10.3390/rs14215354
https://doi.org/10.1109/LGRS.2018.2865536


Sensors 2023, 23, 9444 14 of 14

16. He, P.; He, S.; Yang, Z.; Huang, P. An off-grid STAP algorithm based on local mesh splitting with bistatic radar system. IEEE
Signal Process. Lett. 2020, 27, 1355–1359. [CrossRef]

17. Li, X.; Yang, X.; Wang, Y.; Duan, K. Gridless sparse clutter nulling STAP based on particle swarm optimization. IEEE Geosci.
Remote Sens. Lett. 2022, 19, 4023205. [CrossRef]

18. Francesca, P.; Adamantia, R.; Alberto, G. A comparative analysis of three computational-intelligence metaheuristic methods for
the optimization of TDEM data. Pure Appl. Geophys. 2022, 179, 3727–3749.

19. Cheng, X.; Ciuonzo, D.; Rossi, P.S. Multibit decentralized detection through fusing smart and dumb sensors based on Rao test.
IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 1391–1405. [CrossRef]

20. Cheng, X.; Ciuonzo, D.; Rossi, P.S.; Wang, X.; Wang, W. Multi-bit & sequential decentralized detection of a noncooperative moving
target through a generalized Rao test. IEEE Trans. Signal Inf. Process. Over Netw. 2021, 7, 740–753.

21. Wang, X.; Fu, X.; Dong, J.; Jiang, J. Dynamic modified chaotic particle swarm optimization for radar signal sorting. IEEE Access
2021, 9, 88452–88466. [CrossRef]

22. Chen, H.; Li, S.; Liu, J.; Liu, F.; Suzuki, M. A novel modification of PSO algorithm for SML estimation of DOA. Sensors 2016, 16,
2188. [CrossRef] [PubMed]

23. Lan, C.; Chen, H.; Zhang, L.; Guo, R.; Han, C.; Luo, D. Underwater Acoustic DOA Estimation of incoherent signal based on
improved GA-MUSIC. IEEE Access 2023, 11, 69474–69485. [CrossRef]

24. Wang, Y.; Peng, Y.; Bao, Z. STAP with medium PRF mode for non-side-looking airborne radar. IEEE Trans. Aerosp. Electron. Syst.
2000, 36, 619–620.

25. Zhang, Y.; Wang, S.; Ji, G. A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl.
Eng. 2015, 2015, 931256. [CrossRef]

26. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
27. Jiang, L.; Maskell, D.L.; Patra, J.C. Parameter estimation of solar cells and modules using an improved adaptive differential

evolution algorithm. Appl. Energy 2013, 112, 185–193. [CrossRef]
28. Sourabh, K.; Singh, C.S.; Vijay, K. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2020, 80,

8091–8126.
29. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [CrossRef]
30. Mishra, A.K.; Das, S.R.; Ray, P.K.; Mallick, R.K.; Mohanty, A.; Mishra, D.K. PSO-GWO optimized fractional order PID based

hybrid shunt active power filter for power quality improvements. IEEE Access 2020, 8, 74497–74512. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LSP.2020.3010161
https://doi.org/10.1109/LGRS.2022.3158059
https://doi.org/10.1109/TAES.2019.2936777
https://doi.org/10.1109/ACCESS.2021.3091005
https://doi.org/10.3390/s16122188
https://www.ncbi.nlm.nih.gov/pubmed/27999377
https://doi.org/10.1109/ACCESS.2023.3292218
https://doi.org/10.1155/2015/931256
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.apenergy.2013.06.004
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1109/ACCESS.2020.2988611

	Introduction 
	Background and Basic Method 
	Signal Model 
	Basic MH-STAP Method 
	MH-STAP Algorithm Flow 
	Performance Comparison 


	Improved PSO-GWO-STAP 
	Improved Fitness Function 
	PSO and GWO Algorithms 
	The Process of the Proposed Method 
	The Performance of the Proposed Method 

	Conclusions 
	References

